(承德市民族中學(xué) 河北承德 067000)
例題是中學(xué)數(shù)學(xué)教學(xué)中常用教學(xué)方法之一,通過例題教學(xué)能夠促使學(xué)生理解、鞏固和掌握數(shù)學(xué)公理、定理及公式,因此,中學(xué)數(shù)學(xué)教師應(yīng)重視例題教學(xué)方法在數(shù)學(xué)課堂中的應(yīng)用,從而提升數(shù)學(xué)教學(xué)質(zhì)量,實(shí)現(xiàn)數(shù)學(xué)教學(xué)目標(biāo)。
當(dāng)前各種新型教學(xué)方法和手段層出不窮,但萬(wàn)變不離其宗,數(shù)學(xué)教學(xué)的主體部分仍然是理論知識(shí)講解、例題講解和練習(xí)鞏固三個(gè)步驟[1],其中,例題講解不僅能夠闡述理論知識(shí)中的數(shù)學(xué)原理、說明理論知識(shí)中疑點(diǎn)及難點(diǎn),同時(shí)也是不同知識(shí)點(diǎn)之間的銜接與過渡,教師可在講解一個(gè)知識(shí)點(diǎn)之后,采用一個(gè)過渡例題,引出下一個(gè)知識(shí)點(diǎn),從而提升數(shù)學(xué)課堂教學(xué)的連貫性。例題教學(xué)具有極高的優(yōu)勢(shì),促使學(xué)生理解數(shù)學(xué)基礎(chǔ)知識(shí),掌握數(shù)學(xué)原理、概念、公式、定理等要素,還能夠培養(yǎng)學(xué)生數(shù)學(xué)思維能力,將各項(xiàng)數(shù)學(xué)思想滲入至例題教學(xué)之中,有助于學(xué)生形成數(shù)學(xué)知識(shí)體系,促進(jìn)學(xué)生數(shù)學(xué)能力的發(fā)展。
例題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中較為普遍應(yīng)用的方法之一,通過對(duì)例題的分析和研究,教師可以將相應(yīng)的解題方法和解題思路向?qū)W生滲透[2],從而實(shí)現(xiàn)教學(xué)目標(biāo)。在例題教學(xué)法中,部分教師過于依賴教材,照搬教材及教輔材料中的解題方法,并沒有將數(shù)學(xué)思想滲入到教學(xué)之中,這種現(xiàn)象導(dǎo)致學(xué)生對(duì)例題教學(xué)環(huán)節(jié)的學(xué)習(xí)積極性不高,進(jìn)而導(dǎo)致課堂教學(xué)質(zhì)量的下降。鑒于此,教師應(yīng)正確認(rèn)識(shí)例題教學(xué),明確例題教學(xué)法的重要作用,根據(jù)實(shí)際教學(xué)內(nèi)容,結(jié)合學(xué)生的認(rèn)知規(guī)律及數(shù)學(xué)基礎(chǔ)知識(shí)掌握水平,從而開展具有針對(duì)性與合理性的教學(xué)活動(dòng),提升中學(xué)數(shù)學(xué)教學(xué)水平。例如,在“三角函數(shù)”教學(xué)中,其中正切函數(shù)與正弦函數(shù)、余弦函數(shù)相互轉(zhuǎn)化難度較高,學(xué)生對(duì)這一部分內(nèi)容理解和掌握水平較低,對(duì)于公式tanα=sinα/cosα靈活運(yùn)用能力較差。題目:化簡(jiǎn)函數(shù)sin50°在傳統(tǒng)教學(xué)中,教師一般針對(duì)這一例題進(jìn)行常規(guī)解答,并為學(xué)生展示每一步驟的化簡(jiǎn)方法,最終得出化簡(jiǎn)結(jié)果,但學(xué)生僅僅明白這一道例題的解題方法,在遇到類似問題時(shí)依然束手無(wú)策。鑒于此,教師應(yīng)采用例題教學(xué)法引導(dǎo)學(xué)生掌握此類問題的解題思路,使學(xué)生了解正切化弦的方法,并能合理利用和角、差角、倍角及半角等公式,進(jìn)而形成三角函數(shù)正切正弦與余弦函數(shù)相互轉(zhuǎn)化的思維習(xí)慣,促使學(xué)生掌握解題技巧,對(duì)于學(xué)生解答此類問題具有促進(jìn)作用。
選擇、設(shè)計(jì)例題是例題教學(xué)法最為重要的環(huán)節(jié),合理為學(xué)生安排例題是教學(xué)質(zhì)量的首要保障。在具體選擇過程中,應(yīng)注意以學(xué)生的實(shí)際學(xué)習(xí)能力相一致,過于簡(jiǎn)單的題目會(huì)造成學(xué)生探究興趣不高現(xiàn)象,同時(shí)也不利于提升學(xué)生數(shù)學(xué)學(xué)習(xí)水平[3],反之,過難的例題也不適用于教學(xué)之中,部分?jǐn)?shù)學(xué)能力適中學(xué)生在面對(duì)難以理解的問題時(shí),其學(xué)習(xí)自信心被嚴(yán)重影響,導(dǎo)致學(xué)生出現(xiàn)厭惡、恐懼的情緒。因此,教師需要針對(duì)學(xué)生的實(shí)際情況變換例題,使例題盡可能適用于全部學(xué)生,從而調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,提高中學(xué)數(shù)學(xué)例題教學(xué)實(shí)效性。例如,在“數(shù)列”教學(xué)之中,這一部分的內(nèi)容存在一定難度,教師可酌情降低例題難度,從而使課堂中大部分學(xué)生能夠跟上教師解題思路,培養(yǎng)學(xué)生數(shù)列解題能力。題目:數(shù)列{Xn}的和為Sx=2Sx-1,數(shù)列{Yn}中Y1=3,Ym+1=Xk+Yk,請(qǐng)寫出{Yn}前n項(xiàng)之和Sy。這一題目相對(duì)比較簡(jiǎn)單,通過對(duì)題干加以分析即可找出解題思路,即通過研究Sx與Sx+1的關(guān)系,從而求出Yn與Sx,最后得出Sy。同時(shí),這一題目存在多種解法,教師可在基本解法的基礎(chǔ)之上為學(xué)生講解其他解法,以滿足部分?jǐn)?shù)學(xué)水平較高的學(xué)生需求。通過此種方式,有針對(duì)性的選擇和設(shè)計(jì)例題,進(jìn)而兼顧班級(jí)中絕大多數(shù)學(xué)生的學(xué)習(xí)需要,使學(xué)生整體數(shù)學(xué)學(xué)習(xí)水平有所提升。
教學(xué)反思就是在教學(xué)結(jié)束后,教師根據(jù)學(xué)生的反饋情況,針對(duì)教學(xué)內(nèi)容、教學(xué)模式及教學(xué)手段加以研究,找出其中的優(yōu)缺點(diǎn),從而在未來教學(xué)中調(diào)整教學(xué)方法,以提升中學(xué)數(shù)學(xué)教學(xué)水平。其中,學(xué)生反饋十分重要,是教師進(jìn)行教學(xué)反思的重要參考指標(biāo),一般情況下,學(xué)生反饋包括課堂反饋與課后反饋,課后反饋通常以課后作業(yè)的形式反映出來,教師應(yīng)重視學(xué)生易錯(cuò)題及易錯(cuò)步驟,分析其出現(xiàn)的原因,從而掌握學(xué)生在數(shù)學(xué)知識(shí)掌握過程中的“短板”,獲得真實(shí)、具體的學(xué)生反饋信息[4]。課堂反饋多以有效提問方式展現(xiàn),教師在例題教學(xué)中,針對(duì)某一步驟或某一方法對(duì)學(xué)生提問,觀察學(xué)生的回答情況,針對(duì)部分答錯(cuò)、不答的學(xué)生,可進(jìn)一步了解學(xué)生不理解、不明白的原因。在獲得學(xué)生反饋信息之后,教師可針對(duì)大部分學(xué)生掌握情況較好和不好的內(nèi)容進(jìn)行研究,明確學(xué)生在數(shù)學(xué)知識(shí)認(rèn)知中的優(yōu)勢(shì)與不足,從而揚(yáng)長(zhǎng)避短的調(diào)整教學(xué)方法,促使學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)及解題技巧等能力得以增強(qiáng)。例如,在“分解因式”教學(xué)中,例題:求證993-99能被98整除,教學(xué)中教師在解到99(992-1)時(shí),發(fā)現(xiàn)學(xué)生對(duì)于下一步驟不能正確理解,這是由于學(xué)生對(duì)平方差公式掌握不全面而造成的,因此,教師可對(duì)這一知識(shí)點(diǎn)加以重點(diǎn)講解,從而提升學(xué)生的分解因式解題能力。
綜上所述,例題教學(xué)于中學(xué)數(shù)學(xué)教學(xué)而言,具有極高的積極影響,不僅加強(qiáng)了師生之間的溝通,同時(shí)促使學(xué)生形成良好的數(shù)學(xué)思維能力,對(duì)學(xué)生掌握數(shù)學(xué)知識(shí)和技巧產(chǎn)生重要影響。因此,教師應(yīng)加強(qiáng)中學(xué)數(shù)學(xué)例題教學(xué)的研究,根據(jù)學(xué)生的實(shí)際能力和水平,采用事半功倍的例題教學(xué)模式,為學(xué)生未來數(shù)學(xué)學(xué)習(xí)奠定堅(jiān)實(shí)基礎(chǔ)。
[1]黃東華.探究性教學(xué)在中學(xué)數(shù)學(xué)例題教學(xué)中的應(yīng)用[J].學(xué)周刊,2016(21)∶167-168.
[2]何新平.探究性教學(xué)在中學(xué)數(shù)學(xué)例題教學(xué)中的應(yīng)用[J].讀寫算(教研版),2015(19)∶176-176.
[3]許婷.中學(xué)數(shù)學(xué)例題教學(xué)方法研究[J].新校園(中旬刊),2016(7)∶65.
[4]陳麗華.中學(xué)數(shù)學(xué)例題教學(xué)中能力培養(yǎng)剖析[J].中學(xué)課程輔導(dǎo)(教學(xué)研究),2015,9(35)∶493-493.