劉 偉,李瑞琴,黃 瑋
(河南中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院,河南 鄭州 450006)
內(nèi)質(zhì)網(wǎng)是細(xì)胞中重要的細(xì)胞器之一,主要負(fù)責(zé)蛋白質(zhì)的合成、轉(zhuǎn)運(yùn)、信號轉(zhuǎn)導(dǎo)和鈣離子調(diào)節(jié)等功能,參與新生成蛋白多肽的折疊修飾并保證新生成蛋白多肽折疊的正確、順利進(jìn)行。多種生理或病理?xiàng)l件下,如當(dāng)細(xì)胞處于持續(xù)的化學(xué)刺激、氧化應(yīng)激、鈣離子或者能量代謝失衡時,細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)將被破壞,內(nèi)質(zhì)網(wǎng)功能發(fā)生紊亂,主要表現(xiàn)為二硫鍵不能形成,引起蛋白質(zhì)的錯誤折疊及蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)積聚,即內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)[1]。內(nèi)質(zhì)網(wǎng)應(yīng)激可以分為兩個階段,早期的非折疊蛋白反應(yīng)及晚期的誘導(dǎo)凋亡。即適當(dāng)?shù)膬?nèi)質(zhì)網(wǎng)應(yīng)激通過觸發(fā)非折疊蛋白反應(yīng),從而使受損的細(xì)胞存活,相反,持續(xù)的內(nèi)質(zhì)網(wǎng)應(yīng)激則會引起細(xì)胞凋亡[2]。
當(dāng)細(xì)胞內(nèi)環(huán)境紊亂時,引起內(nèi)質(zhì)網(wǎng)功能紊亂,為避免細(xì)胞凋亡,內(nèi)質(zhì)網(wǎng)激活并發(fā)生未折疊蛋白反應(yīng)(unfolded protein response,UPR)。ERS早期UPR會減少未折疊蛋白的產(chǎn)生和促進(jìn)錯誤折疊蛋白的分解,從而促使細(xì)胞存活。真核細(xì)胞細(xì)胞膜上存在三種應(yīng)激蛋白,即:PERK/PEK(PEK like ER kinase)、IRE1/ERN1(inositol requring 1)和ATF6(activating transcription factor 6)。PERK、IRE1和ATF6是內(nèi)質(zhì)網(wǎng)跨膜蛋白,非應(yīng)激狀態(tài)下,三者的N-端與內(nèi)質(zhì)網(wǎng)分子伴侶GRP78(glucose-regulated protein of 78 kDa)/Bip(heavy chain-binding protein)結(jié)合形成二聚體,無活性,而在ERS時,大量未折疊蛋白在內(nèi)質(zhì)網(wǎng)腔內(nèi)積聚,GRP78/Bip與未折疊蛋白的親和力高于跨膜蛋白,三者與GRP78解離而被激活,啟動UPR,UPR保護(hù)細(xì)胞促使存活;當(dāng)發(fā)生持續(xù)且嚴(yán)重的ERS,超過了細(xì)胞的非折疊蛋白反應(yīng)處理能力時,內(nèi)質(zhì)網(wǎng)應(yīng)激途徑凋亡信號則被全面激活,發(fā)生細(xì)胞凋亡。內(nèi)質(zhì)網(wǎng)凋亡信號的激活可由內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)起始分子PERK、IRE-1和ATF6介導(dǎo),并與Caspase-12、CHOP、JNK上調(diào)有關(guān)[3-6];內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)細(xì)胞凋亡主要通過三條通路:①Caspase-12途徑(在人類中則是Caspase-4);②CHOP/GADD153途徑;③JNK途徑[7]。Caspase-12、CHOP、JNK表達(dá)的增高均能誘導(dǎo)細(xì)胞發(fā)生凋亡[8-10]。
細(xì)胞凋亡是一種程序性細(xì)胞死亡,它是在一系列基因的控制下進(jìn)行的。 Kerr等[11]最先提出了凋亡這一概念,它廣泛涉及基因的激活、表達(dá)以及調(diào)控等方面。對于抗腫瘤作用機(jī)制,國內(nèi)外學(xué)者做了大量的研究,但是大多數(shù)都局限于目前已知的兩條經(jīng)典凋亡途徑:受體活化(外源性途徑)和線粒體途徑(內(nèi)源性途徑)[12]。近年來一些研究發(fā)現(xiàn),內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)途徑可能是誘導(dǎo)細(xì)胞凋亡的一個新途徑。越來越多的研究表明,部分中藥可通過誘導(dǎo)腫瘤細(xì)胞的內(nèi)質(zhì)網(wǎng)應(yīng)激來發(fā)揮抗腫瘤作用。
2.1調(diào)節(jié)肺癌細(xì)胞凋亡Zhu等[13]研究發(fā)現(xiàn),甘草中活性成分甘草次酸可通過上調(diào)未折疊蛋白、Bip、PERK和ERP72,引發(fā)未折疊蛋白反應(yīng)(UPR),從而將人非小細(xì)胞肺癌細(xì)胞A549和人大細(xì)胞肺癌細(xì)胞NCI-H460細(xì)胞周期阻滯在G0/G1期,抑制其增殖。Fang等[14]用吳茱萸堿作用于人小細(xì)胞肺癌細(xì)胞NCI-H446和NCI-H1688,發(fā)現(xiàn)吳茱萸堿可將細(xì)胞阻滯于G2/M期,抑制其增殖,并上調(diào)Caspase-12和細(xì)胞色素C蛋白的表達(dá),通過線粒體途徑和內(nèi)質(zhì)網(wǎng)應(yīng)激途徑誘導(dǎo)小細(xì)胞肺癌細(xì)胞凋亡,為臨床提供一種新型有效的小細(xì)胞肺癌抗腫瘤候選藥物。另外,莪術(shù)提取物莪術(shù)呋喃二烯能上調(diào)內(nèi)質(zhì)網(wǎng)途徑特有蛋白BIP和CHOP的表達(dá),通過內(nèi)質(zhì)網(wǎng)應(yīng)激途徑,誘導(dǎo)A549、NIH-H1299、95-D 3種非小細(xì)胞肺癌細(xì)胞凋亡,且呈濃度依賴性的抑制肺癌細(xì)胞增殖[15]。Zhao等[16]發(fā)現(xiàn)小白菊提取物小白菊內(nèi)酯可上調(diào)內(nèi)質(zhì)網(wǎng)應(yīng)激中p-eIF2α、ATF4和DDIT3(DNA-damage inducible transcript3)蛋白的表達(dá),通過內(nèi)質(zhì)網(wǎng)應(yīng)激信號轉(zhuǎn)導(dǎo)通路誘導(dǎo)人非小細(xì)胞肺癌細(xì)胞凋亡。
2.2調(diào)節(jié)肝癌細(xì)胞凋亡Wang等[17]研究表明,中藥黃芩中有效活性成分之一黃芩素可通過內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)肝癌細(xì)胞SMMC-7721和Bel-7402 凋亡和保護(hù)性自噬,可能通過下調(diào)促生存Bcl-2家族、升高細(xì)胞內(nèi)鈣離子濃度、激活JNK,內(nèi)質(zhì)網(wǎng)應(yīng)激中CHOP蛋白的表達(dá)在促進(jìn)肝癌細(xì)胞凋亡中發(fā)揮了主要作用,eIF2α和IRE1α起保護(hù)作用。Yu等[18]發(fā)現(xiàn)黃芩苷可通過激活內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激中的ATF6信號通路,使GRP78、CHOP、p50-ATF6和Caspase12的表達(dá)水平升高,從而誘導(dǎo)肝癌細(xì)胞凋亡。蟾酥提取物蟾毒靈能明顯促進(jìn)人HepG-2和Huh7兩種肝癌細(xì)胞凋亡,在用蟾毒靈處理具有沉默IRE1表達(dá)的細(xì)胞和沉默CHOP表達(dá)的細(xì)胞發(fā)現(xiàn),IRE1途徑促進(jìn)凋亡,而CHOP途徑?jīng)]有,表明蟾毒靈誘導(dǎo)肝癌細(xì)胞凋亡的機(jī)制是通過IRE1-JNK途徑誘導(dǎo)了內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)[19]。Huang等[20]研究發(fā)現(xiàn),中藥都咸子中有效成分漆樹酸是內(nèi)質(zhì)網(wǎng)應(yīng)激的有效誘導(dǎo)劑,可通過激活CHOP和ATF4途徑誘導(dǎo)肝癌HepG2細(xì)胞和骨髓瘤U266細(xì)胞凋亡,且隨著時間和劑量的增加,內(nèi)質(zhì)網(wǎng)信號下游分子GRP78/BiP、磷酸化的eIF2α、ATF4和CHOP在HepG2和U266細(xì)胞系中表達(dá)增加。另外有研究發(fā)現(xiàn)海藻的乙醇提取物可誘導(dǎo)肝癌SK-Hep1細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激,其凋亡機(jī)制與上調(diào)ATF6α、CHOP和TRAF2的表達(dá)有關(guān),還可通過增加促凋亡蛋白、凋亡誘導(dǎo)因子和細(xì)胞色素C的表達(dá)誘導(dǎo)癌細(xì)胞凋亡[21]。
2.3調(diào)節(jié)卵巢癌細(xì)胞凋亡槲皮素(Qu)是自然界中最常見的黃酮類化合物,存在于許多水果和蔬菜,Yang等[22]用槲皮素聯(lián)合順鉑作用于卵巢癌細(xì)胞發(fā)現(xiàn)。槲皮素可明顯增強(qiáng)順鉑對卵巢癌細(xì)胞的抑制活性,降低順鉑的使用劑量,且同時保護(hù)腎臟免受損傷,槲皮素的增效減毒作用是通過激活卵巢癌細(xì)胞的內(nèi)質(zhì)網(wǎng)應(yīng)激實(shí)現(xiàn)的,槲皮素能激活內(nèi)質(zhì)網(wǎng)應(yīng)激中的所有三個途徑,每種途徑的抑制劑可顯著減弱槲皮素的增效作用。此外,槲皮素特別抑制信號轉(zhuǎn)導(dǎo)活化轉(zhuǎn)錄因子-3(signal trans-ducer and activator of transcription 3,STAT3)磷酸化,導(dǎo)致STAT3下游的BCL-2基因的下調(diào),阻斷ERS恢復(fù)磷酸化STAT3以及BCL-2表達(dá)的蛋白質(zhì)水平,可消除槲皮素的化學(xué)致敏效力。
2.4調(diào)節(jié)乳腺癌細(xì)胞凋亡白斂素是藤茶中的主要活性成分,能產(chǎn)生一系列生物學(xué)效應(yīng),Zhou等[23]研究了其在人類乳腺癌細(xì)胞株的抗癌活性,并探討了這一行動的基本機(jī)制。發(fā)現(xiàn)白斂素可劑量依賴性地引起活性氧(ROS)在乳腺癌細(xì)胞的產(chǎn)生,同時激活內(nèi)質(zhì)網(wǎng)應(yīng)激,上調(diào)CHOP的表達(dá),誘導(dǎo)乳腺癌細(xì)胞凋亡,ROS清除劑NAC或基因敲除ATF6可下調(diào)CHOP的表達(dá),明顯抑制降低白斂素對乳腺癌細(xì)胞的生長抑制和誘導(dǎo)凋亡。
2.5調(diào)節(jié)前列腺癌細(xì)胞凋亡Li等[24]在研究中用山竹果提取物(MFE)處理兩個人前列腺癌細(xì)胞系:22Rv1和LNCaP,以及從兩個進(jìn)行根治性前列腺切除術(shù)的患者獲得的前列腺上皮細(xì)胞(PrEC),發(fā)現(xiàn)MFE能夠選擇性地促進(jìn)前列腺癌細(xì)胞中的ER應(yīng)激,增加ER應(yīng)激蛋白CHOP、PERK、Caspase-4、Bip等的表達(dá)誘導(dǎo)癌細(xì)胞凋亡,同時可保留非致瘤性前列腺上皮細(xì)胞。
2.6調(diào)節(jié)惡性膠質(zhì)瘤細(xì)胞凋亡研究發(fā)現(xiàn),蟾蜍靈可誘導(dǎo)ER應(yīng)激介導(dǎo)的惡性膠質(zhì)瘤細(xì)胞凋亡,上調(diào)CHOP的表達(dá),使用siCHOP RNA降低CHOP的下調(diào)可減弱蟾毒靈的誘導(dǎo)凋亡作用;同時蟾蜍靈可上調(diào)GRP78的表達(dá),引起細(xì)胞自噬,蟾蜍靈抑制神經(jīng)膠質(zhì)瘤細(xì)胞生長,并通過內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)細(xì)胞凋亡和自噬之間的相互作用,從而為將蟾毒靈發(fā)展成用于治療馬氏膠質(zhì)瘤的候選藥物提供分子基礎(chǔ)[25]。
2.7調(diào)節(jié)膀胱癌細(xì)胞凋亡鞣花酸是廣泛存在于各種軟果、堅(jiān)果等植物組織中的一種天然多酚組分,有研究發(fā)現(xiàn),鞣花酸可通過內(nèi)質(zhì)網(wǎng)應(yīng)激和線粒體依賴性信號通路,促進(jìn)ROS和Ca2+產(chǎn)生,上調(diào)促進(jìn)p21,p53及Caspase-9和Caspase-3等蛋白的表達(dá),誘導(dǎo)TSGH8301人膀胱癌細(xì)胞凋亡和DNA損傷[26]。
腫瘤是目前世界衛(wèi)生事業(yè)仍然無法攻克的難題,中醫(yī)藥對腫瘤的治療已獲得廣泛認(rèn)可。其具體作用機(jī)制在體外實(shí)驗(yàn)中研究較多,但具體作用于人體內(nèi)時是否產(chǎn)生積極作用有待進(jìn)一步研究,理論與臨床的良好結(jié)合才是研究者所追尋的最終目標(biāo)。
[參考文獻(xiàn)]
[1]Wang X,Eno CO,Altman BJ,et al. ER stress modulates cellular metabolism[J]. Biochem J,2011,435(1):285-296
[2]Jwa M,Chang P. PARP16 is a tail-anchored endoplasmic reticu-lum proteinrequired for the PERK-and IRE1α-mediated unfolded protein response[J]. Nat Cell Biol,2012,14(11):1223-1230
[3]Zhao CQ,Zhang YH,Jiang SD,et al. Both endoplasmic reticulum and mitochondria are involved in disc cell apoptosis and intervertebral disc degeneration in rats[J]. Age(Dordr),2010,32(2):161-177
[4]Zhang YH,Zhao CQ,Jiang LS,et al. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production[J]. Eur Spine J,2011,20(8):1233-1243
[5]Diane RF,Constantinos K. The PERK/elF2/ATF4 module of the UPR in hypoxia resistance and tumorgrowth[J]. Cancer Biol Ther,2006,5(7):723-728
[6]Gotoh T,Mori M. Nitric oxide and endoplasmic reticulum stress[J]. Arterioscler Thromb Vasc Biol,2006,2(6):1439-1446
[7]吳芳,安永康,朱艷琴. 內(nèi)質(zhì)網(wǎng)應(yīng)激與腫瘤細(xì)胞凋亡研究進(jìn)展[J]. 現(xiàn)代腫瘤醫(yī)學(xué),2014,22(9):2228-2231
[8]Liu D,Zhang M,Yin H. Signaling pathways involved in endoplasmic reticulum stress-induced neuronal apoptosis[J]. Int J Neurosci,2013,123(3): 155-162
[9]Horndasch M,Lienkamp S,Springer E,et al. The C/EBP homologous protein CHOP(GADD153)is an inhibitor of Wnt/TCF signals[J]. Oncogene,2006,25(24):3397-3407
[10] Lu SJ,Yang ZT,Sun L,et al. Conservation of IRE1-regulated bZ-IP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER-stress responses[J]. Mol Plant,2012,5(2):504-514
[11] Kerr JFR,Wyllie AH,Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer,1972,26(4):239-257
[12] Chalah A,Khosravi-Far R. The mitochondrial death path way[J]. Adv Exp Med Biol,2008,6(15):25-45
[13] Zhu J,Chen M,Chen N,et al. Glycyrrhetinic acid induces G1-phase cell cycle arrest in human non-small cell lung cancer cells through endoplasmic reticulum stress pathway[J]. Int J Oncol,2015,46(3):981-988
[14] Fang C,Zhang J,Qi D,et al. Evodiamine induces G2/M arrest and apoptosis via mitochondrial and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells[J]. PLoS One,2014,9(12):e115204
[15] Xu WS,Dang YY,Guo JJ,et al. Furanodiene induces endoplasmic reticulum stress and presents antiproliferative activities in lung cancer cells[J]. Evid Based Complement Alternat Med,2012,2012:426-521
[16] Zhao X,Liu X,Su L. Parthenolide induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung cancer cells[J]. J Exp Clin Cancer Res,2014,33(1):3
[17] Wang Z,Jiang C,Chen W,er al. Baicalein induces apoptosis and autophagy via endoplasmic reticulum stress in hepatocellular carcinoma cells[J]. Biomed Res Int,2014,2014:1-13
[18] Yu Z,Luo X,Wang C,et al. Baicalin promoted site-2 protease and not site-1 protease in endoplasmic reticulum stress-induced apoptosis of human hepatocellular carcinoma cells[J]. FEBS Open Bio,2016,6(11):1093-1101
[19] Hu F,Han J,Zhai B,et al. Blocking autophagy enhances the apoptosis effect of bufalin on human hepatocellular carcinoma cells through endoplasmic reticulum stress and JNK activation[J]. Apoptosis,2014,19(1):210-223
[20] Huang H,Hua X,Liu N,et al. Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress[J]. Toxicology Letters,2014,228(3):170-178
[21] Il Jung H,Jo MJ,Kim HR,et al. Extract of Saccharina japonica induces apoptosis companied by cell cycle arrest and endoplasmic reticulum stress in SK-Hep1 human hepatocellular carcinoma cells[J]. Asian Pac J Cancer Prev,2014,15(7):2993-2999
[22] Yang Z,Liu Y,Liao J,et al. Quercetin induces endoplasmic reticulum stress to enhance cDDP cytotoxicity in ovarian cancer:involvement of STAT3 signaling[J]. FEBS J,2015,282(6):1111-1125
[23] Zhou Y,Liang X,Chang H,et al. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress[J]. Cancer Sci,2014,105(10):1279-1287
[24] Li G,Petiwala SM,Pierce DR,et al. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract[J]. PLoS One,2013,8(12):e81572
[25] Shen S,Zhang Y,Wang Z,et al. Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress[J]. Int J Biol Sci,2014,10(2):212-224
[26] Ho CC,Huang AC,Yu CS,et al. Ellagic acid induces apoptosis in TSGH8301 human bladder cancer cells through the endoplasmic reticulum stress-and mitochondria-dependent signaling pathways[J]. Environ Toxicol,2014,29(11):1262-1274
現(xiàn)代中西醫(yī)結(jié)合雜志2018年12期