潘善越,周嬌銳,于蓉,劉曼,袁杰利,李明
1.大連市第二人民醫(yī)院 檢驗科,遼寧 大連 116011;2.大連醫(yī)科大學 基礎醫(yī)學院微生態(tài)學教研室,遼寧 大連 116044;3. 大連市第二人民醫(yī)院 藥劑科,遼寧 大連 116011
腸道微生物對新生兒免疫激活和身體的發(fā)育非常重要。哺乳能夠促使母乳源型微生物(MOM)的形成,MOM的作用是促進健康的腸道菌群的形成,并且抑制病原菌[1]。健康的腸道菌群的發(fā)育取決于母親、嬰兒和復雜環(huán)境相互作用。在出生時,腸道菌群波動性較大,經(jīng)歷最初幾年的幾個轉(zhuǎn)變之后才趨于穩(wěn)定[2-3]。開始的菌群主要通過飲食衍生,而母乳喂養(yǎng)為腸道菌群的建立提供了良好的機會,母乳成分中特有的物質(zhì)可以支持腸道菌群健康的發(fā)展[4]。
母乳中的生長因子、蛋白質(zhì)、抗體、細菌和糖鏈等物質(zhì)不僅促進嬰兒身體的健康發(fā)育,還能夠幫助嬰兒形成健康的腸道菌群[5]。腸道菌群的重要性已由眾多科學文獻報道[6-9],它們對食物成分的吸收、營養(yǎng)成分的有效利用和免疫功能都起著重要作用[10-14]。例如,早期對無菌小鼠的研究就表明無菌腸道會導致免疫、代謝、淋巴結發(fā)育不良,產(chǎn)生免疫細胞的異常[15-16],后來的無菌小鼠糞便微生物檢測也證實了這點[6,8,17]。盡管人們了解腸道微生物對人類健康的影響,但是怎樣構建一個健康的腸道菌群結構,我們卻知之甚少。
隨著剖宮產(chǎn)率的升高、抗生素和環(huán)境消毒劑使用量的增加以及多種喂養(yǎng)(母乳喂養(yǎng)、配方奶粉、混合喂養(yǎng)和互補喂養(yǎng))方式的改變,破壞了MOM的形成。嬰兒出生后3~4個月內(nèi)喂養(yǎng)母乳能否有效幫助形成MOM還處于研究階段,肥胖、炎癥等相關疾病,如腸易激綜合征和Crohn氏病、過敏性疾病可能都與破壞MOM形成密切相關[18-20]。嬰幼兒早期配方奶粉或固體食物對成年后的健康菌群影響仍需進一步研究。新技術的發(fā)展為研究人員了解飲食對腸道健康菌群的建立提供了優(yōu)越的條件,為了綜合認識母乳和腸道菌群的關系,我們必須了解母體的因素如何影響MOM與嬰兒的健康。這篇綜述主要集中討論母乳的多糖和糖基化蛋白對腸道菌群的影響,以及母體基因型和表型如何影響MOM,從而了解這些因素如何影響腸道菌群的健康建立[21]。
與其他食物喂養(yǎng)的嬰兒相比純母乳喂養(yǎng)能夠促進MOM的生長,為嬰兒健康成長帶來很大的益處。通過對母乳喂養(yǎng)的嬰兒糞便細菌的檢測,發(fā)現(xiàn)其中雙歧桿菌的數(shù)量占總菌數(shù)的70%~80%,B.longum、B.breve是最常見的菌種[22],通過菌種基因檢測發(fā)現(xiàn)母乳中嬰兒難消化的復雜的糖結構是這些細菌的重要食物來源[23]。
關于MOM中為何存在高含量的B.infantis(嬰兒雙歧桿菌)現(xiàn)在仍然未得到答案。B.infantis到底從何而來?在嚴格的母乳喂養(yǎng)環(huán)境中雙歧桿菌屬是如何影響其他菌群的?已經(jīng)有證據(jù)顯示早期嬰兒腸道菌群是通過降低腸道環(huán)境中的pH來形成,也被妊娠時間[24-26]、分娩方式(順產(chǎn)、剖宮產(chǎn))[27]以及潛在的分娩環(huán)境(醫(yī)院、家庭)所影響[24,28]。順產(chǎn)嬰兒的腸道菌群與母親的陰道菌群相似,其中占主導地位的是Lactobacillus(乳桿菌屬)或Sneathia(纖毛菌屬),而經(jīng)剖腹產(chǎn)出生的嬰兒腸道菌群與皮膚表面發(fā)現(xiàn)的金黃色葡萄球菌、棒狀桿菌、丙酸桿菌屬相似[27]。比較10種主要的雙歧桿菌發(fā)現(xiàn)剖腹產(chǎn)出生的嬰兒沒有雙歧桿菌,而順產(chǎn)新生兒腸道菌群以雙歧桿菌為主[29]。早產(chǎn)兒菌群的種類也沒有足月嬰兒那么豐富,可能是與醫(yī)院環(huán)境、剖宮產(chǎn)和使用抗生素有關[30-31]。
母乳喂養(yǎng)提供了連續(xù)不斷的細菌來源。Martin等[32]2003年指出:母乳是沒有被外源性皮膚污染的內(nèi)源性乳酸菌的來源,嬰兒腸道菌群建立的假設中進一步強調(diào)了母親的健康狀況的重要性,因為它涉及到外源性和內(nèi)源性微生物環(huán)境。Hunt等[33]在2011年研究發(fā)現(xiàn)9種核心細菌屬(金黃色葡萄球菌、鏈球菌、沙雷菌屬、銅綠假單胞菌、棒狀桿菌、青枯菌、痤瘡丙酸桿菌、鞘氨醇單胞菌和慢性根瘤菌)約占母乳中細菌總數(shù)的50%。在口腔、皮膚和乳腺組織也發(fā)現(xiàn)鏈球菌和葡萄球菌是最豐富的種屬[27,34]。Martin等[35]2009年檢測早期牛奶樣品,采用PCR-變性梯度凝膠電泳,確定雙歧桿菌的存在,然而,這種屬只是牛奶微生物中的一個小成員。
關于母乳中菌群的起源有多種解釋,一種解釋是菌群來自乳頭和周圍的皮膚[36-37],另一種解釋是細菌可能是從嬰兒口腔轉(zhuǎn)移到乳管,從而達到母親與嬰兒的穩(wěn)態(tài)平衡[38],這符合逆行流的理論,即在哺乳期間,嬰兒口腔白斑寄居的鏈球菌、纖毛菌、普雷沃菌等頻繁出現(xiàn)在母乳中[39],不過,到目前為止母乳中菌群的來源不僅包含皮膚和口腔的菌群,也包含腸道菌群。對母親是否通過她的免疫系統(tǒng)介導把腸道菌群轉(zhuǎn)移到乳汁中的研究中,作者發(fā)現(xiàn)無菌采集的人乳中含有活菌,其乳汁細胞中含有完整的細菌結構。此外,這些細菌含有比腸道細菌更多的生物多樣性的核糖體DNA。對于母乳中的微生物的起源與重要性,以及它們是如何導致嬰兒腸道菌群的變化仍未完全明確。上述研究仍然只是小樣本研究,需要更加標準化的方法來創(chuàng)造一個大數(shù)據(jù)庫,了解母乳中菌群對嬰幼兒腸道菌群發(fā)育的影響。
另外,分子營養(yǎng)技術研究表明:肥胖和正常體重孕婦在剖宮產(chǎn)和順產(chǎn)生育嬰兒時,嬰兒腸道菌群的組成和發(fā)育受母體體重指數(shù)、孕期體重增加的影響,如母親的體重指數(shù)與擬桿菌屬、梭狀芽胞桿菌和葡萄球菌的濃度呈正相關,與嬰兒雙歧桿菌濃度呈負相關[40],此外,還發(fā)現(xiàn)二胎嬰兒對比一胎嬰兒有稍高數(shù)量的雙歧桿菌[4]。
從成分上來說,人乳中含有大量的嬰兒難以消化的低聚糖和人類母乳糖(HMG),HMG是一個龐大的多糖的組合體,包括乳寡糖(HMO)、糖蛋白、糖肽、雙歧桿菌糖脂。這些豐富的糖復合物對細菌起有益生作用,其中HMO有助于菌群在嬰兒腸道中的長期定植。Chichlowski等[41]2012年證明,在HMO與乳糖的體外生長比較中,與HMO結合的腸上皮細胞有所增加。與乳糖相比,當嬰兒雙歧桿菌與HMO同時被接種時,產(chǎn)生炎性細胞因子會減少,而抗炎細胞因子的釋放增加。HMO是由葡萄糖、半乳糖、巖藻糖和唾液酸等單糖組成。初乳中HMO的濃度約為23 g/L,成熟人乳中約為7 g/L[42-43]。HMO的功能以及對細菌菌群多樣性的影響是重要的研究課題。乳腺中HMO的生物合成是以半乳糖和葡萄糖形成乳糖核心,由β-半乳糖基轉(zhuǎn)移酶催化的α-乳白蛋白為起點所形成的。除了少數(shù)特例,所有的HMO都包含了一個乳糖核心[44]。HMO可以被多種酶糖基化,其中包括被巖藻糖基化[45]。
通過測定巖藻寡糖的結構與濃度,來證明產(chǎn)婦基因型如何影響人乳組成,隨后如何影響嬰兒腸道菌群[45-46]。經(jīng)測定女性的淚液、唾液、人乳能夠表達一定水平的α-1,2-巖藻糖基轉(zhuǎn)移酶的婦女稱為分泌者,其擁有功能性FUT2基因,非分泌者是指產(chǎn)生低水平的FUT2酶的婦女[47],被分泌型母親母乳喂養(yǎng)的嬰兒,對腸道病原菌引起的中度或重度腹瀉有抵抗作用,原因是HMO有對病原菌的結合位點,從而減少病原菌與腸上皮細胞結合位點的接觸[45,48],這可能是分泌型母親能產(chǎn)生更多的游離人乳寡糖。而非分泌型母親沒有α-1,2-巖藻糖基轉(zhuǎn)移酶連接的巖藻糖基化HMOs,但增加了三乳酰-N-巖藻五糖的濃度。母體表型特征也可能影響HMO的組成,BMI為14~18的母親比BMI為24~28的母親的HMO含量明顯偏低[49],很少有研究會考慮母體表型存在差異,甚至更少有研究把分泌型和非分泌型母親對微生物的影響和嬰兒腸道功能聯(lián)系起來。因此更全面系統(tǒng)地對母乳成分的變化進行研究對促進嬰兒的健康具有重要的作用。
為了促進有益細菌的生長,培養(yǎng)健康的腸道生態(tài)系統(tǒng),對潛在有害微生物的生長進行限制是有必要的。腸道中有益有害的細菌很難分開,減少有害細菌的數(shù)量便可以解放出有益微生物的生態(tài)位置。糖基化母乳蛋白質(zhì)如乳鐵蛋白、溶菌酶、免疫球蛋白影響腸道有害微生物的生長繁殖,具有保護嬰兒免受感染的功能[50-52]。在嬰兒腸道內(nèi)糖基化蛋白質(zhì)成為抵御潛在病原菌致病的第一道防線,常以重疊的機制發(fā)揮其保護作用。這些物質(zhì)不但能影響腸道菌群生長,還能在調(diào)節(jié)嬰兒免疫系統(tǒng)和刺激上皮屏障功能中發(fā)揮作用。
溶菌酶存在于多種哺乳動物的乳汁中,能夠水解細菌細胞壁肽聚糖,導致細胞溶解。這是有效的抵抗革蘭陽性菌(如鏈球菌和芽胞桿菌)感染的物質(zhì)。相比其他牛奶(0.130 mg/mL)和山羊奶(0.250 mg/mL),人乳中溶菌酶含量更高,能夠達到400 mg/mL[53]。
乳鐵蛋白在母乳中是最豐富的糖蛋白[54],并且對鐵有極高的親和力。它的結構和功能已被廣泛的研究[55-57],乳鐵蛋白對新生兒鐵代謝起著關鍵作用,能夠促進腸道更好的吸收營養(yǎng)物質(zhì)[58]。乳鐵蛋白在嬰兒的腸道中被消化吸收,并釋放乳鐵蛋白肽。乳鐵蛋白肽比乳鐵蛋白具有更強大的抗菌活性[59]。乳鐵蛋白還具有多種免疫調(diào)節(jié)功能,這些功能可能會受到母乳中糖基化模式的影響,并在哺乳過程中產(chǎn)生變化[60-61]。
各類免疫球蛋白在母乳中也可檢測到,含量最多的是分泌型IgA(sIgA)。因為嬰兒免疫系統(tǒng)沒有發(fā)育成熟,自身不能產(chǎn)生足夠數(shù)量sIgA,所以嬰兒比較依賴母乳中的sIgA,當年齡增長至5歲sIgA的分泌量就可達到成人水平[62]。人乳sIgA能夠幫助抵抗越過黏膜進入母乳中的病原菌,尤其是消化道中的霍亂弧菌、大腸埃希菌、沙門菌和志賀菌等導致腹瀉的常見致病菌[63-64],這些菌也是全球兒童(<5歲)死亡的第二大原因[65]。人乳免疫球蛋白sIgA通過凝集防止抗原通過黏膜進入全身循環(huán),通過黏液纖毛清除被黏液包裹的抗原[66],sIgA也可以粘附宿主細胞,阻止進入的細菌對受體細胞的附著,起到預防感染的作用[67]。Perrier等[68]2006年研究表明從初乳中分離sIgA,可與致病性大腸埃希菌連接,從而保護上皮細胞免受細菌感染、入侵。
另外母體表型已被證明影響免疫球蛋白聚糖的組成與水平,例如,診斷為2型糖尿病的女性相比于正常女性母乳中IgA、IgG和補體C3濃度降低了30%。Smilowitz等[69]2013年分析研究顯示:HMO含量在妊娠期糖尿病婦女與正常婦女間沒有差異,但蛋白和低聚糖的組成及sIgA、乳鐵蛋白卻有顯著不同。具體來說,妊娠期糖尿病婦女,甘露糖、巖藻糖和唾液酸殘基的濃度下降了43%。目前妊娠期糖尿病女性母乳中乳糖基化糖蛋白的改變對嬰兒腸道菌群的影響尚未被研究。
嬰兒腸道菌群的良好發(fā)育對其健康成長有著深遠意義。斷奶前期即出生3~4個月,是一個關鍵時期,對腸道菌群的定植和建立正常的腸道屏障功能起重要作用。飲食、環(huán)境因素、分娩方式與抗生素接觸程度都對腸道微生物數(shù)量和多樣性發(fā)揮著顯著作用。母乳是嬰兒營養(yǎng)的重要來源,它不僅提供聚糖、蛋白和不同類型的免疫因子,同時在嬰兒的腸道中也播種細菌菌種。最近的數(shù)據(jù)表明,母體基因型和表型特征可能影響母乳糖物質(zhì)的數(shù)量、組成和功能。母體表型特征對嬰兒腸道微生物組成和未來健康的影響值得進一步調(diào)查。通過對大量的母親嬰兒組對的數(shù)據(jù)分析,將會為嬰兒代謝、免疫、腸道菌群的建立提供強有力的證據(jù)。本課題組正在開展這方面研究。
[1] Zivkovic AM, Lewis ZT, German JB, et al. Establishment of a milk-oriented microbiota(MOM) in early life: How babies meet their MOMs[J]. Funct Food Rev, 2013, 5(1): 3-12.
[2]Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota[J]. PLoS Biol, 2007, 5(7): e177.
[3]Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants[J]. Acta Paediatr, 2009, 98(2): 229-238.
[4]Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy[J]. Pediatrics, 2006, 118(2): 511-521.
[5]Ballard O, Morrow AL. Human milk composition: Nutrients and bioactive factors[J]. Pediatr Clin North Am, 2013, 60(1): 49-74.
[6]B?ckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
[7]Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: Human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023.
[8]Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
[9]Krajmalnik-Brown R, Ilhan ZE, Kang DW, et al. Effects of gut microbes on nutrient absorption and energy regulation[J]. Nutr Clin Pract, 2012, 27(2): 201-214.
[10] Gordon JI, Dewey KG, Mills DA, et al. The human gut microbiota and undernutrition[J]. Sci Transl Med, 2012, 4(137): 137.
[11] LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: A gut microbiota perspective[J]. Curr Opin Biotechnol, 2013, 24(2): 160-168.
[12] Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans[J]. Am J Clin Nutr, 2011, 94(1): 58-65.
[13] Umesaki Y, Okada Y, Matsumoto S, et al. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse[J]. Microbiol Immunol, 1995, 39(8): 555-562.
[14] Arboleya S, Bahrami B, Macfarlane S, et al. Production of immune response mediators by HT-29 intestinal cell-lines in the presence ofBifidobacterium-treated infant microbiota[J]. Benef Microbes, 2015, 6(4): 543-552.
[15] Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system[J]. Nat Rev Immunol, 2004, 4(6): 478-485.
[16] O′Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Rep, 2006, 7(7): 688-693.
[17] McVey Neufeld KA, Mao YK, Bienenstock J, et al. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse[J]. Neurogastroenterol Motil, 2013, 25(2): 183-188.
[18] Bager P, Simonsen J, Nielsen NM, et al. Cesarean section and off spring′s risk of inflammatory bowel disease: A national cohort study[J]. Inflamm Bowel Dis, 2012, 18(5): 857-562.
[19] Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: Meta-analyses[J]. Clin Exp Allergy, 2008, 38(4): 634-642.
[20] Pei Z, Heinrich J, Fuertes E, et al. Cesarean delivery and risk of childhood obesity[J]. Pediatr, 2014, 164(5): 1068-1073.
[21] Roger LC, Costabile A, Holland DT, et al. Examination of faecalBifidobacteriumpopulations in breast- and formula-fed infants during the first 18 months of life[J]. Microbiology, 2010, 156(11): 3329-3341.
[22] Sela DA, Mills DA. Nursing our microbiota: Molecular link ages between bifidobacteria and milk oligosaccharides[J]. Trends Microbiol, 2010, 18(7): 298-307.
[23] Unger S, Stintzi A, Shah P, et al. Gut microbiota of the very-low-birth-weight infant[J]. Pediatr Res, 2015, 77(1/2): 205-213.
[24] Taft DH, Ambalavanan N, Schibler KR, et al. Intestinal microbiota of preterm infants differ over time and between hospitals[J]. Microbiome, 2014, 2: 36.
[25] Westerbeek EA, van den Berg A, Lafeber HN, et al. The intestinal bacterial colonisation in preterm infants: A review of the literature[J]. Clin Nutr, 2006, 25(3): 361-368.
[26] Groer MW, Luciano AA, Dishaw LJ, et al. Development of the preterm infant gut microbiome: A research priority[J]. Microbiome, 2014, 2: 38.
[27] Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975.
[28] Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227.
[29] Biasucci G, Benenati B, Morelli L, et al. Cesarean delivery may affect the early biodiversity of intestinal bacteria[J]. J Nutr, 2008, 138(9): 1796-1800.
[30] Mshvildadze M, Neu J, Shuster J, et al. Intestinal microbial ecology in premature infants assessed using non-culture-based techniques[J]. J Pediatr, 2010, 156(1): 20-25.
[31] Wang Y, Hoenig JD, Malin KJ, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis[J]. ISME J, 2009, 3(8): 944-954.
[32] Martin R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut[J]. J Pediatr, 2003, 143(6): 754-758.
[33] Hunt KM, Foster JA, Forney LJ, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk[J]. PLoS One, 2011, 6(6): 21313.
[34] Urbaniak C, Cummins J, Brackstone M, et al. Microbiota of human breast tissue[J]. Appl Environ Microbiol, 2014, 80(10): 3007-3014.
[35] Martin R, Jimenez E, Heilig H, et al. Isolation ofBifidobacteriafrom breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR[J]. Appl Environ Microbiol, 2009, 75(4): 965.
[36] Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009, 324(5931): 1190-1192.
[37] D′Amico CJ, DiNardo CA, Krystofiak S. Preventing contamination of breast pump kit attachments in the NICU[J]. J Perinat Neonatal Nurs, 2003, 17(2): 150-157.
[38] Cephas KD, Kim J, Mathai RA, et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing[J]. PLoS One, 2011, 6(8): 23503.
[39] Cabrera-Rubio R, Collado MC, Laitinen K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery[J]. Am J Clin Nutr, 2012, 96(3): 544-551.
[40] Collado MC, Isolauri E, Laitinen K, et al. Effect of mother′s weight on infant′s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy[J]. Am J Clin Nutr, 2010, 92(5): 1023-1030.
[41] Chichlowski M, De Lartigue G, German JB, et al.Bifidobacteriaisolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function[J]. Pediatr Gastroenterol Nutr, 2012, 55(3): 321-327.
[42] Coppa GV, Gabrielli O, Pierani P, et al. Changes in carbohydrate composition in human milk over 4 months of lactation[J]. Pediatrics, 1993, 91(3): 637-641.
[43] Gabrielli O, Zampini L, Galeazzi T, et al. Preterm milk oligosaccharides during the first month of lactation[J]. Pediatrics, 2011, 128(6): 1520-1531.
[44] Kunz C, Rudloff S, BaierW, et al. Oligosaccharides in human milk: Structural, functional, and metabolic aspects[J]. Annu Rev Nutr, 2000, 20: 699-722.
[45] Totten SM, Zivkovic AM, Wu S, et al. Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers[J]. Proteome Res, 2012, 11(12): 6124-6133.
[46] Smilowitz JT, O′Sullivan A, Barile D, et al. The human milk metabolome reveals diverse oligosaccharide profiles[J]. J Nutr, 2013, 143(11): 1709-1718.
[47] Smilowitz JT, Lebrilla CB, Mills DA, et al. Breast milk oligosaccharides: Structure-function relationships in the neonate[J]. Annu Rev Nutr, 2014, 34: 143-169.
[48] Morrow AL, Ruiz-Palacios GM, Jiang X, et al. Human milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea[J]. J Nutr, 2005, 135(5): 1304-1307.
[49] Bode L, Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides[J]. Adv Nutr, 2012, 3(3): 383-391.
[50] Maga EA, Desai PT, Weimer BC, et al. Consumption of lysozyme-rich milk can alter microbial fecal populations[J]. Appl Environ Microbiol, 2012, 78(17): 6153-6160.
[51] Oda H, Wakabayashi H, Yamauchi K, et al. Lactoferrin and bifidobacteria[J]. Biometals, 2014, 27(5): 915-922.
[52] Maga EA, Weimer BC, Murray JD. Dissecting the role of milk components on gut microbiota composition[J]. Gut Microbes, 2013, 4(2): 136-139.
[53] Maga EA, Cullor JS, SmithW, et al. Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk[J]. Foodborne Pathog Dis, 2006, 3(4): 384-392.
[54] Barboza M, Pinzon J, Wickramasinghe S, et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions[J]. Mol Cell Proteomics, 2012, 11(6): 111.
[55] Aly E, Ros G, Frontela C. Structure and functions of lactoferrin as ingredient in infant formulas[J]. Food Res, 2013, 2(4): 25-36.
[56] Liu B, Newburg DS. Human milk glycoproteins protect infants against human pathogens[J]. Breastfeed Med, 2013, 8(4): 354-362.
[57] Wada Y, Lonnerdal B. Bioactive peptides derived from human milk proteins-mechanisms of action[J]. Nutr Biochem, 2014, 25(5): 503-514.
[58] Scarino ML. A sideways glance: Take it or leave it? The role of lactoferrin in iron sequestration and delivery within the body[J]. Genes Nutr, 2007, 2(2): 161-162.
[59] Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: A lactoferrin derived peptide with antimicrobial, antiviral, antitumor and immunological properties[J]. Cell Mol Life Sci, 2005, 62(22): 2588-2598.
[60] Wakabayashi H, Oda H, Yamauchi K, et al. Lactoferrin for prevention of common viral infections[J]. Infect Chemother, 2014, 20(11): 666-671.
[61] O′Riordan N, Gerlach JQ, Kilcoyne M, et al. Profiling temporal changes in bovine milk lactoferrin glycosylation using lectin microarrays[J]. Food Chem, 2014, 165: 388-396.
[62] Fageras M, Tomicic S, Voor T, et al. Slow salivary secretory IgA maturation may relate to low microbial pressure and allergic symptoms in sensitized children[J]. Pediatr Res, 2011, 70(6): 572-577.
[63] Labbok MH, Clark D, Goldman AS. Breastfeeding: Maintaining an irreplaceable immunological resource[J]. Nat Rev Immunol, 2004, 4(7): 565-572.
[64] L?nnerdal B. Nutritional and physiologic significance of human milk proteins[J]. Am J Clin Nutr, 2003, 77(6): 1537-1543.
[65] Moszynski P. Diarrhoeal diseases still kill more than 1. 5m children under 5 each year[J]. BMJ, 2007, 335(7632): 1227.
[66] Mathias A, Longet S, Corthesy B. Agglutinating secretory IgA preserves intestinal epithelial cell integrity during apical infection by Shigella flexneri[J]. Infect Immun, 2013, 81(8): 3027-3734.
[67] Klemm P, Schembri MA. Bacterial adhesins: Function and structure[J]. Int J Med Microbiol, 2000, 290(1): 27-35.
[68] Perrier C, Sprenger N, Corthesy B. Glycans on secretory component participate in innate protection against mucosal pathogens[J]. Biol Chem, 2006, 281(20): 14280-14287
[69] Smilowitz JT, Totten SM, Huang J, et al. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus[J]. J Nutr, 2013, 143(12): 1906-1912.