国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

直流電機(jī)驅(qū)動(dòng)農(nóng)用履帶機(jī)器人軌跡跟蹤自適應(yīng)滑模控制

2018-03-09 05:41:59王文周王謨仕辜麗川李鄭濤
關(guān)鍵詞:驅(qū)動(dòng)輪履帶位姿

焦 俊,陳 靖,喬 焰,王文周,王謨仕,辜麗川,李鄭濤

?

直流電機(jī)驅(qū)動(dòng)農(nóng)用履帶機(jī)器人軌跡跟蹤自適應(yīng)滑??刂?/p>

焦 俊,陳 靖,喬 焰,王文周,王謨仕,辜麗川※,李鄭濤

(安徽農(nóng)業(yè)大學(xué)信息與計(jì)算機(jī)學(xué)院,合肥 230036)

為了提高農(nóng)用履帶機(jī)器人軌跡跟蹤控制的性能,將履帶機(jī)器人模型視為由電機(jī)驅(qū)動(dòng)方程和運(yùn)動(dòng)方程組成的級(jí)聯(lián)系統(tǒng),在考慮了履帶機(jī)器人運(yùn)動(dòng)學(xué)模型和電機(jī)驅(qū)動(dòng)模型動(dòng)態(tài)特性的基礎(chǔ)上,構(gòu)建了一種變傾斜參數(shù)的自適應(yīng)積分滑模切換函數(shù),基于這個(gè)函數(shù)設(shè)計(jì)了由等效控制和切換控制組成的自適應(yīng)滑??刂疲瑢C(jī)器人的位姿誤差以及在線辨識(shí)的驅(qū)動(dòng)電機(jī)時(shí)變不確定參數(shù)反饋至控制器中,計(jì)算出左右輪驅(qū)動(dòng)電機(jī)的期望角速度,控制履帶機(jī)器人運(yùn)行。田間試驗(yàn)結(jié)果表明,當(dāng)機(jī)器人分別以1,3,4 m/s速度運(yùn)行時(shí),在運(yùn)動(dòng)方向距離誤差、側(cè)向距離誤差和航向角的誤差分別在-0.04~0.04 m,-0.09~0.07 m和-0.03~0.05 rad范圍內(nèi)。因此,基于電機(jī)驅(qū)動(dòng)的機(jī)器人自適應(yīng)滑??刂凭哂辛己玫目刂凭?,能夠滿足田間實(shí)際作業(yè)的要求。

機(jī)器人;滑??刂疲贿\(yùn)動(dòng)學(xué);自適應(yīng);位姿誤差;積分滑模面;級(jí)聯(lián)系統(tǒng)

0 引 言

隨著農(nóng)用履帶機(jī)器人(agricultural tracked robot, ATR)的廣泛應(yīng)用,對(duì)機(jī)器人系統(tǒng)的自適應(yīng)性、控制的精確性和運(yùn)動(dòng)的平穩(wěn)性都提出了更高的要求。然而農(nóng)田地形復(fù)雜,環(huán)境多變,加上ATR系統(tǒng)本身存在的強(qiáng)耦合和模型不確定的特性,使得ATR控制系統(tǒng)的設(shè)計(jì)與使用難度增大。為此,國(guó)內(nèi)外學(xué)者對(duì)其進(jìn)行了深入研究,有的學(xué)者提出了各種軌跡跟蹤控制,主要是利用運(yùn)動(dòng)學(xué)模型,或運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)結(jié)合的模型[1-3],有學(xué)者提出:線性反饋方法,PID控制法[4]、計(jì)算力矩法,反步法[5]、滑??刂芠6-7]、神經(jīng)網(wǎng)絡(luò)控制法[8]、模糊控制[9]等。其中線性反饋方法是一種常用的控制方法,由于ATR模型是非線性的,因此控制精度較低;PID控制,由于其控制參數(shù)固定,對(duì)于非線性和結(jié)構(gòu)不確定系統(tǒng)的控制效果較差[10-11];計(jì)算力矩法依賴于被控對(duì)象的動(dòng)力學(xué)模型,而動(dòng)力學(xué)建模本身就十分復(fù)雜,且構(gòu)建困難,因此該方法的理論和實(shí)踐意義不大;神經(jīng)網(wǎng)絡(luò)法雖然能夠克服系統(tǒng)的不確定性和未知擾動(dòng),但控制算法復(fù)雜;模糊控制不需要建立精確的數(shù)學(xué)模型,適合非線性時(shí)變、滯后系統(tǒng)的控制,但模糊規(guī)則的選擇缺乏系統(tǒng)性,難以在線調(diào)整[12-14];反步法中運(yùn)用了虛擬控制量,同時(shí)進(jìn)行迭代求導(dǎo),使得控制器結(jié)構(gòu)十分復(fù)雜,工程實(shí)現(xiàn)難度較大。農(nóng)田環(huán)境的復(fù)雜性使得ATR運(yùn)動(dòng)過程中具有諸多不確定性[15-16],比如:參數(shù)攝動(dòng)和負(fù)載擾動(dòng)以及傳感器的測(cè)量誤差,都會(huì)引起ATR運(yùn)行軌跡偏離參考路徑。常規(guī)的控制方法難以滿足高精度軌跡跟蹤控制要求。

滑模變結(jié)構(gòu)控制具有快速瞬態(tài)響應(yīng)的魯棒性,不依賴被控對(duì)象精確的數(shù)學(xué)模型、對(duì)參數(shù)和環(huán)境變化不敏感和工程實(shí)現(xiàn)簡(jiǎn)單的優(yōu)點(diǎn)[17-18],因此適用于農(nóng)田環(huán)境的機(jī)器人的控制。

本文將ATR視為由電機(jī)驅(qū)動(dòng)方程和車體運(yùn)動(dòng)學(xué)方程組成的級(jí)聯(lián)系統(tǒng),從控制策略角度出發(fā),構(gòu)建變傾斜參數(shù)的自適應(yīng)積分滑模切換函數(shù),基于這個(gè)函數(shù)提出基于等效控制和切換控制的自適應(yīng)滑模跟蹤控制,以機(jī)器人的速度,在線辨識(shí)所得的驅(qū)動(dòng)電機(jī)時(shí)變不確定參數(shù)以及在運(yùn)動(dòng)學(xué)方程中求取的與目標(biāo)位姿的誤差反饋至驅(qū)動(dòng)方程的控制器中,然后根據(jù)運(yùn)動(dòng)學(xué)關(guān)系,分解各個(gè)電機(jī)的期望速度,進(jìn)而實(shí)現(xiàn)機(jī)器人的穩(wěn)定運(yùn)動(dòng)控制。

1 機(jī)器人的位姿誤差模型與電機(jī)驅(qū)動(dòng)模型分析

1.1 履帶機(jī)器人軌跡跟蹤模型

為了描述ATR實(shí)際運(yùn)動(dòng)軌跡和參考軌跡間的誤差,構(gòu)建了慣性坐標(biāo)系和xoy的跟蹤坐標(biāo)系,ATR的位姿由其質(zhì)心在慣性坐標(biāo)系坐標(biāo)系中的位置及航向來表示,其中(,)為機(jī)器人質(zhì)心在坐標(biāo)系中的坐標(biāo),為ATR運(yùn)動(dòng)方向和軸的夾角[19-20],驅(qū)動(dòng)輪半徑為。ATR的模型如圖1,ATR的運(yùn)動(dòng)學(xué)模型為公式(1),描述了ATR位姿與兩驅(qū)動(dòng)輪間的約束關(guān)系,ATR的位姿誤差如圖2所示。

注 :p為ATR的幾何中心;Oa為ATR質(zhì)心;2A為兩輪間距離,m;θ為機(jī)器人的航向角,rad;v為機(jī)器人的前進(jìn)速度,m?s-1;ω為機(jī)器人車體的轉(zhuǎn)動(dòng)角速度,rad?s-1;vL和vR分別為左右輪的線速度,m?s-1;d為質(zhì)心Oa與幾何中心p之間的距離,m。

注: xboayb為跟蹤坐標(biāo)系;xe和ye分別為xb軸和yb軸向誤差,θe為航向角誤差。

1.2 直流電機(jī)驅(qū)動(dòng)模型

ATR的驅(qū)動(dòng)執(zhí)行器是直流電機(jī),在不同的路況下,根據(jù)不同的控制目標(biāo),多驅(qū)動(dòng)電機(jī)協(xié)調(diào)轉(zhuǎn)動(dòng),驅(qū)動(dòng)ATR運(yùn)動(dòng),因此ATR的運(yùn)動(dòng)控制應(yīng)該是多電機(jī)的協(xié)調(diào)控制。

右左履帶驅(qū)動(dòng)輪的直流電機(jī)方程如式(4)-式(7),式(4)和式(6)分別為右、左輪驅(qū)動(dòng)電機(jī)的力矩平衡方程[21-22],式(5)和式(7)分別為右、左輪驅(qū)動(dòng)電機(jī)的電勢(shì)平衡方程。

式中為電樞電感,h;為電樞電阻,Ω;J(),J()分別為右驅(qū)動(dòng)輪和左驅(qū)動(dòng)輪電機(jī)軸上的轉(zhuǎn)動(dòng)慣量,kg/m2;為電機(jī)輸出軸上的黏性摩擦系數(shù);k為電磁轉(zhuǎn)矩系數(shù),N?m/A;k為反電勢(shì)系數(shù),且k=0.104 72k,N?m/A;T()和T()分別是右驅(qū)動(dòng)電機(jī)和左驅(qū)動(dòng)電機(jī)受到的干擾力矩,N?m;i()和i()為分別是右驅(qū)動(dòng)電機(jī)和左驅(qū)動(dòng)電機(jī)的電樞電流,A;ω()和ω()分別是右驅(qū)動(dòng)輪和左驅(qū)動(dòng)輪電機(jī)軸轉(zhuǎn)動(dòng)的角速度,rad/s。u(),u()分別為右,左電機(jī)的控制電壓,V。

由于驅(qū)動(dòng)電機(jī)為機(jī)器人的執(zhí)行機(jī)構(gòu),響應(yīng)速度快,若忽略電樞回路的電感[23-24],則化簡(jiǎn)后的右輪和左輪驅(qū)動(dòng)電機(jī)的動(dòng)態(tài)方程分別為式(8)和式(9)。

2 ATR控制系統(tǒng)設(shè)計(jì)

針對(duì)軌跡跟蹤控制問題,在分析機(jī)器人運(yùn)動(dòng)學(xué)模型和電機(jī)驅(qū)動(dòng)模型的基礎(chǔ)上,構(gòu)建基于變sigmoid的積分切換函數(shù),在這基礎(chǔ)上,設(shè)計(jì)ATR的自適應(yīng)滑模控制(adaptive sliding mode control,ASMC),控制系統(tǒng)結(jié)構(gòu)如圖3所示。

注: S1為基于xe的切換函數(shù),S2為基于θe的切換函數(shù)。

根據(jù)電機(jī)驅(qū)動(dòng)模型和機(jī)器人運(yùn)動(dòng)學(xué)模型關(guān)系,將在線辨識(shí)的驅(qū)動(dòng)電機(jī)時(shí)變不確定參數(shù),以及在運(yùn)動(dòng)學(xué)方程中求取的位姿誤差反饋至滑??刂破髦?,分解各個(gè)電機(jī)的期望角速度,實(shí)現(xiàn)對(duì)履帶機(jī)器人的穩(wěn)定跟蹤控制。

2.1 切換函數(shù)的設(shè)計(jì)

針對(duì)式(3)所描述模型的多輸入、非線性特點(diǎn),設(shè)計(jì)基于變傾斜參數(shù)sigmoid滑模切換函數(shù)[25-27]式(10),這樣在出現(xiàn)較大誤差的情況下,能夠限制積分項(xiàng)的作用,使系統(tǒng)不出現(xiàn)過大的超調(diào)[28-29]。

2.2 滑模控制律設(shè)計(jì)

對(duì)式(10)求導(dǎo)可得,

將式(3)帶入式(12),得式(13)

令式(13)等于0,得到等效控制式(14)

式中U是等效控制。令切換控制為

式中U為切換控制,1,2為均為大于0的切換增益;sat( )是飽和函數(shù);Δ1,Δ2為決定邊界層的厚度,若取值較大,增強(qiáng)了抗抖振能力,降低了控制精度;若取值較小,可以提高控制精度,但易引起抖振。

2.3 驅(qū)動(dòng)控制

由電機(jī)驅(qū)動(dòng)模型式(8)可得

把式(20)帶入式(8)可得式(21)。

將式(21)帶入式(19),得右驅(qū)動(dòng)輪輸出的角速度ω()。

同理,可以在線獲得:

3 仿真及結(jié)果分析

3.1 基于ASMC與SMC的階躍信號(hào)響應(yīng)特性分析

設(shè)置初始值為0,最大值為20 rad的階躍信號(hào),分別采用ASMC和指數(shù)趨近律的滑??刂疲╯liding mode control,SMC)對(duì)階躍信號(hào)進(jìn)行仿真控制,結(jié)果如圖4所示。

圖4 ASMC和SMC的階躍響應(yīng)曲線

由圖4a可知,在ASMC調(diào)節(jié)下,角速度響應(yīng)曲線較平滑,系統(tǒng)在0.375 s達(dá)到穩(wěn)定狀態(tài),驅(qū)動(dòng)輪輸出角速度的終止值為20 rad/s,角速度跟蹤誤差減小趨近于0;而SMC調(diào)節(jié)下,系統(tǒng)需要0.75 s才能達(dá)到穩(wěn)定狀態(tài),且有抖振現(xiàn)象。從圖4b可知,與SMC比較,ASMC輸出電壓曲線較光滑,抖振幅值不大于0.01 V。這是由于滑模切換函數(shù)中變傾斜參數(shù)積分項(xiàng)的飽和特性,在系統(tǒng)出現(xiàn)較大誤差的情況時(shí),能夠限制積分項(xiàng)作用,使系統(tǒng)不出現(xiàn)過大的超調(diào);而切換控制采用了式(15),運(yùn)用飽和函數(shù)sat(?),削弱抖振的影響。

3.2 基于ASMC的軌跡跟蹤控制

以ATR為控制對(duì)象,運(yùn)用ASMC,對(duì)折線和圓軌跡進(jìn)行跟蹤控制。

3.2.1 折線軌跡的跟蹤控制

圖5 折線軌跡跟蹤結(jié)果及誤差曲線

由圖5c可知,左右驅(qū)動(dòng)輪電機(jī)具有較快的響應(yīng)速度,達(dá)到期望角速度20 rad/s后,角速度比較光滑和平穩(wěn),表明ASMC輸出穩(wěn)定,可以使系統(tǒng)快速收斂,滿足ATR的準(zhǔn)確,快速軌跡跟蹤及定位。

3.2.2 圓軌跡的跟蹤控制

以半徑為10 m的圓形軌跡為仿真路徑,參考軌跡為:=10cos,=10sin,軌跡初始位姿為[10,0,π/2]T,ATR的初始位姿為[7,0,π/2]T,左右驅(qū)動(dòng)輪角速度都從0開始,分別達(dá)到10 rad/s,30 rad/s后,ATR以2 m/s速度逆時(shí)針方向運(yùn)行,仿真時(shí)間0<<32 s。圖6a為圓周運(yùn)動(dòng)軌跡跟蹤結(jié)果,圖6b為跟蹤誤差曲線;圖6c為左右驅(qū)動(dòng)輪角速度響應(yīng)曲線。

圖6 圓軌跡跟蹤結(jié)果

4 野外農(nóng)田環(huán)境下的測(cè)試分析

為進(jìn)一步驗(yàn)證ASMC的正確性和有效性,運(yùn)用自主研制的ATR進(jìn)行野外控制試驗(yàn),以基于S3C2440的嵌入式系統(tǒng)為控制器硬件。試驗(yàn)地面條件是沙瓤土和雜草混雜的農(nóng)田,現(xiàn)場(chǎng)如圖7所示。

圖7 試驗(yàn)中履帶機(jī)器人

將慣導(dǎo)SPAN-CPT作為ATR狀態(tài)信息的接收設(shè)備,安裝在ATR上,信息更新率是10 Hz,速度精度是0.01 m/s,角度精度是0.02 rad,位置測(cè)量精度是0.01 m,ATR跟蹤的軌跡路徑見式(24)。

ATR運(yùn)行速度為2 m/s,ATR其他參數(shù)的設(shè)定如同第3節(jié)。履帶機(jī)器人的初始位姿為

初始位姿指令為

初始位姿誤差為

圖8a為農(nóng)用履帶機(jī)器人在采用ASMC控制方法時(shí)的軌跡跟蹤結(jié)果,除初始位置和跟蹤軌跡曲率變化較大的區(qū)域,其他軌跡較為平滑。圖8b是這種控制方法控制下所產(chǎn)生的誤差曲線。從圖8b中可以發(fā)現(xiàn),在ATR運(yùn)動(dòng)的初始階段,由于ATR初始位姿與初始命令位姿不一致,使得初始位姿誤差較大,在39~50和79~90 s期間,由于路徑曲率變化較大,機(jī)械轉(zhuǎn)向幅度較大,ATR受到的側(cè)滑和離心力影響也較為嚴(yán)重,引起較大的位姿誤差,所產(chǎn)生的x,y,θ誤差范圍分別為:?0.03 m≤x≤0.04 m,?0.08 m≤y≤0.06 m,?0.03 rad≤θ≤0.05 rad。ATR運(yùn)行在曲率變化較小的區(qū)域時(shí),跟蹤軌跡十分平滑,實(shí)際運(yùn)行軌跡與參考軌跡之間的誤差較小,趨近于0。

圖8 曲線軌跡跟蹤結(jié)果

表1列出在相同的試驗(yàn)條件,不同的運(yùn)行速度,對(duì)同一軌跡跟蹤時(shí)產(chǎn)生的誤差。由表1可知,當(dāng)履帶機(jī)器人分別以1,3和4 m/s速度運(yùn)行時(shí),x軸向的最小距離誤差是-0.04 m,最大距離誤差是0.04 m;y軸向的最小距離誤差是-0.09 m, 最大距離誤差是0.07 m;航向角θ最小誤差是-0.03 rad,最大誤差是0.05 rad??梢娨訟TR為控制對(duì)象,本文所建立的ASMC對(duì)曲線和直線組合的參考軌跡的跟蹤效果較好,具有較好的穩(wěn)定性好。由于試驗(yàn)設(shè)備條件限制,目前,ATR試驗(yàn)速度都比較低,高速和惡劣環(huán)境下的ASMC性能試驗(yàn)將是下一階段的主要研究工作。

表1 低速條件下的軌跡跟蹤位姿誤差

5 結(jié) 論

本文將農(nóng)用履帶機(jī)器人(Agricultural Tracked Robot, ATR)視為由電機(jī)驅(qū)動(dòng)方程和車體運(yùn)動(dòng)學(xué)方程組成的級(jí)聯(lián)系統(tǒng),設(shè)計(jì)了基于電機(jī)驅(qū)動(dòng)的農(nóng)用履帶機(jī)器人自適應(yīng)滑??刂?,得出以下結(jié)論:

2)ATR在農(nóng)田分別以1,3和4 m/s速度運(yùn)行的試驗(yàn)結(jié)果表明,在x軸向的最小距離誤差是?0.04 m,最大距離誤差是0.04 m;y軸向的最小距離誤差是?0.09 m,最大距離誤差是0.07 m;航向角θ最小誤差是?0.03 rad,最大誤差是0.05 rad。

本研究表明ASMC能夠滿足ATR田間作業(yè)的實(shí)際需求。

[1] Jiao Jun, Zhang Youhua, Sun Li, et al. A sliding parameter estimation method based on UKF for agricultural tracked robot[C]//2014, 2ndInternational Conference on Systems and Informatics, Shanngh, China, 15-17, 11, 2014: 270-275.

[2] Temel T, Ashrafiuon H. Sliding mode speed controller for tracking of under actuated surface vessels with extended kalman filter[J]. Electronics Letters, 2015, 51(6): 467-269.

[3] Blazic S. A noval trajectory tracking control law for wheeled mobile robots[J]. Robotics and Autonomous Systems, 2011, 59(11): 1001-1007.

[4] 焦俊,陳無畏,王繼先,等. 基于RBF在線辨識(shí)的AGV轉(zhuǎn)向單神經(jīng)元PID控制[J]. 儀器儀表學(xué)報(bào),2008,29(7):1431-1435.

Jiao Jun, Chen Wuwei, Wang Jixian, et al. Single neuron pid control of agv steering system based on RBF neural network on-line identification[J]. Chinese Journal of Scientific Instrument, 2008, 29(7): 1431-1435. (in Chinese with English abstract)

[5] Adib Yaghmaie Farnaz, Bakhshande Fateme, Taghirad Hamid D. Feedback error learning control of trajectory tracking of nonholonomic mobile robot[C]//ICEE2012, 20thIranian Conference on Electrical Engineering, 2012: 889-893.

[6] Mehrjerdi H, Zhang Y, Saad M. Adaptive exponential sliding mode control for dynamic tracking of a nonholonomic mobile robot[C]//International Conference on Intelligent Robotics and Applications, 2012: 643-652.

[7] Asif M, Khan M J, Cai N. Adaptive sliding mode dynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking[J]. International Journal of Control, 2014, 87(5): 964-975.

[8] Huang Jiangshuai, Wen Changyun, Wang Wei, et al.Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance[J]. System & Control Letters, 2013, 62: 234-241.

[9] 焦俊,孔文,王強(qiáng),等. 基于輸入模糊化的農(nóng)用履帶機(jī)器人自適應(yīng)滑模控制[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):14-19,13.

Jiao Jun, Kong Wen, Wang Qiang, et al. Self-adaptive sliding mode control based on input fuzzy for agricultural tracked robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 14-19, 13. (in Chinese with English abstract)

[10] 張京,陳度,王書茂,等. 農(nóng)用輪式機(jī)器人四輪獨(dú)立轉(zhuǎn)向驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):63-70.

Zhang Jing, Chen Du, Wang Shumao, et al. Design and experiment of four-wheel independent steering driving and control system for agricultural wheeled robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 63-70. (in Chinese with English abstract)

[11] 熊中剛,葉振環(huán),賀娟,等. 基于免疫模糊 PID 的小型農(nóng)業(yè)機(jī)械路徑智能跟蹤控制[J]. 機(jī)器人,2015,37(2):212-223.

Xiong Zhonggang, Ye Zhenhuan, He Juan, et al. Small agricultural machinery path intelligent tracking control based on fuzzy immune pid[J]. Robot, 2015, 37(2): 212-223. (in Chinese with English abstract)

[12] 鄭澤偉,霍偉,諸兵. 非完整移動(dòng)機(jī)器人全局路徑跟蹤控制[J]. 控制理論與應(yīng)用,2012,29(6):741-746.

Zheng Zewei, Huo Wei, Zhu Bing. Global path-following control for nonholonomic mobile robot[J]. Control Theory & Applications, 2012, 29(6): 741-746. (in Chinese with English abstract)

[13] Chen C Y, Li T H S, Yeh Y C, et al. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots[J]. Mechatronics, 2009, 19(2): 156-166.

[14] 白曉平,胡靜濤,高雷,等. 農(nóng)機(jī)導(dǎo)航自校正模型控制方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):1-7.

Bai Xiaoping, Hu Jingtao, Gao Lei, et al. Self-tuning model control method for farm machine navigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 1-7. (in Chinese with English abstract)

[15] Takai R, Yang Liangliang, Noguchi N. Development of a crawler-type robot tractor using RTK-GPS and IMU[J]. Engineering in Agriculture,Environment and Food, 2014, 7(4): 143-147.

[16] Manorathna R P, Phairatt P, Ogun P, et al. Feature extraction and tracking of a weld joint for adaptive robotic welding[C]//13th International Conference on Control, Automation, Robotics & Vision. Piscataway, USA: IEEE, 2014: 1368-1372.

[17] Chen Z, Kong M, Ji C, et al. An efficient dynamic modelling approach for high-speed planar parallel manipulator with flexible links[J]. Journal of Mechanical Engineering Science, 2015, 229(4): 663-678.

[18] Ghasemi Masood, Nersesov Sergey G, Clayton Garrett. Sliding mode coordination control for multiagent systems with under actuated agent dynamics[J]. International Jouranl of Control, 2014, 97(12): 2615-2633.

[19] 焦俊,汪宏喜,陳祎瓊,等. 基于UKF的農(nóng)用履帶機(jī)器人滑動(dòng)參數(shù)的估計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(4):55-60.

Jiao Jun, Wang Hongxi, Chen Yiqiong, et al. Estimating sliding parameters of agricultural tracked robot based on UKF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 55-60. (in Chinese with English abstract)

[20] 張鐵民,黃翰,黃鵬煥. 電動(dòng)輪式移動(dòng)小車控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):11-18.

Zhang Tiemin, Huang Han, Huang Penghuan. Design and test of drive and control system for electric wheeled mobile car[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 11-18. (in Chinese with English abstract)

[21] 王春燕,崔滔文,趙萬忠,等. 基于理想傳動(dòng)比的主動(dòng)前輪轉(zhuǎn)向控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):85-90.

Wang Chunyan, Cui Taowen, Zhao Wanzhong, et al. Active front wheel steering control based on ideal transmission ratio[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 85-90. (in Chinese with English abstract)

[22] 劉子龍,胡少凱,劉潔,等. 非完整移動(dòng)機(jī)器人在線辨識(shí)級(jí)聯(lián)路徑跟隨控制[J]. 系統(tǒng)仿真學(xué)報(bào),2015,27(11):2748-2755.

Liu Zilong, Hu Shaokai, Liu Jie, et al. On line identification path following cascade control of non-holonomic mobile robot[J]. Journal of System Simulation, 2015, 27(11): 2748-2755. (in Chinese with English abstract)

[23] Chen X Q, Li J T. Sliding mode control for uncertain unified chaotic systems with nonlinear inputs[J]. Journal of Control Engineering, 2017, 24(1): 239-242.

[24] Liem D T, Truong D Q, Ahn K K. A torque estimator using online tuning grey fuzzy pid for application to torque- sensorless control of DC motors[J]. Mechatronics, 2015, 26(2): 45-63.

[25] Wang Z Y, Li Y D, Zhu L. Dual adaptive neural sliding mode control of non-holonomic mobile robot[J]. Journal of Mechanical Engineerin, 2010, 46(23): 16-22.

[26] Zuo Z Y. Non-singular fixed-time terminal sliding model control of nonlinear systems[J]. Control Theory and Applications, 2015, 9(4): 545-552.

[27] Xu S D, Chen C C, Wu Z L. Study of nonsingular fast terminal sliding mode fault tolerant control[J]. IEEE Trans on Industrial Electronics, 2015, 62(6): 3906-3913.

[28] Tin Lili, Qian Huihuan, Xu Yangsheng. Omnidirectional steering interface and control for a four-wheel independent steering vehicle[C]//Transactions on Mechatronics. America: IEEE/ASME, 2010: 329-338.

[29] 高為炳. 變結(jié)構(gòu)控制的理論及設(shè)計(jì)方法[M]. 北京:科學(xué)出版社,1996:34-36.

[30] Sharp R S, Peng H. Vehicle dynamics applications of optimal control theory[J]. Vehicle System Dynamic, 2011, 49(7): 1073-1111.

Adaptive sliding mode control of trajectory tracking based on DC motor drive for agricultural tracked robot

Jiao Jun, Chen Jing, Qiao Yan, Wang Wenzhou, Wang Moshi, Gu Lichuan※, Li Zhengtao

(230036,)

In order to improve the performance of trajectory tracking control for agricultural tracked robot (ATR) in which the geometrical center does not coincide with the centroid, this paper comparatively analyzes the performance of all kinds of control methods for ATR, such as PID (proportion, integral, derivative) control, sliding mode control (SMC), neural network control method. The ATR model is regarded as a cascade system consisting of the drive motor equations and the mobile ATR kinematics equations. Through analyzing both the kinematic model of ATR and the unique features of motor driven model, this paper establishes a motor driven model and a posture error model which is based on tracking coordinate system and inertial coordinate system. And then a sliding mode control module and an integral sliding mode switching function (ISMSF) are proposed as well. Furthermore, this paper develops an adaptive sliding mode control (ASMC) based on ISMSF, which is composed of equivalent control and nonlinear switch control. The ASMC can feed back the position and orientation error as well as the time-varying parameters of the driven equation to the controller, based on which it can calculate the expected angular velocities of the left and right driving wheels and drive ATR to smoothly run. The simulation results show that under adaptive sliding control, the angular velocity for drive wheel can reach the ideal value in 0.375 s, while the common sliding mode control requires 0.75 s to achieve a relatively stable state with chattering phenomenon. Besides, when the biggish pose error appears in the system, ASMC can limit the integral function to keep the system from too large overshoot; when the less pose error appears in the system on the other hand, ASMC will prevent the system from chattering. Especially, when ATR tracks the fold line path, the initial position for the target trajectory is [0, 0, π/4]T, the velocity for ATR is 2 m/s, and the initial position for ATR starts from [-2, -2, π/4]T, the pose error for ATR can converge to 0 in a relatively short period of time, the tracking error for ATR ranges from 0 to 0.04 m along the distance error in the direction of motion, and from -0.07 to 0.07 m along the lateral distance error, and the heading error ranges from -0.02 to 0.045 rad; when ATR tracks the circular path (where the curvature is always changing), the initial position for target trajectory is [10, 0, π/2]T, the initial position for ATR starts from [7, 0, π/2]T, and both the left and right driving wheel angular velocities start from 0, ASMC can adjust the output control in time, and output the angular velocity of left and right driving wheels smoothly, which make the posture error for ATR approach to 0, and ensure that ATR can never become divorced from the reference trajectory. Through experiments in the field, the results show that: When ATR tracks the combination trajectory of curve and slash paths, ATR runs at speed of 1, 3, and 4 m/s, the tracking error for ATR ranges from -0.04 to 0.04 m along the distance error in the direction of motion, and from -0.09 to 0.07 m along the lateral distance error, and the heading error rangesfrom -0.03 to 0.05 rad, which enable the actual ATR trajectory to follow the desired route smoothly. Thus adaptive sliding mode control based on DC (direct current) motor drive for ATR can achieve promising tracking performance, and satisfy the requirements of the farmland works. All results verify the effectiveness and correctness of the control method.

robots; sliding mode control (SMC); kinematics; adaptive; position and orientation error; integral sliding surface; cascaded system

2017-10-09

2018-01-28

國(guó)家自然科學(xué)基金(No. 31671589,No.31371533,No.3177167);省重大攻關(guān)項(xiàng)目(No.15czz03131)

焦 俊,教授,博士,主要從事機(jī)器人及物聯(lián)網(wǎng)研究。Email:jiaojun2000@sina.com

辜麗川,教授,博士,主要從事智能計(jì)算研究。Email:gulichuan@ahau.edu.cn

10.11975/j.issn.1002-6819.2018.04.008

S24; TP242.6

A

1002-6819(2018)-04-0064-07

焦 俊,陳 靖,喬 焰,王文周,王謨仕,辜麗川,李鄭濤.直流電機(jī)驅(qū)動(dòng)農(nóng)用履帶機(jī)器人軌跡跟蹤自適應(yīng)滑??刂芠J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):64-70.doi:10.11975/j.issn.1002-6819.2018.04.008 http://www.tcsae.org

Jiao Jun, Chen Jing, Qiao Yan, Wang Wenzhou, Wang Moshi, Gu Lichuan, Li Zhengtao. Adaptive sliding mode control of trajectory tracking based on DC motor drive for agricultural tracked robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 64-70. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.008 http://www.tcsae.org

猜你喜歡
驅(qū)動(dòng)輪履帶位姿
說說防滑鏈和履帶
基于正交試驗(yàn)的整車驅(qū)動(dòng)輪滾動(dòng)阻力因素分析
電驅(qū)動(dòng)輪輪轂設(shè)計(jì)及有限元分析
用履帶收割機(jī)送柴油
管外爬行機(jī)器人驅(qū)動(dòng)輪動(dòng)力特性與模態(tài)分析
一種新型掘進(jìn)機(jī)行走驅(qū)動(dòng)輪設(shè)計(jì)方案
基于I-DEAS的履帶起重機(jī)主機(jī)有限元計(jì)算
基于共面直線迭代加權(quán)最小二乘的相機(jī)位姿估計(jì)
基于CAD模型的單目六自由度位姿測(cè)量
小型四旋翼飛行器位姿建模及其仿真
桃源县| 安岳县| 阜城县| 榕江县| 老河口市| 咸丰县| 新巴尔虎右旗| 西丰县| 冕宁县| 乡宁县| 民县| 屏东市| 正镶白旗| 拉萨市| 改则县| 大化| 额敏县| 泽库县| 阿拉尔市| 若羌县| 冕宁县| 年辖:市辖区| 阿拉善盟| 连山| 武功县| 西峡县| 常山县| 鹤庆县| 嘉兴市| 大关县| 江油市| 新绛县| 拉萨市| 怀来县| 公安县| 沁水县| 泗阳县| 政和县| 岳阳县| 化德县| 亚东县|