張 偉,柳和生,*,余 忠,,章 凱,陳忠仕
(1.南昌大學(xué)聚合物成型研究室,南昌 330031;2.東華理工大學(xué)化學(xué)生物與材料學(xué)院,南昌 330013;3.上饒師范學(xué)院江西省塑料制備成型重點(diǎn)實(shí)驗(yàn)室,江西 上饒 334001)
流體輔助注射成型主要由氣體輔助注射成型(GAIM,gas-assisted injection molding)和水輔助注射成型(WAIM,water-assisted injection molding)組成[1-8]。WAIM相較于GAIM最大不同之處是注射介質(zhì)用更容易獲得的水代替了氮?dú)?。除水比氮?dú)飧撰@得優(yōu)勢(shì)之外,水還有如下一些性質(zhì):不可壓縮性,使得成型制品表面更光滑、殘余壁厚更均勻[9-13],穿透更平穩(wěn),成型制品質(zhì)量更好、更輕,對(duì)生產(chǎn)中空直徑較大制品和具有厚薄結(jié)合制品更有優(yōu)勢(shì)[14-15];冷卻效果好,使得水輔制品冷卻更快,大大縮短了制品成型周期,降低成本[16-21];熱導(dǎo)率是氮?dú)獾?0倍,比熱容是氮?dú)獾?倍,進(jìn)一步縮短了成型周期及降低了生產(chǎn)成本。
20世紀(jì)70年代初水輔注射成型技術(shù)問(wèn)世以來(lái),由于當(dāng)時(shí)注射水裝置產(chǎn)生的水壓不高、流速太低,成型結(jié)果令人非常不滿。直到2000年10月底利用該技術(shù)加工出全塑料超市手推車,該技術(shù)逐漸成為了相關(guān)研究者們的焦點(diǎn)。至今為止,取得了一定的研究成果。文中主要對(duì)該技術(shù)所涉及的一些更加深入問(wèn)題及解決方案進(jìn)行了歸納,如:水穿透過(guò)程不穩(wěn)定、變截面處熔體堆積現(xiàn)象及指狀效應(yīng)等制品宏觀現(xiàn)象及其相對(duì)應(yīng)優(yōu)化,制品表面光潔度、纖維取向及分布、不同區(qū)域晶體結(jié)構(gòu)等制品微觀現(xiàn)象及其相對(duì)應(yīng)優(yōu)化。
前期,對(duì)制品宏觀現(xiàn)象研究主要集中在水穿透長(zhǎng)度、中空率、中空偏差率等方面。目前,研究者越來(lái)越深入研究發(fā)現(xiàn)其實(shí)影響這些方面的本質(zhì)因素在于水穿透過(guò)程不穩(wěn)定性、變截面處熔體堆積現(xiàn)象等。
在水輔注射成型中,水對(duì)熔體有2次穿透過(guò)程。第一次是當(dāng)高壓水通過(guò)噴嘴進(jìn)入模具沿阻力最小方向推動(dòng)聚合物熔體向前形成中空制品。第二次是在保壓期間,由于熔體溫度下降導(dǎo)致熔體體積收縮時(shí)水滲透到熔體內(nèi)部形成第二次穿透現(xiàn)象。第一次水的穿透行為非常復(fù)雜而且很難去控制。在第一次穿透中,Liu等[22-24]通過(guò)可視化技術(shù)觀察到高壓水穿透熔體的過(guò)程是不穩(wěn)定的,當(dāng)提高注水壓力時(shí),穿透過(guò)程中熔體前沿極易產(chǎn)生噴泉效應(yīng)。張?jiān)雒偷萚25]通過(guò)模擬發(fā)現(xiàn)水推動(dòng)熔體充模的初始階段極易會(huì)產(chǎn)生湍流旋渦,并且隨著水不斷推動(dòng)聚合物熔體前移逐漸產(chǎn)生分層界面的不穩(wěn)定現(xiàn)象;通過(guò)調(diào)節(jié)注水速率來(lái)改變注水壓力,進(jìn)而能夠很好地改善注水口的湍流效應(yīng)和熔體充模過(guò)程中分層流動(dòng)界面的不穩(wěn)定性。劉旭輝等[26-27]通過(guò)可視化技術(shù)研究了短射法水輔注射成型中熔體充模流動(dòng)行為,發(fā)現(xiàn)當(dāng)水穿透被注水噴嘴冷卻后形成的高黏度熔體后極易產(chǎn)生不穩(wěn)定的現(xiàn)象,并且極可能導(dǎo)致靠近模壁的熔體產(chǎn)生回流效應(yīng)。同時(shí)又進(jìn)一步通過(guò)示蹤技術(shù)發(fā)現(xiàn)當(dāng)增加注水延遲時(shí)間時(shí),聚合物熔體殼層的高黏度層向芯層增加,導(dǎo)致穿透過(guò)程中熔體在水道層附近產(chǎn)生回流層。并且隨著熔體填充量和熔體溫度的增加,回流層數(shù)也會(huì)隨之增加,可以通過(guò)適當(dāng)增加注水壓力和熔體溫度來(lái)完全消除回流現(xiàn)象[28]??锾魄宓萚29-30]發(fā)現(xiàn)水的湍流效應(yīng)和較低的注水壓力都會(huì)導(dǎo)致水穿透初始階段的不穩(wěn)定現(xiàn)象,通過(guò)增加注水延遲時(shí)間能有效地削弱在低注水壓力下水穿透初始階段的界面不穩(wěn)定現(xiàn)象。
在高壓水推動(dòng)高溫膜熔體之前,由于熔體在進(jìn)入模具變截面入口處的循環(huán)流動(dòng)和模具的冷卻作用極易導(dǎo)致在變截面處形成高黏度的聚合物凝固層,而且隨著時(shí)間和熔體的注射速度的增加越積越多,嚴(yán)重影響了成型制件的質(zhì)量[31]。Yang等[32]通過(guò)數(shù)值模擬發(fā)現(xiàn)在水輔注射成型制品模型的下游的變截面處會(huì)有少量的熔體堆積現(xiàn)象。Liu等[33]通過(guò)單一變量法研究了工藝參數(shù)和過(guò)渡區(qū)域模具形狀對(duì)WAIM聚丙烯管件過(guò)渡截面處(收縮和膨脹過(guò)渡段)熔體堆積現(xiàn)象的影響,結(jié)果發(fā)現(xiàn)影響圓管件模具變截面收縮和擴(kuò)張過(guò)渡段處的熔體堆積長(zhǎng)度都主要受工藝參數(shù)注水延遲時(shí)間和熔體短射量的影響,隨著注水延遲時(shí)間和熔體短射量的增加而變長(zhǎng),且上游擴(kuò)張區(qū)過(guò)渡段的熔體堆積長(zhǎng)度的遠(yuǎn)遠(yuǎn)大于下游收縮區(qū)過(guò)渡段的長(zhǎng)度。同時(shí)還發(fā)現(xiàn)當(dāng)短射量增大到一定程度時(shí),熔體堆積長(zhǎng)度急劇增加。相比于GAIM,WAIM圓管件的熔體堆積現(xiàn)象更小。此外,可以通過(guò)在過(guò)渡截面處加入45 °的圓角來(lái)很好地改善過(guò)渡區(qū)域的熔體堆積現(xiàn)象。
指狀效應(yīng)是指高壓水推動(dòng)聚合物熔體偏離預(yù)期設(shè)計(jì)的水道,進(jìn)入制品薄壁區(qū)域形成指狀分支。嚴(yán)重的指狀效應(yīng)會(huì)顯著地降低成型制品的力學(xué)性能等。Liu 等[34]以了解水輔注塑復(fù)合材料成型制件中指狀效應(yīng)的形成機(jī)理為研究目的,通過(guò)單因素法研究了7參數(shù)對(duì)短玻纖增強(qiáng)聚合物水輔助注射成型制品指狀效應(yīng)的影響。發(fā)現(xiàn)主要影響制品指狀效應(yīng)形成的工藝參數(shù)是注水壓力、注水延遲時(shí)間和熔體短射量,可以通過(guò)降低熔體溫度、模溫、水溫以及注水壓力,增加注水延遲時(shí)間和熔體短射量來(lái)降低指狀效應(yīng)。同時(shí)還發(fā)現(xiàn)制品指狀現(xiàn)象的形成不僅與工藝參數(shù)有關(guān),還和復(fù)合材料纖維含量與注水水道的幾何形狀有關(guān),且相比GAIM,WAIM制品具有更嚴(yán)重的指狀效應(yīng),通過(guò)降低復(fù)合材料中纖維含量和使用半圓形水道或者增大注水水道的高度和厚度比可以很好地降低指狀效應(yīng)。Lin等[35-36]進(jìn)一步研究了聚合物材料的相關(guān)性能和注水水道形狀(包括縱橫比和圓角幾何形狀)對(duì)指狀效應(yīng)的影響,發(fā)現(xiàn)聚合物材料的黏度或者溫度梯度的一個(gè)很小變化都會(huì)影響到制品的指形化,當(dāng)使用無(wú)定形材料時(shí)能很好地降低制品的指狀效應(yīng)。此外,還通過(guò)對(duì)比三角形、半圓形、矩形這3種水道形狀對(duì)制品指狀效應(yīng)的影響發(fā)現(xiàn)使用三角形注水通道成型的制品極易產(chǎn)生指狀效應(yīng),使用矩形水道能夠很好地降低成型制品的指狀效應(yīng)。Sannen等[37]通過(guò)研究發(fā)現(xiàn)WAIM 高密度聚乙烯制品比WAIM 聚丙烯制品更容易產(chǎn)生指狀效應(yīng),可以通過(guò)適當(dāng)?shù)亟档捅簳r(shí)間和增加熔體流動(dòng)指數(shù)來(lái)降低指狀效應(yīng)。Yang等[38]通過(guò)Fluent模擬發(fā)現(xiàn)在可變橫截面和L形水道中極易產(chǎn)生指狀效應(yīng),在變截面處可以通過(guò)適當(dāng)尺寸的圓角平滑過(guò)渡來(lái)有效地減少指狀效應(yīng)。
在制品的微觀方面往往與制品的力學(xué)性能聯(lián)系密切,特別是制品的纖維取向和晶體類型等。同時(shí),制品的纖維取向分布以及晶體結(jié)構(gòu)分布也越來(lái)越受到國(guó)內(nèi)外研究學(xué)者重視。
纖維增強(qiáng)聚合物復(fù)合材料具有強(qiáng)度高,比模量大,抗腐蝕性能好,特別是纖維增強(qiáng)聚合物復(fù)合材料不僅能夠很好地提高注塑產(chǎn)品的力學(xué)性能,而且具有質(zhì)量輕、可塑性好等一系列優(yōu)點(diǎn)?,F(xiàn)在已經(jīng)成功地應(yīng)用于汽車行業(yè)以塑代鋼實(shí)現(xiàn)產(chǎn)品的輕量化等[39-40]。Liu等[41]1 423研究了含15 %玻璃纖維的聚對(duì)苯二甲酸丁二醇酯(PBT)WAIM 平板制品的纖維取向分布,實(shí)驗(yàn)發(fā)現(xiàn),水輔注射成型制品中纖維取向分布與傳統(tǒng)注射成型制品中纖維的分布有很大區(qū)別。傳統(tǒng)注射成型制品中一般只能觀察到殼層和芯層兩個(gè)區(qū)域的纖維取向,而水輔助注模制品中的纖維取向可以分為殼層、芯層和水道層3個(gè)區(qū)域。WAIM制品的殼層纖維在填充初期受到強(qiáng)烈的剪切作用而主要在流動(dòng)方向形成取向,而芯層的纖維取向往往雜亂無(wú)章,這與傳統(tǒng)注射成型類似。由于水道層受到的剪切力不像殼層那么大,填充速率大,故主要在沿傾斜于流動(dòng)方向形成取向。Huang等[42]研究了WAIM纖維增強(qiáng)聚丙烯復(fù)合材料制品在不同位置沿厚度方向的纖維取向的影響。通過(guò)掃描電子顯微鏡(SEM)發(fā)現(xiàn)靠近水道末端位置的纖維沿流動(dòng)方向取向有序區(qū)域的相對(duì)厚度遠(yuǎn)遠(yuǎn)大于接近水道位置的有序區(qū)域,而近水道位置的纖維取向有序區(qū)域的相對(duì)厚度遠(yuǎn)遠(yuǎn)大于傳統(tǒng)注射成型的制品纖維取向區(qū)域。這主要與WAIM工藝中熔體內(nèi)部的剪切場(chǎng)和水的良好冷卻效果有關(guān)??梢酝ㄟ^(guò)增加注水壓力和降低熔體溫度來(lái)促使WAIM纖維增強(qiáng)聚合物復(fù)合材料制品中的纖維更多地沿著流動(dòng)方向形成取向。
制品的結(jié)晶度、晶體類型和結(jié)構(gòu)等微觀性能是直接影響制件的力學(xué)性能,也一直是學(xué)者們的研究重點(diǎn)。Liu和Lin[41]1 421-1 422研究了熔體溫度、模具溫度、注水溫度等工藝參數(shù)對(duì)制品結(jié)晶度的影響,發(fā)現(xiàn)在相同的工藝條件下,制品殼層的結(jié)晶度大于水道層的結(jié)晶度,注水溫度是影響制品結(jié)晶度最明顯的工藝參數(shù)。此外,還發(fā)現(xiàn)在相同工藝條件下氣體輔助成型的制品的結(jié)晶度高于水輔注射成型制品的結(jié)晶度。Liu等[43]進(jìn)一步研究了WAIM聚酰胺6(PA6)制品中不同位置的晶體類型,發(fā)現(xiàn)γ晶體主要分布在制品靠近殼層區(qū)域,且隨著切片位置與殼層距離的增加制品內(nèi)部γ晶體分布越來(lái)越少,α晶體越來(lái)越多,到了芯層區(qū)域主要分布的α晶體,這主要與制品內(nèi)部的溫度分布有關(guān)。此外,還發(fā)現(xiàn)可以通過(guò)增加注水溫度來(lái)提高制品的結(jié)晶度。Huang和Deng[44]利用差示掃描量熱法(DSC)對(duì)WAIM PA6彎管制品2個(gè)不同位置(近注水口、水道末端)的沿厚度方向的結(jié)晶度進(jìn)行了初步的研究發(fā)現(xiàn)在近水端的芯層結(jié)晶度最高、芯層的結(jié)晶度最??;而水道末端的3個(gè)區(qū)域的結(jié)晶度差不多高,但小于近水端芯層的結(jié)晶度,這主要與制品的冷卻效率相關(guān)聯(lián)。這一結(jié)論黃漢雄課題組其他人也得到了驗(yàn)證[45]。黃漢雄等[46]利用偏光顯微鏡(PLM)進(jìn)一步研究了WAIM 聚丙烯制品近注水口P1和遠(yuǎn)離注水口P2沿厚度方向上晶體的結(jié)構(gòu),發(fā)現(xiàn)由于水的良好的冷卻效果,在2個(gè)位置的水道層附近區(qū)域主要分布的是致密的小球晶結(jié)構(gòu),且隨著與水道層距離的增加,水的冷卻效果降低球晶結(jié)構(gòu)變得形狀無(wú)規(guī)則,到了芯層主要分布直徑較大且無(wú)序的球晶。而在2個(gè)位置殼層區(qū)由于熔體內(nèi)部剪切作用強(qiáng)度不同晶體結(jié)構(gòu)也不同,近水端P1在強(qiáng)剪切力下促使形成取向片晶,水道末端P2在弱剪切力下無(wú)法形成取向結(jié)晶,主要分布球晶。Liu等[47]通過(guò)實(shí)驗(yàn)也發(fā)現(xiàn)了WAIM 和傳統(tǒng)注射成型(CIM)等規(guī)聚丙烯(iPP)制品的殼層區(qū)域分布有小球晶且球晶直徑隨著與殼層的距離增加變大。此外,還發(fā)現(xiàn)CIM iPP制品球晶尺寸遠(yuǎn)大于WAIM iPP制品球晶尺寸,這主要與高壓水的穿透作用和快速冷卻作用有關(guān)。Wang和Huang[48-49]對(duì)WAIM 聚丙烯制件殼層、芯層、水道層的晶體類型進(jìn)行了研究,利用DSC發(fā)現(xiàn)WAIM 聚丙烯制品的這3個(gè)區(qū)域主要分布的是α晶體,通過(guò)降低熔體溫度可以使殼層和水道層形成少量的γ晶體,但是對(duì)晶體的結(jié)構(gòu)影響甚微,然而可以很顯著地影響WAIM 聚丙烯/SAN制品結(jié)晶度和晶體取向分布。而且SAN對(duì)制品晶體結(jié)構(gòu)也非常明顯。此外,還發(fā)現(xiàn)SAN可以誘導(dǎo)制品中形成更多的β晶體,并且調(diào)整了聚丙烯/SAN混合制品晶體結(jié)構(gòu),并且沿厚度方向的晶體取向得到了顯著增加。這一現(xiàn)象在WAIM iPP 制品也得到驗(yàn)證[50-51]。Liu等[52]通過(guò)研究聚合物材料的相對(duì)分子質(zhì)量對(duì)制品晶體結(jié)構(gòu)的影響發(fā)現(xiàn)具有較低相對(duì)分子質(zhì)量的聚乙烯WAIM制品更容易形成取向串晶。
雖然水輔注射成型相對(duì)于傳統(tǒng)注射成型和氣體輔助注射成型優(yōu)勢(shì)明顯,但是高壓水的引入導(dǎo)致水輔注塑比傳統(tǒng)注射成型和氣體輔助注射成型更加復(fù)雜,制品成型過(guò)程中容易出現(xiàn)較多問(wèn)題。根據(jù)國(guó)內(nèi)外的研究現(xiàn)狀,制品的研究主要集中在工藝參數(shù)對(duì)制品性能的影響,包括水穿透的不穩(wěn)定性、變截面處熔體堆積現(xiàn)象、指狀效應(yīng)和相形態(tài)等相關(guān)的研究。
現(xiàn)在關(guān)于水輔注塑的研究已經(jīng)取得了較大的進(jìn)步,主要集中在工藝對(duì)宏觀方面的制品性能的改善。關(guān)于微觀、力學(xué)性能、尋找更多種類注塑材料以及廢料的回收等方面的研究仍是研究重點(diǎn)。
參考文獻(xiàn):
[1] SHAH S, HLAVATY D. Gas Injection Molding of an Automotive Structural Part[J].Plastics Engineering,1991, 199(1):21-25.
[2] YANG S Y, CHOU H L. Study on the Residual Wall Thickness at Dimensional Transitions and Curved Sections in Gas-assisted Molded Circular Tubes[J]. Polymer Engineering & Science,2002,42(1):111-119.
[3] PARVEZ M A, ONG N S, LAM Y C, et al. Gas-assisted Injection Molding: The Effects of Process Variables and Gas Channel Geometry[J]. Journal of Materials Proces-sing Technology,2002,121(1):27-35.
[4] LIU S J, CHANG K H. Parameters Affecting the Full-shot Molding of Gas-assisted Injection Molded Parts[J]. Advances in Polymer Technology,2003,22(1):1-14.
[5] KNIGHTS M. Water Injection Molding Makes Hollow Parts Faster, Lighter[J].Plastics Technology,2002,48(4): 62-67.
[6] THOMAS R. Process for Gas Assisted and Water Assisted Injection Molding: 6,579,489[P]. 2003-06-17.
[7] KNIGHTS M. Water Injection Molding: It ’s All Coming Together[J]. Plastics Technology,2005,51(9):54-61.
[8] LIU S J, LIN C H. An Experimental Study of Water-assisted Injection Molding of Plastic Tubes with Dimensional Transitions[J]. Journal of Reinforced Plastics and Composites,2007,26(14):1 441-1 454.
[9] MICHAELI W, JUNTGEN T, BRUNSWICK A. WIT-En Route to Series Production: First Industrial Application of the Water Injection Technique[J].Kunststoffe Plast Europe,2001,91(3):37-39.
[10] LIU S, CHEN Y. Water-assisted Injection Molding of Thermoplastic Materials: Effects of Processing Parameters[J]. Polymer Engineering & Science,2003,43(11):1 806-1 817.
[11] CHANG R Y, HUANG C T, YANG W H, et al. The Investigation of Flow Behavior of Polymeric Melts in the Water Assisted Injection Molding[C]//Proceedings of the 62nd Annual Technical Conference of SPE, May 16-20, 2004, Chicago, IL, USA, Brookfield:SPE/ANTEC, 2004:566-569.
[12] LIU S J, WU Y C. A Novel High Flow Rate Pin for Water-assisted Injection Molding of Plastic Parts with a More Uniform Residual Wall Thickness Distribution[J].International Polymer Processing,2006,21(5):436-439.
[13] LIU S J, WU Y C, CHENG W K. Surface Gloss Diffe-rence on Water Assisted Injection Moulded Thermoplastic Parts: Effects of Processing Variables[J].Plastics, Rubber and Composites,2006,35(1):29-36.
[14] AHMADZAI A Z, BEHRAVESH A H. An Experimental Investigation on Water Penetration in the Process of Water Assisted Injection Molding of Polypropylene[J].Polimery,2009,54:564-572.
[15] LIU S J. Water Assisted Injection Molding: a Review[J].International Polymer Processing,2009,24(4): 315-325.
[16] MICHAELI W, Brunswick A, Kujat C. Reducing Coo-ling Time with Water-assisted Injection Moulding-advantages Over Gas-assisted Injection[J]. Kunststoffe-Plast Eupope,2000,90(8):67-72.
[17] MAPLESTON P. Injection Molding Water-assisted Process Shows Promise[J].Modern Plastics Internatio-nal, 2001,31(1):33-33.
[18] LIU S J, CHEN W K. Experimental Investigation and Numerical Simulation of Cooling Process in Water Assisted Injection Moulded Parts[J].Plastics, Rubber and Composites,2004,33(6):260-266.
[19] YANG J G, ZHOU X H, NIU Q. Residual Wall Thickness Study of Variable Cross-section Tube in Water-assisted Injection Molding[J].International Polymer Processing,2012,27(5):584-590.
[20] SANNEN S, PUYVELDE P, KEYZER J. Defect Occurrence in Water-assisted Injection-molded Products: Definition and Responsible Formation Mechanisms[J].Advances in Polymer Technology,2015,34(1),21476, DOI:10.1002/adv.21476.
[21] PARK H, CHA B S, RHEE B. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-assisted Injection Molded Hollow Products[J]. Advances in Materials Science and Engineering,2015,161938,DOI:10.1155/2015/701940.
[22] WU Y C, LIU S J. Flow Visualization of Water Assisted Injection Moulding Process[J]. Plastics, Rubber and Composites,2005,34(5/6):227-231.
[23] LIU S J, WU Y C, LAI P C. Water Penetration Stability in Water Assisted Injection Molded Symmetric Ribs[J]. International Polymer Processing,2005,20(4):352-359.
[24] LIU S J, WU Y C. Dynamic Visualization of Cavity-filing Process in Fluid-assisted Injection Molding-gas Versus Water[J].Polymer Testing,2007,26(2):232-242.
[25] 張?jiān)雒?周 華,高院安,等.水輔助注射成型充模流動(dòng)的仿真與分析[J].機(jī)械工程學(xué)報(bào),2010,46(8): 140-146.
ZHANG Z M, ZHOU H, GAO Y A, et al.Simulation Simulation and Analysis on Cavity Filling Process in Water-assisted Injection Molding[J].Journal of Mechanical Engineering,2010(8):140-146.
[26] 劉旭輝, 黃漢雄. 水輔助注射成型中水穿透行為的可視化研究[J].中國(guó)塑料,2009,23(3):58-60.
LIU X H, HUANG H X. Visualization Analysis of Water Penetration Behavior in Water-assisted Injection Molding[J].China Plastics,2009,23(3):58-60.
[27] 劉旭輝,黃漢雄.水輔助熔體充模流動(dòng)的熔體流痕[J].化工學(xué)報(bào),2010,61(10):2 523-2 528.
LIU X H, HUANG H X.Melt Flow Patterns in Water-assisted Melt Filling[J].CIESC Journal,2010,61(10): 2 523-2 528.
[28] 劉旭輝, 黃漢雄.工藝參數(shù)對(duì)水輔助熔體充模流動(dòng)的影響[J].化工學(xué)報(bào),2011,62(2):520-524.
LIU X H, HUANG H X. Effects of Processing Conditions on Melt Flow of Water Assisted Melt Filling[J].CIESC Journal,2011,62(2):520-524.
[29] 匡唐清, 鄧 洋, 余春叢. 溢流法水輔注塑中注水參數(shù)對(duì)水穿透的影響分析[J]. 中國(guó)塑料, 2014,28 (7): 96-99.
KUANG T Q, DENG Y, YU C C.Experimental Investigation of the Effect of Water Parameters on Water Penetration During Overflow Water-assisted Injection Molding[J].China Plastics, 2014,28 (7): 96-99.
[30] 匡唐清, 鄧 洋. 注水參數(shù)對(duì)水輔助注射成型充填過(guò)程影響的數(shù)值模擬[J]. 中國(guó)塑料, 2014, 28(2): 96-100.
KUANG T Q, DENG Y. Numerical Simulation of Effect of Water Injection Parameters on Water-assisted Injection Molding Filling Process[J]. China Plastics, 2014, 28(2): 96-100.
[31] LIU S J, CHEN Y S. The Manufacturing of Thermoplastic Composite Parts by Water-assisted Injection-mol-ding Technology[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(2): 171-180.
[32] YANG J G, ZHOU X H. Numerical Simulation on Residual Wall Thickness of Tubes with Dimensional Transitions and Curved Sections in Water-assisted Injection Molding[J]. Journal of Applied Polymer Science, 2013, 128(3): 1 987-1 994.
[33] LIU S J, HSIEH M H. Residual Wall Thickness Distribution at the Transition and Curve Sections of Water-assisted Injection Molded Tubes[J]. International Polymer Processing, 2007, 22(1): 82-89.
[34] LIU S J, LIN S P. Study of ‘Fingering’ in Water Assisted Injection Molded Composites[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(11): 1 507-1 517.
[35] LIU S J, LIN S P. Factors Affecting the Formation of Fingering in Water-assisted Injection-molded Thermoplastics[J]. Advances in Polymer Technology, 2006, 25(2): 98-108.
[36] LIN K Y, LIU S J. The Influence of Processing Parameters on Fingering Formation in Fluid-assisted Injection-molded Disks[J]. Polymer Engineering & Science, 2009, 49(11): 2 257-2 263.
[37] SANNEN S, DE KEYZER J, VAN PUYVELDE P. The Influence of Melt and Process Parameters on the Quality and Occurrence of Part Defects in Water-assisted Injection Molded Tubes[J]. International Polymer Processing, 2011, 26(5): 551-559.
[38] YANG J G, ZHOU X H, NIU Q. Model and Simulation of Water Penetration in Water-assisted Injection Molding[J]. The International Journal of Advanced Manufactu-ring Technology, 2013,67(1/2/3/4):367-375.
[39] 水輔技術(shù)首次應(yīng)用于碳纖維加工[J]. 玻璃鋼/復(fù)合材料,2015(1):117.
Water-assisted Technology First Applied to Carbon Fiber Processing[J].Fiber Reinforced Plastics/Composites,2015(1):117.
[40] 中國(guó)全碳纖車體新能源汽車e-Go登錄美國(guó)[J]. 玻璃鋼/復(fù)合材料,2015(1):117.
China ’s Full Carbon Fiber Car Body New Energy Vehicle e-Go Log In United States[J].Fiber Reinforced Plastics/Composites,2015(1):117.
[41] LIU S J, LIN M J, WU Y C. An Experimental Study of the Water-assisted Injection Molding of Glass Fiber Filled Poly-butylene-terephthalate (PBT) Composites[J].Composites Science and Technology,2007, 67(7).
[42] HUANG H X, ZHOU R H, YANG C. Fiber Orientation Propelled by High-pressure Water Penetration in Water-assisted Injection Molded Fiber-reinforced Thermoplastics Part[J]. Journal of Composite Materials, 2013, 47(2): 183-190.
[43] LIU S J, SHIH C C. An Experimental Study of the Water-assisted Injection Molding of PA-6 Composites[J]. Journal of Reinforced Plastics and Composites, 2008, 27(9): 985-999.
[44] HUANG H X, DENG Z W. Effects and Optimization of Processing Parameters in Water-assisted Injection Mol-ding[J]. Journal of Applied Polymer Science, 2008, 108(1): 228-235.
[45] 周偉文, 黃漢雄. 水輔助注塑尼龍 6 制品的結(jié)晶行為研究[J]. 塑料科技, 2010,38(1): 66-69.
ZHOU W W, HUANG H X.Study on Crystallization Behavior of Water-assisted Injection Moulded Nylon 6 Part[J]. Plastics Science and Technology,2010,38(1): 66-69.
[46] 許 磊, 黃漢雄, 周潤(rùn)恒. 水輔助注塑聚丙烯制品的晶體結(jié)構(gòu)研究[J]. 塑料科技, 2009, 37(6): 39-42.
XU L, HUANG H X, ZHOU R H.Study on Crystal Structure of Water-assisted Injection Molded Polypropy-lene Part[J]. Plastics Science and Technology, 2009, 37(6): 39-42.
[47] LIU X, ZHENG G, DAI K, et al. Morphological Comparison of Isotactic Polypropylene Molded by Water-assisted and Conventional Injection Molding[J]. Journal of Materials Science, 2011, 46(24): 7 830.
[48] WANG B, HUANG H X. Tailoring the Crystalline Structure of Polypropylene Parts Molded Through Water-assisted Injection Molding: Effects of Melt Temperature and Polymeric Nucleating Agent[J]. Polymer Enginee-ring & Science, 2013, 53(9): 1 927-1 936.
[49] WANG B, HUANG H X, WANG Z Y. In Situ Fibrillation of Polymeric Nucleating Agents in Polypropylene and Subsequent Transcrystallization Propelled by High-pressure Water Penetration During Water-assisted Injection Molding[J]. Composites Part B: Engineering, 2013, 50(8): 215-223.
[50] ZHENG G Q, JIA Z, LIU X, et al. Enhanced Orientation of the Water-assisted Injection Molded IPP in the Presence of Nucleating Agent[J]. Polymer Engineering & Science, 2012, 52(4): 725-732.
[51] WANG B, HUANG H X, WANG Z Y. Process-induced Phase and Crystal Morphologies in Water-assisted Injection Molded Polypropylene/Polymeric β-nucleating Agent Blend Parts[J]. Polymer Engineering & Science, 2015, 55(7): 1 698-1 705.
[52] LIU X, ZHANG C, DAI K, et al. Unexpected Molecular Weight Dependence of Shish Kebab in Water-assisted Injection Molded HDPE[J]. Polymers for Advanced Technologies, 2013, 24(2): 270-272.