国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

右美托咪啶預(yù)處理經(jīng)AMPK/SIRT1通路抑制大鼠腦缺血再灌注損傷的炎性反應(yīng)

2018-03-07 18:10董海平周薇王震虹
關(guān)鍵詞:右美托咪啶腦缺血炎癥

董海平+周薇+王震虹

[摘要] 目的 探討右美托咪啶(Dex)預(yù)處理對(duì)大鼠大腦缺血再灌注(I/R)損傷后炎性反應(yīng)的作用機(jī)制。 方法 72只SD大鼠隨機(jī)分為6組,每組12只。①假手術(shù)組(Sham組),大鼠經(jīng)腹腔注射3%戊巴比妥鈉(50 mg/kg)麻醉后,只游離右側(cè)頸內(nèi)動(dòng)脈,不制作成大腦中動(dòng)脈閉塞(MCAO)模型;②腦缺血組(IR組):造模后,大鼠腦缺血90 min后再灌注;③Dex10組及Dex50組:造模后,缺血前30 min分別腹腔內(nèi)注射10、50 μg/kg Dex;④Dex50+Yoh組:造模后,在給予50 μg/kg Dex前10 min腹腔內(nèi)注射育亨賓(Yoh)0.5 mg/kg;⑤Yoh組:造模后,缺血前30 min腹腔注射Yoh 0.5 mg/kg。對(duì)各組大鼠進(jìn)行神經(jīng)功能損傷評(píng)估、梗死面積評(píng)估、腫瘤壞死因子-α(TNF-α)及白介素-1β(IL-1β)水平測(cè)定、TUNEL染色及SIRT1蛋白檢測(cè)和神經(jīng)運(yùn)動(dòng)功能評(píng)分(TMS)檢測(cè)。 結(jié)果 IR組的神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)、TNF-a和IL-1β水平及SIRT1蛋白表達(dá)量均明顯高于Sham組,再灌注后第1、2、5天時(shí)TMS評(píng)分均明顯低于Sham組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex10組、Dex50組的神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)、腦勻漿中TNF-a和IL-1β水平均明顯低于IR組、Dex50+YOH組、YOH組;TMS評(píng)分、SIRT1蛋白表達(dá)量均明顯高于IR組、Dex50+YOH、YOH組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex50組神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)、腦勻漿中TNF-a和IL-1β水平均明顯低于Dex10組;再灌注后第1、2、5天時(shí)TMS評(píng)分、SIRT1蛋白表達(dá)量明顯高于Dex10組(P < 0.01)。Dex50+YOH、YOH組間各項(xiàng)檢測(cè)指標(biāo)比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。 結(jié)論 Dex預(yù)處理可激活α2受體通過(guò)AMPK/SIRT1通路抑制大鼠腦缺血再灌注損傷,減輕炎性反應(yīng)并發(fā)揮神經(jīng)保護(hù)作用。

[關(guān)鍵詞] 右美托咪啶;炎癥;再灌注損傷;腦缺血

[中圖分類(lèi)號(hào)] R734 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)01(a)-0004-06

[Abstract] Objective To investigate the mechanism of Dexmedetomidine (Dex) pretreatment on inflammation after cerebral ischemia/reperfusion (I/R) injury in rats. Methods Seventy-two SD rats were randomly divided into 6 groups (n=12). In sham group, after anesthesia by 3% Pentobarbital sodium (50 mg/kg), the rates were isolated the right internal carotid artery, but they were not made into the middle cerebral artery occlusion (MCAO) model. In IR group, after the molding, the rat brain was received reperfusion at 90 min after ischemia. In Dex10 and Dex50 groups, after the molding, they were intraperitoneal injected Dex (10 μg/kg or 50 μg/kg) at 30 min before ischemia. In Dex50+Yoh group, after the molding, they were intraperitoneal injected Yoh (0.5 mg/kg) before 50 μg/kg of Dex. In Yoh group, after the molding, they were intraperitoneal injected Yoh (0.5 mg/kg) before ischemia. The neurofunctional damage assessment, infarct area assessment, the levels of TNF-α and IL-1β, TUNEL staining, SIRT1 protein detection and Neuro-motor function score (TMS) in each group were detected respectively. Results In the IR group, neurofunctional scores, infarction area, TUNEL (+) cell count, levels of TNF-a and IL-1 β and SIRT1 protein expression were significantly higher than those in the sham group, while the TMS scores at 1, 2 and 5 days after reperfusion were lower than those in the sham group, with highly statistically significant difference (P < 0.01). The neurofunctional scores, infarction area, TUNEL (+) cell count, and TNF-a and IL-1 β levels in the Dex10 group and Dex50 group were significantly lower than those in the IR, Dex50+YOH and YOH group, while the TMS score and SIRT1 protein expression were higher than those in the IR, Dex50+YOH and YOH group, with highly statistically significant difference (P < 0.01). The nerve function scores, infarction area, TUNEL (+) cell count, and TNF-a and IL-1 β levels in the Dex50 group were significantly lower than those in the Dex10 group, TMS score and SIRT1 protein expression were significantly higher than those in the Dex10 group (P < 0.01). There was no statistically significant difference between the test indexes of Dex50+YOH group and YOH group (P > 0.05). Conclusion Dexmedetomidine preconditioning can activate α2 adrenergic receptor through AMPK/SIRT1 pathway to inhibit cerebral ischemia reperfusion injury in rats, and reduce the inflammation.endprint

[Key words] Dexmedetomidine; Inflammation; Reperfusion injury; Brain ischemia

腦卒中包括缺血性腦卒中和出血性腦卒中,有60%~80%是腦血管供血不足,即缺血性卒中或腦梗死[1]。腦缺血再灌注成為腦卒中發(fā)病及治療過(guò)程中必然病理過(guò)程造成嚴(yán)重的腦損傷。右美托咪啶(Dex)是一種高選擇性的α2-受體激動(dòng)劑,為圍術(shù)期和ICU中常用的鎮(zhèn)靜藥物[2]。近年來(lái)的研究發(fā)現(xiàn)Dex同樣具有腦保護(hù)功能[3-5],可能是通過(guò)改善腦缺血后的腦氧供平衡[6],減輕過(guò)氧化反應(yīng)[7],調(diào)節(jié)HIF等基因表達(dá)[4],減少炎性因子的釋放,緩解炎性反應(yīng)等機(jī)制發(fā)揮作用[8-9]。炎性反應(yīng)涉及很多方面的機(jī)制,其中細(xì)胞能量代謝異常已成為近年來(lái)研究炎性反應(yīng)的重要環(huán)節(jié)[10]。腺苷酸激活的蛋白激酶(AMPK)是真核生物廣泛存在的能量敏感性蛋白激酶,既往研究表明,AMPK的激活保護(hù)了全腦缺血和局灶性缺血[11-15]。本研究擬探討Dex預(yù)處理經(jīng)AMPK/SIRT1通路對(duì)大鼠腦缺血再灌注損傷炎性反應(yīng)的影響。

1 材料與方法

1.1 動(dòng)物

本實(shí)驗(yàn)采用72只成年健康雄性SD大鼠,體重200~250 g,購(gòu)自上海交大動(dòng)物實(shí)驗(yàn)中心,動(dòng)物合格證號(hào):SYXK(滬)2008-0106。

1.2 材料

Dex、育亨賓(Yoh,α受體拮抗劑)均購(gòu)自江蘇新晨醫(yī)藥有限公司(中國(guó));TTC、戊巴比妥購(gòu)自Sigma–Aldrich(St. Louis,MO,美國(guó));AMPK抗體和ELISA試劑盒等購(gòu)自R&D Germany(德國(guó))。鼠抗SIRT1單克隆抗體購(gòu)于美國(guó)Abcam公司。

1.3 動(dòng)物處理與分組

1.3.1 大腦中動(dòng)脈閉塞(MCAO)模型 大鼠腹腔內(nèi)注射3%戊巴比妥鈉(50 mg/kg)麻醉后,經(jīng)頸部游離右側(cè)頸內(nèi)動(dòng)脈,將線(xiàn)栓經(jīng)頸內(nèi)動(dòng)脈入顱插入大腦前動(dòng)脈,制作大腦中動(dòng)脈閉塞(MCAO)模型[16]。缺血90 min后取出線(xiàn)栓,整個(gè)手術(shù)過(guò)程中使用加熱毯和加熱燈維持直腸溫度為37°C左右。MCAO模型成功的入選標(biāo)準(zhǔn)參照文獻(xiàn)[17]。

1.3.2 分組 72只SD大鼠隨機(jī)分為6組,每組12只。①假手術(shù)組(Sham組):腹腔注射3%戊巴比妥鈉(50 mg/kg)麻醉后,經(jīng)頸部游離右側(cè)頸內(nèi)動(dòng)脈,但不制作MCAO模型,其他手術(shù)過(guò)程同“1.3.1”;②腦缺血組(IR組):造模后,大鼠腦缺血90 min后再灌注;③Dex10組,造模后,缺血前30 min給予大鼠10 μg/kg Dex腹腔內(nèi)注射;④Dex50組:造模后,缺血前30 min給予大鼠50 μg/kg Dex腹腔內(nèi)注射;⑤Dex50+Yoh組:造模后,在給予50 μg/kg Dex前10 min,腹腔內(nèi)注射Yoh 0.5 mg/kg;⑥Yoh組:造模后,缺血前30 min腹腔注射Yoh 0.5 mg/kg。所用藥物劑量均參照文獻(xiàn)[18-19]使用。

1.4 觀(guān)察指標(biāo)

每組分別取6只大鼠于缺血再灌注后24 h先進(jìn)行神經(jīng)功能損傷評(píng)估,處死后進(jìn)行梗死面積評(píng)估、腫瘤壞死因子-α(TNF-α)及白介素-1β(IL-1β)水平測(cè)定、TUNEL染色及SIRT1蛋白檢測(cè)。每組另取6只大鼠于再灌注后第1、2、5天進(jìn)行神經(jīng)運(yùn)動(dòng)功能評(píng)分(TMS)。

1.4.1 神經(jīng)功能損傷評(píng)估 缺血再灌注后24 h對(duì)大鼠進(jìn)行神經(jīng)功能損傷評(píng)估(Longa評(píng)分)[17],評(píng)分標(biāo)準(zhǔn):0分=無(wú)神經(jīng)損傷,1分=左前肢伸展障礙,2分=向左打圈,3分=行走時(shí)向左側(cè)傾倒,4分=意識(shí)昏迷,5分=死亡。

1.4.2 梗死面積評(píng)估 再灌注24 h后處死大鼠并取出腦組織,將大腦切成五個(gè)冠狀切片(2 mm),置于1%氯化三苯基四氮唑(TTC)溶液中染色20 min后,用4%多聚甲醛固定。將TTC染色切片拍攝并數(shù)字圖像進(jìn)行分析,使用圖像分析軟件(Image-Pro Plus 6.0)。大腦半球病灶體積百分比[HLV(%)]由以下公式計(jì)算(tatlisumak,1998):HLV(%)=[總梗死體積-(體積完整的同側(cè)半球-完整的對(duì)側(cè)大腦半球的體積)]/對(duì)側(cè)大腦半球的體積×100%。

1.4.3 TNF-α和IL-1β測(cè)定 取梗死灶腦組織,采用ELISA試劑盒檢測(cè)腦組織勻漿中TNF-α和IL-1β的含量。

1.4.4 TUNEL染色 取腦組織用4%多聚甲醛固定后石蠟包埋切片,TUNEL染色后,陽(yáng)性細(xì)胞發(fā)出綠色熒光。在40倍光鏡下量化的TUNEL陽(yáng)性細(xì)胞,缺血區(qū)域選取5個(gè)視野,通過(guò)規(guī)模校準(zhǔn)對(duì)TUNEL陽(yáng)性細(xì)胞平均百分比測(cè)定。

1.4.5 SIRT1蛋白檢測(cè) 取腦組織勻漿,使用蛋白質(zhì)免疫印跡法(Western Blot)檢測(cè)SIRT1蛋白的表達(dá)。采用二喹啉甲酸(BCA)法進(jìn)行蛋白定量。首先將標(biāo)準(zhǔn)蛋白加入96孔板中,再分別加入樣品蛋白,及BCA工作液。酶標(biāo)儀測(cè)定A562 nm處吸光光度值。取樣品蛋白,加入緩沖液,水浴、冷卻。將變性蛋白加入SDS-PAGE凝膠進(jìn)行電泳。電泳完成后,根據(jù)參照蛋白marker指示相應(yīng)蛋白分子量切取目的膠段后進(jìn)行轉(zhuǎn)膜。轉(zhuǎn)膜完成后加入小鼠抗SIRT1單克隆抗體(1∶1000),4℃孵育過(guò)夜,次日TBST緩沖液洗滌,經(jīng)Odyssey FC成像系統(tǒng)進(jìn)行顯影,應(yīng)用Lab Work軟件進(jìn)行SIRT1蛋白定量分析。

1.4.6 TMS評(píng)分 再灌注后第1、2、5天進(jìn)行TMS評(píng)分,檢測(cè)項(xiàng)目包括:抓屏試驗(yàn)、平衡木試驗(yàn)及抓繩試驗(yàn),評(píng)分范圍0~9分,分?jǐn)?shù)越高代表神經(jīng)運(yùn)動(dòng)功能越完善[17]。

1.5 統(tǒng)計(jì)學(xué)方法

采用GraphPad Prism 5統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用Tukey檢驗(yàn),以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。endprint

2 結(jié)果

2.1 各組神經(jīng)功能評(píng)分、梗死面積、TUNEL染色結(jié)果比較

IR組的神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)均明顯高于Sham組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex10組、Dex50組的神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)均明顯低于IR組、Dex50+YOH組、YOH組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex50組神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)均明顯低于Dex10組(P < 0.01)。Dex50+YOH、YOH組間神經(jīng)功能評(píng)分、梗死面積、TUNEL(+)細(xì)胞數(shù)比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)圖1。

2.2 各組再灌注后不同時(shí)間點(diǎn)的TMS評(píng)分比較

IR組再灌注后第1、2、5天TMS評(píng)分均明顯低于Sham組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex10、Dex50組再灌注后TMS評(píng)分均明顯高于IR組、Dex50+YOH、YOH組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex50組再灌注后第1、2、5天時(shí)TMS評(píng)分明顯高于Dex10組(P < 0.01)。Dex50+YOH、YOH組間TMS評(píng)分比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)圖2。

2.3 各組腦勻漿中TNF-a和IL-1β含量比較

IR組腦勻漿中TNF-a和IL-1β水平均明顯高于Sham組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex10組、Dex50組腦勻漿中TNF-a和IL-1β水平均明顯低于IR組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex50組腦勻漿中TNF-a和IL-1β水平明顯低于Dex10組,差異有統(tǒng)計(jì)學(xué)意義(P < 0.01)。見(jiàn)圖3。

2.4 各組SIRT1蛋白表達(dá)量比較

IR組SIRT1蛋白表達(dá)量明顯高于Sham組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex10組、Dex50組SIRT1蛋白表達(dá)量明顯高于IR組、Dex50+YOH組、YOH組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex50組SIRT1蛋白表達(dá)量明顯高于Dex10組,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。Dex50+YOH、YOH組間SIRT1蛋白表達(dá)量比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)圖4。

3 討論

Dex作為常用的鎮(zhèn)靜藥,通過(guò)激活α2腎上腺素受體發(fā)揮神經(jīng)保護(hù)的作用。本實(shí)驗(yàn)中,在MCAO術(shù)前30 min給予Dex,提示其能有效緩解MCAO導(dǎo)致的腦損傷,減輕了缺血導(dǎo)致的神經(jīng)細(xì)胞凋亡,同時(shí)改善了再灌注后的行為等級(jí),且有一定的劑量依賴(lài)性。本研究發(fā)現(xiàn)不同劑量(10、50 μg/kg)Dex能有效緩解大腦皮質(zhì)區(qū)的損傷,減少皮質(zhì)細(xì)胞凋亡、減輕腦組織炎癥的影響。Dex能明顯改善缺血再灌注運(yùn)動(dòng)功能。α2腎上腺素能受體拮抗劑的Yoh能抑制Dex的作用。局部的腦缺血再灌注損傷嚴(yán)重?fù)p害了大腦皮層功能,大鼠的運(yùn)動(dòng)功能在損傷后第1、2、5天逐漸減退。經(jīng)Dex預(yù)處理的大鼠的運(yùn)動(dòng)功能在損傷后有明顯改善,這種神經(jīng)保護(hù)作用可被α2腎上腺素受體拮抗劑育亨賓逆轉(zhuǎn)。

Dex腦保護(hù)作用機(jī)制目前已有初步進(jìn)展,在缺血發(fā)生時(shí)作為神經(jīng)保護(hù)劑為后續(xù)的治療提供保障[8]。既往研究表明,在腦缺血再灌注損傷中,炎性反應(yīng)與細(xì)胞凋亡參與了主要機(jī)制[20]。動(dòng)物實(shí)驗(yàn)和離體細(xì)胞實(shí)驗(yàn)均證實(shí)α2腎上腺素受體激動(dòng)劑對(duì)感染及非感染引起的炎性反應(yīng)均有一定的抑制作用。有研究發(fā)現(xiàn)接受Dex治療的膿毒血癥患者的病死率,呼吸機(jī)輔助呼吸天數(shù)均下降,腦功能恢復(fù)也較好顯示Dex有一定的抗炎作用[21]。應(yīng)用α2-AR激動(dòng)劑后膿毒血癥大鼠肝臟的病理明顯改善[22],肺組織損傷減輕,減少炎癥介質(zhì)TNF-α和IL-6的釋放[23]。研究證實(shí)Dex在肺組織、腎臟組織及腸道組織缺血損傷中起到一定的抗炎作用[24-26]。本實(shí)驗(yàn)結(jié)果提示,在大鼠腦缺血后Dex也發(fā)揮了抗炎的作用,Dex預(yù)處理的大鼠腦缺血再灌注后TNF-α和IL-1β水平明顯下降,大劑量的Dex(50 μg/kg)的抗炎作用比低劑量(10 μg/kg)更加明顯。

有研究提示,心肌缺血后應(yīng)用α2腎上腺素受體激動(dòng)劑可以刺激AMPK表達(dá),而使用α2-受體阻斷劑后拮抗了Dex的作用,明顯抑制了AMPK的表達(dá)水平[27]。AMP被認(rèn)為是細(xì)胞能量代謝過(guò)程中的關(guān)鍵酶,AMPK是能量敏感的蛋白激酶,其廣泛存在于真核細(xì)胞中,在炎癥過(guò)程中發(fā)揮關(guān)鍵作用,激活A(yù)MPK(Thr172磷酸化)能明顯抑制炎性反應(yīng)[28-29]。SIRT1除了調(diào)節(jié)代謝、衰老、凋亡外,還可以在炎癥中發(fā)揮重要作用[30]。一系列體內(nèi)外的實(shí)驗(yàn)證實(shí),SIRT1對(duì)炎癥基因表達(dá)及組織炎性損傷具有顯著的抑制效應(yīng)[31];激活SIRT1可以減輕腦缺血后的炎性反應(yīng)[32]。本實(shí)驗(yàn)中,不同劑量的Dex均能有效激活A(yù)MPK/SIRT1通路,大劑量的Dex對(duì)AMPK/SIRT1的激活程度明顯高于小劑量Dex,然而α受體拮抗劑育亨賓有效地阻斷了這個(gè)作用。最近的研究證實(shí),cAMP-PKA通路可抑制AMPK,PKA抑制劑H89可有效增加AMPK的活性[33],Dex能夠抑制PKA的產(chǎn)生。因此,推測(cè)Dex可激活A(yù)MPK,通過(guò)抑制PKA的產(chǎn)生減輕MCAO術(shù)后的炎性反應(yīng),降低炎性因子的水平。

綜上所述,Dex可激活α受體通過(guò)AMPK/SIRT1通路抑制炎性因子生成,減輕腦損傷發(fā)揮神經(jīng)保護(hù)作用。但是,目前的研究仍存在一定的局限性:首先,Dex的劑量有待進(jìn)一步研究,包括缺血后及靜脈注射劑量;其次,Dex對(duì)AMPK/SIRT1下游的激活的機(jī)制尚不清楚。今后的研究中將進(jìn)一步探討。

[參考文獻(xiàn)]

[1] 丁潔,朱濤.圍術(shù)期腦卒中危險(xiǎn)因素的研究進(jìn)展[J].醫(yī)學(xué)綜述,2014,20(2):268-270.

[2] 朱慧琛,何征宇,王祥瑞.右美托咪啶的神經(jīng)保護(hù)作用及其臨床應(yīng)用[J].上海醫(yī)學(xué),2012,35(8):722-725.endprint

[3] Kuhmonen J,Haapalinna A,Sivenius J. Effects of Dexmedetomidine after transient and permanent occlusion of the middle cerebral artery in the rat [J]. J Neural Transm(Vienna),2001,108(3):261-271.

[4] Ding XD,Zheng NN,Cao YY,et al. Dexmedetomidine pre?conditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest [J]. Int J Neurosci,2016, 126(3):249-256.

[5] Rajakumaraswamy N,Ma D,Hossain M,et al. Neuroprotective interaction produced by xenon and Dexmedetomidine on in vitro and in vivo neuronal injury models [J]. Neurosci Lett,2006,409(2):128-133.

[6] Chi OZ,Grayson J,Barsoum S,et al. Effects of Dexmede?tomidine on microregional O2 balance during reperfusion after focal cerebral ischemia [J]. J Stroke Cerebrovasc Dis,2015,24(1):163-170.

[7] Wang Z,Kou D,Li Z,et al. Effects of propofol-Dexme?detomidine combination on ischemia reperfusion-induced cerebral injury [J]. Neuro Rehabilitation,2014,35(4):825-834.

[8] Rodríguez-González R,Sobrino T,Veiga S,et al. Neuroprotective effects of Dexmedetomidine conditioning strategies:evidences from an in vitro model of cerebral ischemia [J]. Life Sci,2016,144:162-169.

[9] Trendelenburg G. Molecular regulation of cell fate in cerebral ischemia:role of the inflammasome and connected pathways [J]. J Cereb Blood Flow Metab,2014,34(12):1857-1867.

[10] 王云杰,侯卓然,廖紅,等.能量代謝信號(hào)通路對(duì)缺血性腦卒中神經(jīng)保護(hù)作用的研究進(jìn)展[J].藥學(xué)進(jìn)展,2014, 38(9):665-671.

[11] Yang Y,Zhang XJ,Li LT,et al. Apelin-13 protects against apoptosis by activating AMP-activated protein kinase pathway in ischemia stroke [J]. Peptides,2016,75:96-100.

[12] Ashabi G,Khalaj L,Khodagholi F,et al. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia [J]. Metab Brain Dis,2015,30(3):747-754.

[13] Ashabi G,Khodagholi F,Khalaj L,et al. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats:interference of AMPK/PGC-1α pathway [J]. Metab Brain Dis,2014, 29(1):47-58.

[14] Venna VR,Li J,Hammond MD,et al. Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke [J]. Eur J Neurosci,2014,39(12):2129-2138.

[15] Mulchandani N,Yang WL,Khan MM,et al. Stimulation of brain AMP-activated protein kinase attenuates inflammation and acute lung injury in sepsis [J]. Mol Med,2015, 21:637-644.endprint

[16] Belayev L,Alonso OF,Busto R,et al. Middle cerebral artery occlusion in the rat by intraluminal suture [J]. Stroke,1996,27(9):1616-1623.

[17] Longa EZ,Weinstein PR,Carlson S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke,1989,20(1):84-91.

[18] Sato K,Kimura T,Nishikawa T,et al. Neuroprotective effects of a combination of Dexmedetomidine and hypothermia after incomplete cerebral ischemia in rats [J]. Acta Anaesthesiologica Scandinavica,2010,54(3):377-382.

[19] Laudenbach V,Mantz J,Lagercrantz H,et al. Effects of α2-adrenoceptor agonists on perinatal excitotoxic brain injury comparison of Clonidine and Dexmedetomidine [J]. Anesthesiology,2002,96(1):134-141.

[20] Giacoppo S,Galuppo M,De Nicola GR,et al. Tuscan black kale sprout extract bioactivated with myrosinase:a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat [J]. BMC Complement Altern Med,2015, 15:397.

[21] Pandharipande PP,Sanders RD,Girard TD,et al. Effect of Dexmedetomidine versus lorazepam on outcome in patients with sepsis:an a priori-designed analysis of the MENDS randomized controlled trial [J]. Crit Care,2010, 14(2):R38.

[22] Sezer A,Memi[s][?] D,Usta U,et al. The effect of Dexme?detomidine on liver histopathology in a rat sepsis model:an experimental pilot study [J]. Ulus Travma Acil Cerrahi Derg,2010,16(2):108-112.

[23] Gao S,Wang Y,Zhao J,et al. Effects of Dexmedetomidine pretreatment on heme oxygenase-1 expression and oxidative stress during one-lung ventilation [J]. Int J Clin Exp Pathol,2015,8(3):3144-3149.

[24] Shou-Shi W,Ting-Ting S,Ji-Shun N,et al. Preclinical efficacy of Dexmedetomidine on spinal cord injury provoked oxidative renal damage [J]. Ren Fail,2015,37(7):1190-1197.

[25] Ren X,Ma H,Zuo Z,et al. Dexmedetomidine postconditioning reduces brain injury after brain hypoxia-ischemia in neonatal rats [J]. J Neuroimmune Pharmacol,2016,11(2):238-247.

[26] Falkowska A,Gutowska I,Goschorska M,et al. Energy metabolism of the brain,including the cooperation between astrocytes and neurons,especially in the context of glycogen metabolism [J]. Int J Mol Sci,2015,16(11):25 959-25 981.

[27] Sun Y,Jiang C,Jiang J,et al. Dexmedetomidine protects mice against myocardium ischemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway [J]. Clin Exp Pharmacol Physiol,2017,44(9):946-953.endprint

[28] Cheng YF,Young GH,Lin JT,et al. Activation of AMP-activated protein kinase by adenine alleviates TNF-alpha-induced inflammation in human umbilical vein endothelial Cells [J]. PLoS One,2015,10(11):e0 142 283.

[29] Tian Y,Ma J,Wang W,et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver [J]. Mol Cell Biochem,2016,422(1-2):75-84.

[30] Yoshizaki T,Milne JC,Imamura T,et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes [J]. Molecular and cellular biology,2009, 29(5):1363-1374.

[31] Lv H,Wang L,Shen J,et al. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats [J]. Brain Res Bull,2015,115:30-36.

[32] He L,Chang E,Peng J,et al. Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production [J]. J Biol Chem,2016,291(20):10 562-10 570.

[33] Gu XY,Liu BL,Zang KK,et al. Dexmedetomidine inhibits Tetrodotoxin-resistant Na.sub.v 1.8 sodium channel activity through G i/o-dependent pathway in rat dorsal root ganglion neurons [J]. Mol Brain,2015,8(1):15.

(收稿日期:2017-10-08 本文編輯:李岳澤)endprint

猜你喜歡
右美托咪啶腦缺血炎癥
脯氨酰順?lè)串悩?gòu)酶Pin 1和免疫炎癥
歡迎訂閱《感染、炎癥、修復(fù)》雜志
歡迎訂閱《感染、炎癥、修復(fù)》雜志
右美托咪啶劑量對(duì)誘導(dǎo)插管期老年高血壓患者血流動(dòng)力學(xué)的影響
原花青素對(duì)腦缺血再灌注損傷后腸道功能的保護(hù)作用
血必凈對(duì)大鼠腦缺血再灌注損傷的保護(hù)作用及其機(jī)制
細(xì)胞外組蛋白與腦缺血再灌注損傷關(guān)系的初探
炎癥小體與腎臟炎癥研究進(jìn)展
黃芪抗腦缺血再灌注損傷的作用機(jī)制