楊梅,洪天求,徐錦龍,李秀財(cái),羅雷
1.合肥工業(yè)大學(xué)資源與環(huán)境工程學(xué)院,合肥 230009 2.貴州省地質(zhì)資料館,貴陽 550001 3.安徽省地質(zhì)調(diào)查院,合肥 230001
江南造山帶普遍認(rèn)為是新元古代早期揚(yáng)子地塊和華夏地塊之間的俯沖—碰撞造山帶,先前拼合的揚(yáng)子—華夏聯(lián)合陸塊在南華紀(jì)沿江紹斷裂發(fā)生裂解,在發(fā)育的裂谷盆地中沉積了一套以濱淺海相沉積巖、陸相(或海相)火山—沉積巖以及冰磧巖等為主的沉積體系[1- 2]。早古生代晚期華南板塊遭受強(qiáng)烈的造山作用改造,而關(guān)于該造山事件的性質(zhì),早期學(xué)者[3- 6]認(rèn)為華南早古生代存在典型的溝—弧—盆體系,造山演化主要與華南洋的閉合相關(guān);然而由于華南始終未發(fā)現(xiàn)與早古生代華南洋相關(guān)的蛇綠巖套、弧巖漿巖以及深海硅質(zhì)巖,因而近年來大多數(shù)學(xué)者[7- 9]普遍認(rèn)為該早古生代造山作用為陸內(nèi)造山。進(jìn)而將揚(yáng)子地塊東南緣晚奧陶世—志留紀(jì)盆地歸為陸內(nèi)前陸盆地[10- 12]。這些晚奧陶世—志留紀(jì)沉積巖的展布方向與造山帶平行,暗示盆地的形成與早古生代造山事件密切相關(guān),其應(yīng)記錄了該造山帶晚奧陶世—志留紀(jì)期間的演化信息,因此可以通過沉積盆地分析來反演華南早古生代造山演化過程。
沉積巖地球化學(xué)分析和鋯石物源分析作為沉積盆地分析的基本手段,能夠較好地揭示沉積物的沉積時(shí)代、物源性質(zhì)、沉積環(huán)境以及構(gòu)造背景。尤其對(duì)于缺乏標(biāo)準(zhǔn)化石的啞地層,碎屑鋯石U- Pb年齡分析可以有效限定地層的沉積時(shí)代[13- 15]。本研究以江南造山帶東北緣皖南涇縣地區(qū)出露的志留系唐家塢組為研究對(duì)象,通過巖相學(xué)、巖石地球化學(xué)以及LA- ICP- MS碎屑鋯石U- Pb年代學(xué)等綜合研究,限定了唐家塢組的沉積時(shí)代,并探討了其物源特征以及沉積構(gòu)造環(huán)境,進(jìn)而為揭示江南造山帶在早古生代的構(gòu)造演化以及造山過程中的盆山耦合關(guān)系提供沉積學(xué)依據(jù)。
華南板塊主體通常被認(rèn)為是由揚(yáng)子地塊和華夏地塊在新元古代早期拼合形成,北以秦嶺—大別造山帶為界與華北板塊相鄰,西以龍門山斷裂為界與特提斯構(gòu)造域毗鄰,南西和南東側(cè)分別為東南亞塊體和西太平洋構(gòu)造域(圖1a)。江南造山帶作為華夏和揚(yáng)子地塊的拼合帶,主要由新元古代淺變質(zhì)、強(qiáng)變形巨厚沉積—火山巖系、蛇綠混雜巖以及同時(shí)代侵入體等共同組成。在新元古代中期,剛拼貼的江南造山帶在Rodinia超大陸裂解過程中形成了陸內(nèi)伸展背景下的裂谷盆地[16- 17]。從震旦紀(jì)至奧陶紀(jì)華南板塊一直處于板內(nèi)穩(wěn)定沉積環(huán)境,但揚(yáng)子和華夏地塊接受了兩種截然不同的沉積體系,其中揚(yáng)子地塊以碳酸鹽巖—硅質(zhì)沉積建造為主,而華夏地塊依舊處于以筆石相碎屑巖系為主的裂谷海盆。
早古生代晚期(晚奧陶世—志留紀(jì))揚(yáng)子地塊向華夏地塊發(fā)生了陸內(nèi)俯沖,形成了華南加里東期造山帶,由于武夷—云開地區(qū)是造山帶核心區(qū)域,故又被稱為武夷—云開造山帶[8,18]。在造山帶北緣形成了前陸盆地,因而在揚(yáng)子地塊上與造山帶同期的沉積也從先前的碳酸鹽巖沉積轉(zhuǎn)變?yōu)樗樾紟r沉積。早—中三疊世印支期,華南地區(qū)在古特提斯洋的關(guān)閉過程中再次發(fā)生強(qiáng)烈的陸內(nèi)構(gòu)造—巖漿作用,最后在太平洋構(gòu)造域燕山期演化影響下形成了華南現(xiàn)今的構(gòu)造格局[19- 20]。
研究區(qū)位于揚(yáng)子地塊東南緣,地處揚(yáng)子地層區(qū)江南地層分區(qū),廣德—太平地層小區(qū)。區(qū)內(nèi)早古生代地層發(fā)育齊全,寒武系主要以碳酸鹽巖沉積為主,奧陶系主要以碎屑巖為主夾硅質(zhì)巖和碳酸鹽巖沉積,而志留系碎屑巖最發(fā)育,厚度達(dá)4 000 m左右,以砂巖、頁巖為主(圖1b)。奧陶系—志留系從下到上分別為新嶺組、霞鄉(xiāng)組、河瀝溪組、康山組以及唐家塢組,主要為受陸源影響的濱淺海—潮坪相沉積環(huán)境。分布于皖南涇縣地區(qū)的唐家塢組是一套未變質(zhì)細(xì)碎屑巖,與下?lián)P子地層分區(qū)茅山組為相當(dāng)層。唐家塢組作為區(qū)內(nèi)志留系最晚期沉積且為早古生代前陸盆地最上層沉積,其時(shí)代的確定對(duì)于限定造山帶演化的結(jié)束時(shí)間具有重要意義。
唐家塢組與下伏志留系康山組紫紅色中厚層巖屑石英砂巖夾薄—中厚層泥巖呈整合接觸,與上覆晚泥盆世觀山組淺灰白色中厚層礫巖、含礫石英砂巖呈不整合接觸。唐家塢組中下段為紫紅色巖屑砂巖、粉砂巖,其中石英碎屑呈圓狀至次圓狀,含有少量白云母,局部可見白云母因應(yīng)力作用發(fā)生扭曲變形;中上段主要為紫紅色巖屑石英砂巖夾黃綠色粉砂質(zhì)泥巖,見波痕、沖刷面等沉積構(gòu)造,產(chǎn)腕足、雙殼、腹足類化石。砂巖主要分為中粒石英砂巖,中—粗粒巖屑砂巖,中—粗粒巖屑石英砂巖三類。巖屑石英砂巖中發(fā)育水平層理、平行層理(圖2a),而粉砂質(zhì)泥巖中發(fā)育波痕(圖2b),板狀、楔狀斜層理(圖2c,d)。顯微結(jié)構(gòu)分析表明,巖屑砂巖呈中—粗粒結(jié)構(gòu),粒徑大小一般為0.25~0.5 mm,最大可達(dá)0.5~1 mm,主要由單晶石英、多晶石英和巖屑組成,石英含量60%~80%,巖屑含量最高可達(dá)30%,長石含量不超過5%,基質(zhì)含量變化較小,約為5%;巖屑呈次棱角狀—次圓狀,主要包括以泥巖、砂巖為主的沉積巖巖屑(Ls)和以板巖、千枚巖為主的變質(zhì)巖巖屑(Lm)(圖2e,f),缺少火山巖巖屑(Lv)。
圖1 華南地區(qū)大地構(gòu)造位置圖(a)及研究區(qū)地質(zhì)簡圖(b)(據(jù)Li et al., 2013[21]修改)Fig.1 Tectonic framework of South China(a), geological sketch map in the study area(b)(modified from Li et al., 2013[21])
圖2 涇縣地區(qū)唐家塢組砂巖露頭以及顯微照片(正交偏光)a.紫紅色巖屑砂巖,發(fā)育平行層理;b.灰綠色粉砂巖,發(fā)育波痕;c.灰綠色粉砂巖,發(fā)育板狀斜層理;d.灰綠色夾紫色巖屑砂巖,發(fā)育楔狀斜層理;e,f.巖屑砂巖,含沉積巖巖屑(Ls),變質(zhì)巖巖屑(Lm),多晶石英(Qp),單晶石英(Qm)、斜長石(Pl) Fig.2 Photographs of sandstones from outcrops and microscope(cross- polarized light)of Tangjiawu Formation in Jingxian areaa. fuchsia lithic sandstone with parallel bedding; b. celadon siltstone with ripple mark; c.siltstone with tabular cross- bedding; d.lithic sandstone with sphenoid cross- bedding; e, f. lithic sandstone comprising sedimentary(Ls), metamorphic fragments(Lm), polycrystal quartz(Qp), single quartz(Qm), plagioclase(Pl)
主量元素和微量元素測(cè)試工作均由廣州澳實(shí)分析檢測(cè)有限公司完成。主量元素采用X射線熒光光譜(ME- XRF06)測(cè)定,先將樣品破碎后縮分出300 g,用碳化鎢鋼研磨至75 μm(200目),在105 ℃下預(yù)干燥1~2 h,然后稱取0.9 g樣品,在煅燒后加入Li2B4O7- LiBO2助熔物,充分混合后將其放置在自動(dòng)熔煉儀中,使之在1 050 ℃~1 100 ℃下熔融,將熔融物倒出形成扁平玻璃片,再用X熒光光譜儀(AXIOS)進(jìn)行分析。微量元素和稀土元素測(cè)定采用電感耦合等離子體質(zhì)譜儀(ICP- MS)進(jìn)行分析測(cè)試,首先將樣品加入到偏硼酸鋰熔劑中,混合均勻后在1 025 ℃以上的熔爐中熔化,待熔液冷卻后,用硝酸、鹽酸和氫氟酸定容至100 mL,再用Agilent 7700x型等離子體質(zhì)譜儀進(jìn)行分析。
鋯石制靶、陰極發(fā)光圖像 (CL)拍攝以及鋯石LA- ICP- MS U- Pb同位素測(cè)試均在中國科技大學(xué)殼幔物質(zhì)與環(huán)境國家重點(diǎn)實(shí)驗(yàn)室完成。分析流程如下:首先將樣品粉碎至80~100目,通過重液和磁選分離技術(shù)將鋯石挑出,在雙目鏡下選擇不同晶形、不同顏色的鋯石顆粒進(jìn)行制靶,制靶完成后將其拋光至鋯石粒徑的二分之一,使鋯石內(nèi)部充分暴露;然后用TESCAN公司生產(chǎn)的MIRA3掃描電鏡拍攝鋯石陰極發(fā)光 (CL) 電子圖像;最后在鋯石內(nèi)部結(jié)構(gòu)形態(tài)研究的基礎(chǔ)上進(jìn)行LA- ICP- MS鋯石U- Pb同位素測(cè)試,激光剝蝕系統(tǒng)為美國相干公司生產(chǎn)的Geolas pro系統(tǒng),以He氣作為剝蝕載氣,測(cè)試質(zhì)譜儀為Agilent 7700x,激光束波長為193 nm,激光脈沖頻率為10 Hz,剝蝕孔徑為32 μm,脈沖輸出能量為10 J/cm2,剝蝕時(shí)間為90 s,背景時(shí)間為25 s。以標(biāo)準(zhǔn)鋯石91500作為外標(biāo)校正樣品鋯石年齡,元素Si為內(nèi)標(biāo)計(jì)算U、Th和Pb含量。數(shù)據(jù)處理采用中國科學(xué)技術(shù)大學(xué)開發(fā)的LaDating@Zrn 分析處理軟件,加權(quán)平均年齡及年齡諧和圖的繪制使用Ludwig[22]的Isoplot 3.0完成,單個(gè)數(shù)據(jù)點(diǎn)誤差為1σ,普通Pb采用Andersen[23]軟件進(jìn)行校正。本次測(cè)試年齡值的選擇以1 000 Ma為界,>1 000 Ma,采用207Pb/206Pb同位素年齡,≤1000 Ma采用更可靠的206Pb/238U同位素表面年齡[24]。
本研究在野外詳細(xì)觀察的基礎(chǔ)上,采集安徽省涇縣地區(qū)舉坑—?jiǎng)⒓乙粠У奶萍覊]組9個(gè)巖屑石英砂巖樣品進(jìn)行了全巖主量、微量和稀土元素分析。其結(jié)果見表1。
4.1.1 主量元素
所測(cè)砂巖樣品SiO2含量在65.46%~87.63%(平均78.66%),含量較高;Al2O3含量為4.98%~16.15%(平均10.00%);K2O含量為0.72%~4.07%(平均2.23%);TFe2O3含量為1.71%~6.49%(平均3.86%);Na2O含量為0.03%~0.74%(平均0.24%);CaO含量0.06%~0.28%(平均0.17%);MgO含量為0.58%~1.89%(平均1.08%);TiO2含量0.32%~0.77%(平均0.54%)。
與全球古生代大陸造山帶砂巖平均成分相比[25],SiO2含量明顯偏高,SiO2/Al2O3值介于4.09~17.06之間(平均9.40),顯示出富Si貧Al的特征,與鏡下石英含量較高、幾乎不含長石特征相一致,同時(shí)Na2O和K2O含量偏低。與UCC(上地殼平均成分)和PASS(后太古代澳大利亞頁巖)相比,唐家塢組有較高的SiO2含量、較低的Al2O3、CaO、Na2O,指示唐家塢組砂巖成分成熟度較高[26- 27]。TFe2O3/K2O是區(qū)分巖屑和長石以及判別礦物穩(wěn)定性的參數(shù),樣品中TFe2O3/K2O值,除一個(gè)樣品為5.04外,其余值位于0.42~2.86之間(平均值2.19),表明砂巖中礦物穩(wěn)定性中等偏差。
4.1.2 微量元素
唐家塢砂巖中稀土總量(ΣREE)為99.90×10-6~215.93×10-6,平均含量165.11×10-6,LREE/HREE比值為8.15~11.05(平均為9.32),(La/Yb)N值為8.40~12.47,(La/Sm)N為5.73~9.27,(Gd/Yb)N為1.03~1.80,δEu為0.67(0.61~0.76),存在中等程度的Eu負(fù)異常,Ce基本無異常。唐家塢組砂巖在稀土配分圖上(圖3a),所有樣品表現(xiàn)出較為一致的配分型式,均為輕稀土富集、中等程度輕稀土分餾以及較為平坦的重稀土分餾,與北美頁巖(NASC)和上地殼(UCC)配分模式相似[28]。在原始地幔蛛網(wǎng)圖上(圖3b),樣品的元素分布型式也基本一致,均為富集大離子親石元素Cs、Rb、Th、U,虧損高場強(qiáng)元素Nb和Ta,同時(shí),顯著虧損Sr和P,表明斜長石和磷灰石在搬運(yùn)沉積過程中已分解或未進(jìn)入最終沉積物。
砂巖樣品中鋯石呈無色透明,大多呈次圓狀、磨圓的短柱狀或等軸狀,少部分鋯石呈自形—半自形的長柱狀(圖4a)。部分鋯石內(nèi)部結(jié)構(gòu)特征顯示為無分帶、弱分帶和面狀分帶,另一部分鋯石顯示為振蕩環(huán)帶。完整的鋯石顆粒長軸40~100 μm,短軸35~50 μm,長寬比值介于1∶1~3∶1;本研究實(shí)測(cè)鋯石點(diǎn)數(shù)84個(gè),獲得諧和度>90%的點(diǎn)79個(gè)(圖4b)。諧和鋯石的Th,U含量及Th/U比值分別為0.66×10-6~674×10-6,20.9×10-6~1 122×10-6,0.01~4.84,Th/U比值普遍大于0.1,僅3顆小于0.1,22顆Th/U<0.4,占27.5%,57顆鋯石的Th/U>0.4(表2)。結(jié)合CL圖像可知該砂巖樣品中的碎屑鋯石以巖漿鋯石為主,變質(zhì)鋯石較少。
鋯石U- Pb年齡值分布在424 Ma~2 912 Ma之間(圖4c,d),樣品中最年經(jīng)碎屑鋯石諧和年齡為424 Ma,該粒鋯石具有明顯的振蕩環(huán)帶,其長寬比值約為3∶1,Th/U值為0.66,為典型的巖漿鋯石,表明唐家塢組沉積時(shí)代應(yīng)晚于424 Ma。樣品中最老的碎屑鋯石諧和年齡為2 912 Ma,該粒鋯石呈短柱狀,磨圓較好,具有典型的核邊結(jié)構(gòu),表明唐家塢組的源區(qū)存在少量太古代地殼物質(zhì)的信息。79個(gè)鋯石U- Pb年齡集中在5個(gè)年齡段,最主要的是新元古代早期1 030~889 Ma,峰值981 Ma;新元古代中期804~731 Ma,峰值756 Ma;早古生代早期528~492 Ma,峰值517 Ma;早古生代晚期459~424 Ma,峰值453 Ma。另外,古元古代早期2 498~2 357 Ma,也獲得一個(gè)次級(jí)小峰,峰值2 476 Ma。
表1 志留紀(jì)唐家塢組砂巖主量(wt%)、微量和稀土元素含量(×10-6)
圖4 唐家塢組砂巖樣品碎屑鋯石U- Pb CL圖像(a)、年齡譜圖(b)以及年齡諧和圖(c,d)Fig.4 U- Pb CL images(a), histograms and probability spots of concordia ages(b)and concordia diagrams(c, d)of detrital zircon in sandstones from Tangjiawu Formation
唐家塢組原名唐家塢砂巖,最早由舒文博[31]1930年創(chuàng)名于浙江省富陽市北西12 km,巖性主要為紫紅色中薄層—中厚層巖屑石英砂巖、粉砂巖、泥質(zhì)粉砂巖,曾稱太平群或舉坑群。唐家塢組為江南地層分區(qū)志留系最頂部沉積,其沉積地層時(shí)代一直采用古生物和地層學(xué)估算。然而由于缺少標(biāo)準(zhǔn)化石,其沉積時(shí)代尚未得到準(zhǔn)確限定。夏樹芳[32]根據(jù)唐家塢組中無頷類和胴甲魚、中華棘魚、寧國魚等魚類化石研究以及巖相古地理特征,認(rèn)為其時(shí)代歸屬于泥盆紀(jì);而《安徽省巖石地層》[31]、《安徽省巖相古地理圖冊(cè)》[33]、《安徽省區(qū)域地質(zhì)志》[34]均將其歸屬于晚志留世;方曉思等[35]和顏鐵增等[36- 38]基于微古植物化石以及球形類孢粉型化石中疑源類組合對(duì)比研究,將其時(shí)代歸屬于中志留世,而孫乘云等[39]在唐家塢組中識(shí)別出胞石Conochitina(Densichitana)dens,結(jié)合地層間接觸關(guān)系將唐家塢組時(shí)代限定于早志留世紫陽期至中志留世安康期。由此可見,唐家塢組的沉積時(shí)代仍存在較大爭議。
表2 唐家塢組砂巖LA- ICP- MS鋯石U- Pb年代學(xué)分析結(jié)果
續(xù)表
測(cè)點(diǎn)號(hào)元素含量/×10-6同位素比值年齡/MaPbThUTh/U207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/235U±1σ206Pb/238Pb±1σ207Pb/206Pb±1σD33-0521503595190.690.070470.002321.600920.052510.163980.00431971219792494241D33-05334681630.420.068970.002641.655210.063190.174390.004759922410362689856D33-054742473720.660.069690.002561.188980.044280.124300.00353795217552091951D33-05533672650.250.060500.002181.044170.036310.121540.00325726187391962249D33-056372331191.950.062490.002790.701990.029990.079250.00218540184921369171D33-05743961090.880.071820.002861.831340.068920.177290.0048210572510522698154D33-058791531690.910.084260.003092.434450.085400.203500.00547125325119429129945D33-0595446510.910.157780.005569.799110.328750.436340.01175241631233453243235D33-06073985280.190.072640.002421.596580.054380.159740.004319692195524100443D33-0611502043440.590.093200.003223.470470.116470.269120.00732152126153637149238D33-0622376820.930.069260.003231.171070.052160.127910.00353787247762090774D33-063179883420.260.153320.005288.188030.259200.387820.01028225229211348238330D33-06423762150.350.066000.002900.628610.025470.073850.00202495164591280664D33-0651724653881.200.075760.002761.777760.061580.178940.00480103723106126108945D33-0661861622030.800.139100.008177.206780.368040.375760.010912137462056512216105D33-067692152400.900.065660.002421.180190.041110.132900.00351791198042079549D33-06832881260.700.078850.003081.672750.061930.161260.004349982496424116852D33-0691573577210.500.068700.002461.494490.049050.156420.00414928209372389041D33-0708611310.010.210820.0074217.163480.557950.594510.01586294431300864291231D33-071561073110.340.073590.002531.630480.054520.168400.0044898221100325103042D33-0721012892441.180.071440.002711.572220.056060.164330.00438959229812497049D33-0731975750.990.069860.003720.994100.047860.111860.00318701246841892482D33-07431591420.420.075760.003191.586610.062440.155190.004339652593024108957D33-07522183900.050.060730.002640.712730.024450.085110.00227546145271463096D33-076783252951.100.058900.002130.857650.030580.105640.00317629176471856343D33-077752013420.590.061990.004701.012830.069970.118500.003727103572221674168D33-078461041470.710.079640.002891.854870.064450.168210.00465106523100226118843D33-079512210.590.080880.006301.464750.096070.140180.0046091640846261218115
由于鋯石的U- Pb同位素體系封閉溫度較高,碎屑鋯石同位素比值不受沉積循環(huán)過程中各種分異作用的影響,因而其年齡可以反映物源時(shí)代,其中最年輕的單顆粒碎屑鋯石年齡通常被用來限定沉積地層的最大沉積年代[13- 15]。本文對(duì)采自唐家塢組砂巖樣品進(jìn)行LA- ICP- MS鋯石U- Pb測(cè)年,獲得最年輕的單顆粒鋯石年齡為424 Ma,表明唐家塢組沉積時(shí)代晚于424 Ma。結(jié)合唐家塢組與上覆泥盆紀(jì)觀山組礫巖之間明顯的平行—低角度不整合接觸關(guān)系[40- 41],推斷唐家塢組沉積時(shí)代應(yīng)為志留紀(jì)晚期。本研究獲得的沉積時(shí)代下限與下?lián)P子地層分區(qū)茅山組中碎屑鋯石最小年齡425 Ma基本一致[42],表明江南地層分區(qū)唐家塢組與下?lián)P子地層分區(qū)茅山組在時(shí)代上完全可進(jìn)行對(duì)比。
沉積盆地中碎屑巖的化學(xué)組成受到物源、風(fēng)化、剝蝕、搬運(yùn)、沉積以及成巖等一系列因素影響,但主要受控于沉積物的物源特征。因此,碎屑巖地球化學(xué)特征分析被作為沉積物源分析的重要方法,尤其是一些特定的地球化學(xué)參數(shù)經(jīng)常被用來限制沉積巖的物源性質(zhì)[28,43- 46]。化學(xué)蝕變指數(shù)(CIA)可反映物源區(qū)風(fēng)化程度,但由于K的交代作用使CIA值降低[47- 48],唐家塢組砂巖樣品經(jīng)K矯正后的化學(xué)蝕變指數(shù)CIAcorr.平均值為77.54,高于PASS的76.40,且將CIA矯正后數(shù)據(jù)投影在Al2O3- (CaO*+Na2O)- K2O(A- CN- K)圖解中(圖5a)[49],見樣品明顯偏離風(fēng)化趨勢(shì)曲線,表明唐家塢組沉積時(shí)水體較淺或源巖遭受了較強(qiáng)的風(fēng)化作用,導(dǎo)致Na和Ca流失。在Roseretal.[50]F1- F2判別圖解(圖5b)上,顯示物源主要為成熟大陸石英質(zhì)物源區(qū)(P4區(qū)),可能源自古老沉積地體、克拉通或是再旋回造山帶。
碎屑巖中的不活動(dòng)組分(如REE、La、Th和Hf等元素)具有難溶、穩(wěn)定、不受風(fēng)化和成巖作用的影響,在成巖過程中能夠保持組分一致,幾乎可以等量的從源區(qū)進(jìn)入沉積巖中,因此被廣泛用于反映沉積巖源區(qū)屬性和構(gòu)造背景[43,51]。所研究的砂巖樣品具有較低的La/Th比值(小于5.0)以及較高的Hf(平均值7.5×10-6)含量,從La/Th- Hf判別圖解(圖6a)可知,唐家塢組碎屑巖沉積物主要以酸性物源長英質(zhì)巖石為主,且有不同程度古老沉積物組分的加入[52]。Dickinson碎屑巖Q- F- L圖解(圖6b)中顯示物源主要來自再旋回造山帶[53]。同時(shí)(Gd/ Yb)N最小值為1.03,最大值為1.80,平均值1.52,均小于2.00,指示地層沉積時(shí)代為后太古宙[54]。此外,所有樣品在球粒隕石標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖和稀土元素配分圖上均具有一致的分布型式,指示沉積物同源性且成熟度較高,源區(qū)巖石為中—酸性巖漿巖和(或)上地殼物質(zhì),即物源主要為長英質(zhì)組分[43]。因此,唐家塢組物源區(qū)應(yīng)主要為后太古代的中—酸性巖漿巖和(或)沉積巖,可能有少量古老物質(zhì)加入。
除沉積巖地球化學(xué)分析外,鋯石物源分析也能夠較好地揭示沉積物的物源區(qū)特征。唐家塢組砂巖中鋯石顆粒大小變化較大、形狀多樣、年齡分布較散,表明唐家塢組沉積物具有多源性。獲得的鋯石年齡峰值主要為981 Ma和756 Ma,次級(jí)年齡峰值為2 476 Ma、517 Ma和453 Ma。
中太古代—古元古代碎屑鋯石年齡,除一顆相對(duì)較老外(2 912 Ma),其他集中在2 498~2 354 Ma之間,峰值為2 476 Ma。華夏地塊的結(jié)晶基底是在中元古代(1.8~2.0 Ga),由新生物質(zhì)熔融以及太古代(3.3~2.5 Ga)古老地殼物質(zhì)重熔共同形成,華夏地塊和揚(yáng)子地塊東南緣均沒有發(fā)現(xiàn)2.5 Ga的巖石,然而新元古代—中奧陶世巖漿巖和沉積巖中分別存在2.5 Ga的鋯石殘留核和碎屑鋯石[55],特別是在震旦紀(jì)—中奧陶世的弱變質(zhì)沉積巖中發(fā)現(xiàn)少量太古代古老鋯石及明顯的2.5 Ga鋯石年齡峰值[56- 57]。唐家塢組砂巖缺乏華夏結(jié)晶基底中元古代(1.8~2.0 Ga)特征性鋯石,且古元古代早期和太古代的鋯石均呈渾圓狀且磨圓較好,應(yīng)為沉積再循環(huán)鋯石,因此這些鋯石應(yīng)由新元古代—中奧陶世沉積巖石提供,而并非來源于華夏基底。
早—中新元古代碎屑鋯石年齡可分為889~1 031 Ma和804~731 Ma兩組,峰值年齡分別為981 Ma和756 Ma,前者與華夏地塊格林威爾期和揚(yáng)子地塊四堡期巖漿活動(dòng)時(shí)間相吻合,如贛南鶴仔片麻狀花崗巖[58]、雙溪塢火山巖[59]等;后者與華南新元古代中期南華盆地裂谷巖漿活動(dòng)一致[60]。另外新元古代中期也是南華裂谷盆地南華紀(jì)陸相—海相—碎屑巖中碎屑鋯石的主要年齡區(qū)間(850~720 Ma)[61- 62]。此外,震旦紀(jì)—奧陶紀(jì)沉積系列中既存在1.1~0.9 Ga年齡峰也存在850~730 Ma年齡峰[63- 67]。因此早—中新元古代巖漿巖、南華紀(jì)裂谷層序以及震旦紀(jì)—奧陶紀(jì)沉積巖都可能為唐家塢組中早—中新元古代碎屑鋯石的潛在物源。
圖5 A- CN- K三角圖(據(jù)Panahi et al., 2000[49])和主量元素判別函數(shù)F1- F2(據(jù)Roser and Korsch, 1988[50])A.Al2O3; CN.(CaO*+ Na2O)CaO*是指巖石中與硅酸鹽相結(jié)合的CaO含量; K.K2O; UCC.上大陸地殼(Upper Continental Crust); PASS.后澳大利亞太古代頁巖(Post Archean Shales of Australia)F1=-1.773TiO2+0.607Al2O3+0.76Fe2O3-1.5MgO+0.616CaO+0.509Na2O-1.224K2O-9.09 F2= 0.445TiO2+0.07Al2O3-0.25Fe2O3-1.142MgO+0.438CaO+0.475Na2O+1.426K2O-6.861Fig.5 A- CN- K ternary diagram for samples(after Panahi et al., 2000[49])and F1- F2 discrimination diagram of the provenance(after Roser and Korsch, 1988[50])for samples of the Tangjiawu Formation
圖6 唐家塢組物源 La/Th Hf判別圖(據(jù)Floyd et al., 1987[52])和碎屑組分Q- F- L圖(據(jù)Dickinson et al., 1979[53])Q.石英(Quartz), F.長石(Feldspar), L.巖屑(Lithic fragment)Fig.6 La/Th- Hf source rocks attribute discrimination diagrams (after Floyd et al., 1987[52]) and Q- F- L diagram indicating the tectonic settings of the sandstones from Tangjiawu Formation (after Dickinson et al., 1979[53])
寒武—志留紀(jì)碎屑鋯石年齡主要分布在528~424 Ma之間,進(jìn)一步分為492~528 Ma、424~459 Ma兩個(gè)區(qū)間,其峰值分別為517 Ma和453 Ma。華南早古生代陸內(nèi)造山作用伴生的花崗質(zhì)巖漿作用形成時(shí)代主要為460~410 Ma[68],并表現(xiàn)出由東向西逐漸變新[11]。同時(shí)與造山事件相關(guān)的變質(zhì)變形作用發(fā)生在435~454 Ma之間[8,69- 70]。上述的早古生代巖漿—變質(zhì)作用的時(shí)間與本文唐家塢組砂巖中459~437 Ma段碎屑鋯石年齡一致,說明華南早古生代同造山的巖漿巖以及變質(zhì)巖是唐家塢組重要的物質(zhì)來源之一。同造山的巖漿巖侵入造山隆升的晚奧陶世之前的盆地基底中,在隆升過程中遭受剝蝕[12]。對(duì)于492~528 Ma之間的次級(jí)鋯石年齡峰,華夏地塊并不存在這一時(shí)間的巖漿或變質(zhì)作用;另外造山隆起使得其他陸塊無法對(duì)其提供直接的物質(zhì)來源,目前只在華南寒武系—中奧陶統(tǒng)沉積巖層中發(fā)現(xiàn)大量的、可能來自于印度西北部和澳大利亞西部的~520 Ma碎屑鋯石[9,66,71],這說明寒武系—中奧陶統(tǒng)沉積巖層也為唐家塢組提供了沉積物質(zhì)。
上述唐家塢組砂巖的地球化學(xué)特征和鋯石物源分析,結(jié)合Q- F- L圖解中顯示物源主要來自再旋回造山帶,推測(cè)盆地東南部的早古生代陸內(nèi)造山隆起區(qū)應(yīng)為唐家塢組的主要物源區(qū)。Yaoetal.[67]通過鋯石U- Pb和Hf同位素年齡分析表明,華南奧陶—志留紀(jì)沉積巖物源主要來自于震旦系—寒武系的再旋回以及少量華夏地塊結(jié)晶基底,同時(shí)武夷—云開造山晚期的同造山巖漿巖也是物源之一。龔根輝[71]通過區(qū)域?qū)Ρ妊芯恳舱J(rèn)為華南早古生代前陸盆地中部和南部志留系的沉積物源為下伏震旦系—中奧陶統(tǒng)沉積巖,而北部志留系的物源為下伏南華紀(jì)裂谷層序以及少量的震旦系—中奧陶統(tǒng)。本文唐家塢組砂巖的物源分析顯示早—中新元古代巖漿巖、南華紀(jì)裂谷層序以及震旦紀(jì)—奧陶紀(jì)沉積巖為其主要的物源,華夏基底并未提供物源,說明晚志留世陸內(nèi)造山過程中先前形成的早—中新元古代巖漿巖、南華紀(jì)裂谷層序和震旦紀(jì)—奧陶紀(jì)沉積發(fā)生隆升剝蝕,同造山的巖漿巖也遭受剝蝕。
唐家塢組為早古生代陸內(nèi)前陸盆地最晚階段的沉積,與下伏志留系康山組為整合接觸,與上覆泥盆紀(jì)觀山組呈近平行—低角度不整合接觸。根據(jù)其中大型交錯(cuò)層理、板狀斜層理等較發(fā)育,以及產(chǎn)有腕足、雙殼等淺水生物,推測(cè)為河口三角洲至潮坪—濱海相沉積[11,31,42,72]。華南在南華紀(jì)發(fā)生大規(guī)模的裂解事件之后,震旦紀(jì)—奧陶紀(jì)華南板塊一直處于大陸板內(nèi)穩(wěn)定沉積環(huán)境,在江南區(qū)和華夏區(qū)分別形成了震旦紀(jì)—奧陶紀(jì)的碳酸鹽巖—硅質(zhì)巖建造和筆石相碎屑巖。部分學(xué)者[21,73]認(rèn)為其物源區(qū)主要為華夏地塊,而近年的研究表明其物源可能主要來自于印度西北部和澳大利亞西部[9,71]。
從晚奧陶世開始沉積環(huán)境發(fā)生明顯的變化,沉積速率明顯增加,晚奧陶世—志留紀(jì)沉積了巨厚層以陸源碎屑為主的沉積巖。郭令智等[3- 4]認(rèn)為華南板塊早古生代存在典型的溝—弧—盆體系,并認(rèn)為沿江紹斷裂帶分布的中奧陶統(tǒng)—志留系的沉積為華南洋閉合后的前陸盆地沉積[67,73]。然而截止目前并未發(fā)現(xiàn)與華南洋關(guān)閉相關(guān)的蛇綠巖、弧巖漿巖以及深海硅質(zhì)巖等,且早古生代花崗巖的同位素組成均指示巖漿巖源區(qū)大多來自前寒武紀(jì)基底的熔融再造,僅有少量的新生物質(zhì)加入。因此,目前大多數(shù)學(xué)者[9,12,74]更傾向于華南早古生代為陸內(nèi)造山,其動(dòng)力來自于華南板塊呈順時(shí)針與岡瓦納北緣碰撞的遠(yuǎn)程效應(yīng),因而揚(yáng)子地塊東南緣晚奧陶世—志留紀(jì)巨厚層陸源碎屑沉積被廣泛認(rèn)為是陸內(nèi)前陸盆地沉積[12]。
物源分析表明唐家塢組主要物源區(qū)為下伏早—中新元古代巖漿巖、南華紀(jì)裂谷層序以及震旦系—中奧陶統(tǒng)沉積巖。同時(shí)大量同造山期鋯石的存在,說明同造山期的巖漿巖或變質(zhì)巖在晚志留世已經(jīng)發(fā)生了強(qiáng)烈的抬升剝蝕。陸內(nèi)造山作用導(dǎo)致中奧陶世之前的盆地基底發(fā)生變質(zhì)和變形,同時(shí)被大量的同時(shí)代的巖漿巖侵入,造山隆升過程中一起遭受剝蝕[12]。這與近年變質(zhì)和構(gòu)造變形分析指示的震旦紀(jì)—奧陶紀(jì)沉積以及沉積基底在早古生代晚期發(fā)生快速的抬升的結(jié)果一致。唐家塢組物源區(qū)為盆地東南部早古生代造山帶(武夷—云開造山帶),陸內(nèi)造山作用導(dǎo)致中奧陶世之前的盆地沉積物、部分盆地基底以及侵入其中的巖漿巖發(fā)生強(qiáng)烈的隆升,從而為陸內(nèi)前陸盆地的沉積提供了充足的沉積物源。武夷—云開造山帶的造山過程控制著盆地的沉積和演化,即華南早古生代造山帶與揚(yáng)子地塊東南緣陸內(nèi)前陸盆地兩個(gè)構(gòu)造單元在物質(zhì)循環(huán)上存在耦合關(guān)系。
(1) 唐家塢組砂巖具有比上地殼平均成分更高的SiO2和相對(duì)更低的Al2O3、CaO、Na2O,巖石成熟度高,微量元素與澳大利亞后太古代頁巖PASS相似, Sr、Cr等強(qiáng)烈虧損,Nb、Ta等高場強(qiáng)元素輕度虧損,Zr、Hf、Th、U等輕度富集,表明唐家塢組源巖以成熟大陸石英質(zhì)物源區(qū)為主,同時(shí)有大量再循環(huán)造山帶古老沉積物參與。
(2) 碎屑鋯石中獲得最年輕的單顆粒鋯石年齡為424 Ma,結(jié)合地層接觸關(guān)系,限定唐家塢組沉積時(shí)代為志留紀(jì)晚期,其可能接近華南早古生代陸內(nèi)造山事件的結(jié)束時(shí)間。
(3) 碎屑鋯石中獲得的主要年齡峰值為981 Ma和756 Ma,次級(jí)年齡峰值為2 476 Ma、517 Ma和453 Ma,物源主要為早—中新元古代巖漿巖、新元古代裂谷層序以及震旦紀(jì)—奧陶紀(jì)沉積巖,同造山期巖漿巖或變質(zhì)巖也為唐家塢組提供了物源。
(4) 唐家塢組物質(zhì)來源于盆地東南部華南早古生代造山帶,陸內(nèi)造山作用導(dǎo)致中奧陶世之前的盆地沉積物、部分盆地基底以及侵入其中的巖漿巖發(fā)生強(qiáng)烈的隆升,從而為陸內(nèi)前陸盆地沉積提供了充足的物源。華南早古生代造山帶的造山過程控制著盆地的沉積和演化,即華南早古生代造山帶與揚(yáng)子地塊東南緣前陸盆地兩個(gè)構(gòu)造單元在物質(zhì)循環(huán)上存在耦合關(guān)系。
致謝 合肥工業(yè)大學(xué)資源與環(huán)境工程學(xué)院閆峻教授和吳齊博士審閱了初稿,同時(shí)審稿專家對(duì)論文也提出了建設(shè)性修改意見,在此一并表示衷心感謝!
)
[1] Wang J, Li Z X. Sequence stratigraphy and evolution of the Neoproterozoic marginal basins along southeastern Yangtze Craton, South China[J]. Gondwana Research, 2001, 4(1): 17- 26.
[2] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break- up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141- 158.
[3] 郭令智,施央申,馬瑞士. 華南大地構(gòu)造格架和地殼演化[C]//國際交流地質(zhì)學(xué)術(shù)論文集(一). 北京:地質(zhì)出版社,1980:109- 116. [Guo Lingzhi, Shi Yangshen, Ma Ruishi. Geotectonic framework and crust evolution of South China[C]. Beijing: Geological Publishing House, 1980: 109- 116.]
[4] 郭令智,施央申,馬瑞士,等. 中國東南部地體構(gòu)造的研究[J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)),1984,20(4):732- 739. [Guo Lingzhi, Shi Yangshen, Ma Ruishi, et al. Tectonostratigraphic terranes of southeast China[J]. Journal of Nanjing University (Natural Sciences), 1984, 20(4): 732- 739.]
[5] 郭令智,舒良樹,盧華復(fù),等. 中國地體構(gòu)造研究進(jìn)展綜述[J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)),2000,36(1):1- 17. [Guo Lingzhi, Shu Liangshu, Lu Huafu, et al. A synthetical review on research advances on the terrane tectonics in China[J]. Journal of Nanjing University (Natural Sciences), 2000, 36(1): 1- 17.]
[6] 王鶴年,周麗婭. 華南地質(zhì)構(gòu)造的再認(rèn)識(shí)[J]. 高校地質(zhì)學(xué)報(bào),2006,12(4):457- 465. [Wang Henian, Zhou Liya. A further understanding in geological structure of South China[J]. Geological Journal of China Universities, 2006, 12(4): 457- 465.]
[7] Charvet J, Shu Liangshu, Faure M, et al. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39(4): 309- 330.
[8] Li Zhengxiang, Li Xianhua, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi- Yunkai orogeny, southeastern South China: new age constraints and pressure- temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6): 772- 793.
[9] 李三忠,李璽瑤,趙淑娟,等. 全球早古生代造山帶(Ⅲ):華南陸內(nèi)造山[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2016,46(4):1005- 1025. [Li Sanzhong, Li Xiyao, Zhao Shujuan, et al. Global early Paleozoic orogens (Ⅲ) intracontinental orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005- 1025.]
[10] 劉寶珺,許效松. 中國南方巖相古地理圖集[M]. 北京:科學(xué)出版社,1994:10- 11. [Liu Baojun, Xu Xiaosong. Atlas of Lithofacies and palegeography of south of China[M]. Beijing: Science Press, 1994: 10- 11.]
[11] 舒良樹,于津海,賈東,等. 華南東段早古生代造山帶研究[J]. 地質(zhì)通報(bào),2008,27(10):1581- 1593. [Shu Liangshu, Yu Jinhai, Jia Dong, et al. Early Paleozoic Orogenic belt in the eastern segment of South China[J]. Geological Bulletin of China, 2008, 27(10): 1581- 1593.]
[12] Yao W H, Li Z X. Tectonostratigraphic history of the Ediacaran- Silurian Nanhua foreland basin in South China[J]. Tectonophysics, 2016, 674: 31- 51.
[13] Tucker R T, Roberts E M, Hu Yi, et al. Detrital zircon age constraints for the Winton Formation, Queensland: contextualizing Australia's Late Cretaceous dinosaur faunas[J]. Gondwana Research, 2013, 24(2): 767- 779.
[14] Nelson D R. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U- Pb dating of detrital zircons[J]. Sedimentary Geology, 2001, 141- 142: 37- 60.
[15] Dickinson W R, Gehrels G E. Use of U- Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1): 115- 125.
[16] 段太忠,曾允孚,高振中. 根據(jù)沉積歷史分析華南古大陸邊緣的構(gòu)造演化[J]. 石油與天然氣地質(zhì),1988,9(4):410- 420. [Duan Taizhong, Zeng Yunfu, Gao Zhenzhong. Analysis of tectonic evolution of Paleo- continental margin in South China[J]. Oil & Gas Geology, 1988, 9(4): 410- 420.]
[17] 王劍,劉寶珺,潘桂棠. 華南新元古代裂谷盆地演化- Rodinia超大陸解體的前奏[J]. 礦物巖石,2001,21(3):135- 145. [Wang Jian, Liu Baojun, Pan Guitang. Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 135- 145.]
[18] 任紀(jì)舜,李崇. 華夏古陸及相關(guān)問題—中國南部前泥盆紀(jì)大地構(gòu)造[J]. 地質(zhì)學(xué)報(bào),2016,90(4):607- 614. [Ren Jishun, Li Chong. Cathaysia old land and relevant problems: pre- Devonian tectonics of southern China[J]. Acta Geologica Sinica, 2016, 90(4): 607- 614.]
[19] 張國偉,郭安林,王岳軍,等. 中國華南大陸構(gòu)造與問題[J]. 中國科學(xué)(D輯):地球科學(xué),2013,43(10):1553- 1582. [Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China(Seri.D): Earth Sciences, 2013, 43(10): 1553- 1582.]
[20] 耿元生,沈其韓,杜利林,等. 區(qū)域變質(zhì)作用與中國大陸地殼的形成與演化[J]. 巖石學(xué)報(bào),2016,32(9):2579- 2608. [Geng Yuansheng, Shen Qihan, Du Lilin, et al. Regional metamorphism and continental growth and assembly in China[J]. Acta Petrologica Sinica, 2016, 32(9): 2579- 2608.]
[21] Li H B, Jia D, Wu L, et al. Detrital zircon provenance of the Lower Yangtze foreland basin deposits: constraints on the evolution of the early Palaeozoic Wuyi- Yunkai orogenic belt in South China[J]. Geological Magazine, 2013, 150(6): 959- 974.
[22] Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003(4): 1- 70.
[23] Andersen T. Correction of common lead in U- Pb analyses that do not report204Pb[J]. Chemical Geology, 2002, 192(1/2): 59- 79.
[24] Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology: a critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1/2): 171- 188.
[25] Ronov A B, Yaroshevskiy A A, Migdisov A A, et al. Chemical constitution of the Earth's crust and geochemical balance of the major elements[J]. International Geology Review, 1991, 33(10): 941- 1048.
[26] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985: 1- 312.
[27] Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5): 820- 829.
[28] McLennan S M, Hemming S R, Taylor S R, et al. Early Proterozoic crustal evolution: geochemical and Nd- Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1153- 1177.
[29] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2(2): 63- 114.
[30] Sun S S, MacDonough W F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313- 345.
[31] 安徽省地質(zhì)礦產(chǎn)局. 安徽省巖石地層[M]. 武漢:中國地質(zhì)大學(xué)出版社,1997:126- 165. [Bureau of Geology and Mineral Resource of Anhui Province. Multiple classification and correlation on the stratigraphy of China (34): stratigraphy (lithostratic) of Anhui province[M]. Wuhan: China University of Geoscience Press, 1997: 126- 165.]
[32] 夏樹芳. 蘇南、浙北、皖南地區(qū)志留系與泥盆系的分界問題[J]. 地層學(xué)雜志,1978,2(2):152- 159. [Xia Shufang. The Silurian and Devonian boundary in south Jiangsu, north Zhejiang and south Anhui[J]. Journal of Stratigraphy, 1978, 2(2): 152- 159.]
[33] 安徽省地質(zhì)礦產(chǎn)局區(qū)域地質(zhì)調(diào)查隊(duì). 安徽省巖相古地理圖冊(cè)[M]. 合肥:安徽科學(xué)技術(shù)出版社,1990:129- 133. [Regional Geological Surveying Party, Bureau of Geology and Mineral Resource of Anhui Province. The lithofacies paleogeographic atlas of Anhui province[M]. Hefei: Anhui Publishing House of Science and Technology, 1990: 129- 133.]
[34] 安徽省地質(zhì)礦產(chǎn)局. 安徽省區(qū)域地質(zhì)志[M]. 北京:地質(zhì)出版社,1987:1- 721. [Bureau of Geology and Mineral Resource of Anhui Province. Regional geology of Anhui province[M]. Beijing: Geological Publishing House, 1987: 1- 721.]
[35] 方曉思,何勝策. 浙西唐家塢組的微古植物及其時(shí)代[J]. 地質(zhì)論評(píng),1988,34(4):327- 333. [Fang Xiaosi, He Shengce. The microflora of the Tangjiawu Formation in western Zhejiang province and its chronologic significance[J]. Geological Review, 1988, 34(4): 327- 333.]
[36] 顏鐵增. 杭州地區(qū)唐家塢組、西湖組的微古植物組合特征及其時(shí)代[J]. 浙江地質(zhì),1991,7(2):28- 33. [Yan Tiezeng. The microflora assemblages character and their age of Tangjiawu and Xihu Formations in Hangzhou region, Zhejiang province[J]. Geology of Zhejiang, 1991, 7(2): 28- 33.]
[37] 顏鐵增. 浙江唐家塢組西湖組的微古植物及其地層劃分對(duì)比[J]. 中國區(qū)域地質(zhì),1992(2):111- 117. [Yan Tiezeng. The microflora of Tangjiawu and Xihu Formations in Zhejiang and their stratigraphical division and correlation[J]. Regional Geology of China, 1992(2): 111- 117.]
[38] 顏鐵增,何圣策,尹磊明,等. 浙江早古生代孢粉型化石的研究[J]. 地層學(xué)雜志,2011,35(1):19- 30. [Yan Tiezeng, He Shengce, Yin Leiming, et al. Early Paleozoic palynomorphs of Zhejiang province, China[J]. Journal of Stratigraphy, 2011, 35(1): 19- 30.]
[39] 孫乘云,杜森官,王有生. 安徽省黃山地區(qū)唐家塢組生物地層[J]. 地層學(xué)雜志,2008,32(3):290- 293. [Sun Chengyun, Du Senguan, Wang Yousheng. Biostratigraphy of the Tangjiawu Formation in the Huangshan area, Anhui province[J]. Journal of Stratigraphy, 2008, 32(3): 290- 293.]
[40] 戎嘉余,陳旭. 中國志留紀(jì)年代地層學(xué)述評(píng)[J]. 地層學(xué)雜志,2000,24(1):27- 35. [Rong Jiayu, Chen Xu. Comments on Silurian chronostratigraphy of China[J]. Journal of Stratigraphy, 2000, 24(1): 27- 35.]
[41] 吳躍東,江來利. 皖西南地區(qū)泥盆紀(jì)─三疊紀(jì)層序地層[J]. 成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,36(1):19- 28. [Wu Yaodong, Jiang Laili. Sequence stratigraphy of the Devonian- Triassic strata in Southwest Anhui, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 36(1): 19- 28.]
[42] 李海濱. 下?lián)P子地區(qū)早古生代前陸盆地與油氣前景分析[D]. 南京:南京大學(xué),2013. [Li Haibin. Analyses of the early Paleozoic foreland basin and hydrocarbon prospect in the lower Yangtze region[D]. Nanjing: Nanjing University, 2013.]
[43] McLennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284: 21- 40.
[44] Naqvi S M, Sawkar R H, Rao D V S, et al. Geology, geochemistry and tectonic setting of Archaean greywackes from Karnataka nucleus, India[J]. Precambrian Research, 1988, 39(3): 193- 216.
[45] Wronkiewicz D J, Condie K C. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: cratonic evolution during the early Proterozoic[J]. Geochimica et Cosmochimica Acta, 1990, 54(2): 343- 354.
[46] Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian- Permian age, Colorado, USA: implications for provenance and metamorphic studies[J]. Lithos, 2000, 51(3): 181- 203.
[47] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523- 1534.
[48] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921- 924.
[49] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199- 2220.
[50] Roser B P, Korsch R J. Provenance signatures of sandstone- mudstone suites determined using discriminant function analysis of major- element data[J]. Chemical Geology, 1988, 67(1/2): 119- 139.
[51] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181- 193.
[52] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531- 542.
[53] Dickinson W R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting[J]. Geological Society of America Bulletin, 1983, 94(2): 222- 235.
[54] McLennan S M. Rare earth elements and sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(8): 169- 200.
[55] 陳小勇,陳國華,舒立旻,等. 江南東段華夏與揚(yáng)子陸塊碰撞時(shí)間的研究[J]. 新疆地質(zhì),2015,33(4):520- 528. [Chen Xiaoyong, Chen Guohua, Shu Limin, et al. A study of the collision timing of Yangtze and Cathaysia Blocks in the Eastern Jiangnan Orogenic Belt, South China[J]. Xinjiang Geology, 2015, 33(4): 520- 528.]
[56] Wu L, Jia D, Li H B, et al. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity[J]. Geological Magazine, 2010, 147(6): 974- 980.
[57] Wang W, Zhou M F, Yan D P, et al. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 2012, 192- 195: 107- 124.
[58] 劉邦秀,劉春根,邱永泉. 江西南部鶴仔片麻狀花崗巖類Pb- Pb同位素年齡及地質(zhì)意義[J]. 火山地質(zhì)與礦產(chǎn),2001,22(4):264- 268. [Liu Bangxiu, Liu Chungen, Qiu Yongquan. The Pb- Pb isotopic ages and geologic significance of gneissic granite in Hezi, Jiangxi[J]. Volcanology & Mineral Resources, 2001, 22(4): 264- 268.]
[59] 陳志洪,郭坤一,董永觀,等. 江山—紹興拼合帶平水段可能存在新元古代早期板片窗巖漿活動(dòng):來自鋯石LA- ICP- MS年代學(xué)和地球化學(xué)的證據(jù)[J]. 中國科學(xué)(D輯):地球科學(xué),2009,39(7):994- 1008. [Chen Zhihong, Guo Kunyi, Dong Yongguan, et al. Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan- Shaoxing suture zone: Evidence from zircon LA- ICP- MS U- Pb geochronology and geochemistry[J]. Science China (Seri.D): Earth Sciences, 2009, 39(7): 994- 1008.]
[60] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break- up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179- 210.
[61] Sun W H, Zhou M F, Gao J F, et al. Detrital zircon U- Pb geochronological and Lu- Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172(1/2): 99- 126.
[62] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1/2): 117- 131.
[63] 向磊,舒良樹. 華南東段前泥盆紀(jì)構(gòu)造演化:來自碎屑鋯石的證據(jù)[J]. 中國科學(xué)(D輯):地球科學(xué),2010,40(10):1377- 1388. [Xiang Lei, Shu Liangshu. Pre- Devonian tectonic evolution of the eastern South China Block: Geochronological evidence from detrital zircons[J]. Science China(Seri.D): Earth Sciences, 2010, 40(10): 1377- 1388.]
[64] 徐先兵,張?jiān)罉?,舒良樹,? 武夷山地區(qū)前寒武紀(jì)地層沉積時(shí)代研究[J]. 地層學(xué)雜志,2010,34(3):254- 267. [Xu Xianbing, Zhang Yueqiao, Shu Liangshu, et al. Precambrian geochronology and stratigraphy in the Wuyishan area, South China[J]. Journal of Stratigraphy, 2010, 34(3): 254- 267.]
[65] Yao J L, Shu L S, Santosh M. Detrital zircon U- Pb geochronology, Hf- isotopes and geochemistry- new clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3): 553- 567.
[66] Yao W H, Li Z X, Li W X, et al. From Rodinia to gondwanaland: a tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 2014, 314(1): 278- 313.
[67] Yao W H, Li Z X, Li W X, et al. Detrital provenance evolution of the Ediacaran- Silurian Nanhua foreland basin, South China[J]. Gondwana Research, 2015, 28(4): 1449- 1465.
[68] 張芳榮,舒良樹,王德滋,等. 華南東段加里東期花崗巖類形成構(gòu)造背景探討[J]. 地學(xué)前緣,2009,16(1):248- 260. [Zhang Fangrong, Shu Liangshu, Wang Dezi, et al. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China[J]. Earth Science Frontiers, 2009, 16(1): 248- 260.]
[69] 胡艷華,顧明光,徐巖,等. 浙江諸暨地區(qū)陳蔡群加里東期變質(zhì)年齡的確認(rèn)及其地質(zhì)意義[J]. 地質(zhì)通報(bào),2011,30(11):1661- 1670. [Hu Yanhua, Gu Mingguang, Xu Yan, et al. The confirmation of the age of Caledonian Chencai Group in Zhuji area of Zhejiang province and its geological significance[J]. Geological Bulletin of China, 2011, 30(11): 1661- 1670.]
[70] Zhang C L, Santosh M, Zhu Q B, et al. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block[J]. Gondwana Research, 2015, 28(3): 1137- 1151.
[71] 龔根輝. 華南早古生代前陸盆地沉積與構(gòu)造演化[D]. 杭州:浙江大學(xué),2015. [Gong Genhui. Sedimentary and tectonic evolution of the early Paleozoic foreland basin in the South China Block[D]. Hangzhou: Zhejiang University, 2015.]
[72] 舒良樹. 華南構(gòu)造演化的基本特征[J]. 地質(zhì)通報(bào),2012,31(7):1035- 1053. [Shu Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035- 1053.]
[73] Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon provenance of upper Ordovician and Silurian Strata in the northeastern Yangtze Block: response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267- 268: 63- 72.
[74] Wang Y J, Zhang F F, Fan W M, et al. Tectonic setting of the South China Block in the early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U- Pb geochronology[J]. Tectonics, 2010, 29(6): TC6020, doi: 10.1029/2010TC002750.