国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

多巴胺檢測方法研究進(jìn)展

2018-03-12 00:38黃啟同林小鳳胡世榮祝杰記佟慶笑
關(guān)鍵詞:納米材料檢出限選擇性

黃啟同,林小鳳,胡世榮,祝杰記,佟慶笑*,

(1.汕頭大學(xué)化學(xué)系,汕頭 515063;2.漳州職業(yè)技術(shù)學(xué)院食品與生物工程系,漳州 363000;3.閩南師范大學(xué)化學(xué)與環(huán)境學(xué)院,漳州 363000)

作為兒茶酚胺類神經(jīng)遞質(zhì)的一種,多巴胺(Dopamine,DA,3,4-二羥基-β-苯乙胺)在中樞神經(jīng)、心血管、腎臟和內(nèi)分泌系統(tǒng)中扮演著重要的角色[1-3].2000年諾貝爾醫(yī)學(xué)獎獲得者——Carlsson曾指出:DA不只是甲狀腺素和去甲腎上腺素的前驅(qū),而且還是腦內(nèi)信息傳遞者[4].因此,多巴胺含量的大小影響著人們的思考、工作、運(yùn)動等行為[5-6].人體血液中多巴胺的正常質(zhì)量濃度0.2-0.4 μg·mL-1,人體血液中DA的質(zhì)量濃度過低時(shí)將會引發(fā)許多疾病如精神分裂癥、心臟衰竭、帕金森癥、神經(jīng)肌肉失調(diào)等[7-8].反之,體內(nèi)DA含量增多時(shí),會使人感到開心、興奮,容易讓人上癮,喝酒、吸煙、吸毒等都可以促進(jìn)DA的分泌,因此,酒鬼,煙民和癮君子等一般都受DA的控制,與其體內(nèi)的DA含量有關(guān)[9-10].除此之外,作為藥物的一種,DA可以作用于交感神經(jīng)系統(tǒng),對其產(chǎn)生一些影響,如心率加快、排血量增加、血壓升高和心肌收縮力增強(qiáng)等,因此,DA常常被用于治療抑郁癥、心肌梗死、腎功能衰竭、休克以及內(nèi)毒素?cái)⊙Y等疾病[11-12].因此,DA的含量與一些疾病有著密切相關(guān),高靈敏、簡單地檢測DA的濃度對于生理功能研究和臨床疾病診斷具有重要應(yīng)用價(jià)值.

隨著生命科學(xué)、生物工程及藥物工程的快速發(fā)展,對生物分子、藥物小分子的快速、靈敏、準(zhǔn)確檢測成為現(xiàn)代生物學(xué)、醫(yī)學(xué)、化學(xué)等領(lǐng)域的重要研究課題.由于DA含量的測定在臨床應(yīng)用和生理功能研究方面都具有重要的意義,截至目前,有許多的研究方法和手段為DA的檢測做出了巨大的貢獻(xiàn).

1 熒光光譜法

熒光光譜法具有操作簡單且快速、靈敏等優(yōu)點(diǎn),在分析領(lǐng)域得到了廣泛地應(yīng)用[13-14].Lin等[15]開發(fā)了以一個(gè)基于DNA-Ag納米粒子的熒光探針,該探針可以高靈敏性、高選擇性地檢測DA(圖1),該方法是在DNA-Ag材料中加入基因染料Genefinder(GF)和DA分子,DA分子與銀納米粒子結(jié)合,破壞了DNA-Ag結(jié)構(gòu),使DNA得以與GF作用,從而使整個(gè)體系的熒光增強(qiáng),而沒有DA存在時(shí),DNA-Ag體系的熒光信號很弱.該探針的檢出限達(dá)到了6.0 nmol/L.Zhang等[16]通過間苯二酚與DA之間的快速反應(yīng)(5 min),且其反應(yīng)產(chǎn)物具有很強(qiáng)的熒光信號,從而實(shí)現(xiàn)對DA的測定.檢測范圍為10 nmol/L-20 μmol/L,檢出限達(dá)到了1.8 nmol/L,該熒光傳感器已成功應(yīng)用于對尿液中DA含量的測定.眾所周知,零維的量子點(diǎn)因其量子尺寸效應(yīng),導(dǎo)致其具有優(yōu)異的熒光發(fā)光性能[17-18],所以作為零維量子點(diǎn)的代表碳量子點(diǎn)(CDs)和石墨烯量子點(diǎn)(GQDs)已被廣泛地應(yīng)用于DA的測定.Liu等[19]通過3-氨基苯硼酸制備出了量子產(chǎn)率達(dá)到67%的B、N摻雜的CDs(B-N-CDs),通過B-N-CDs表面的-NH2以及-B(OH)2與DA表面的-OH作用,成功實(shí)現(xiàn)對DA的測定,該方法的檢出限達(dá)到了0.1 pmol/L.Zhou等[20]以聚吡咯/石墨烯量子點(diǎn)(ppy/GQDs)核殼材料為發(fā)光劑,相比于普通的GQDs,該復(fù)合材料熒光強(qiáng)度是其3倍多,通過DA和GQDs間的靜電和堆積作用,實(shí)現(xiàn)對DA的測定,其檢測范圍可達(dá)5-8000 nmol/L,檢出限達(dá)到了10 pmol/L.表1總結(jié)了近年來部分通過熒光法測定DA的報(bào)道[15,16,19-27].

熒光光譜法的檢測靈敏度較高,但仍存在熒光淬滅效應(yīng)、散射光的干擾等問題.同時(shí),用于復(fù)雜體系中的DA測定是比較困難.

圖1 DNA-Ag納米粒子檢測DA的反應(yīng)機(jī)理[15]

表1 熒光傳感器測定DA

2 高效液相色譜法

高效液相色譜法(HPLC)是集分離、定性、定量為一體的分析方法,該方法可以用于分離分析多種共存物質(zhì),因此也常被用于DA及其類似物的檢測[28-30].Tsunoda等[28]采用HPLC分離分析DA和3,4-二羥基苯乙酸(DOPAC)的濃度,并成功地測出小老鼠體內(nèi)的DA和DOPAC的濃度分別為(4.98±0.66)μmol/L和(1.00±0.11)μmol/L.Chen等[29]在HPLC上加上一個(gè)光電二極管陣列,用來分離檢測我國國內(nèi)的草本植物馬齒莧中的去甲腎上腺素(NA)和DA的含量,與標(biāo)準(zhǔn)液對比結(jié)果良好.同時(shí),二者的檢測范圍分別為0.004-6.00 μg和0.011-8.25 μg,檢出限分別達(dá)到了0.40 ng和0.55 ng.Ribeiro等[30]使用HPLC-質(zhì)譜/質(zhì)譜聯(lián)用儀,成功實(shí)現(xiàn)了對左旋多巴、甲基多巴肼、恩他卡朋、托卡朋、3-甲氧酪氨酸和DA的同時(shí)測定,該方法具有很高的選擇性和靈敏性(檢出限達(dá)7.0 ng·mL-1).

雖然HPLC在混合物的分離、分析中體現(xiàn)了明顯的優(yōu)勢,但是HPLC方法的分析成本高,液相色譜儀價(jià)格及日常維護(hù)費(fèi)用高,分析時(shí)間一般比較長.

3 毛細(xì)管電泳法

毛細(xì)管電泳法(CE)對于混合物質(zhì)的檢測與分離具有分離時(shí)間短、分離效率高、系統(tǒng)體積小且易實(shí)現(xiàn)不同操作單元的集成等優(yōu)點(diǎn),因此,該方法也得到了廣大研究人員的青睞[31].馬健等[32]開發(fā)了用CE法測定豬尿中DA殘留量的方法.在波長為214 nm處,分離電壓為15 kV,進(jìn)樣時(shí)間為20 s,分離時(shí)間為12 min,pH=5.04的醋酸—醋酸鈉緩沖液下運(yùn)行實(shí)現(xiàn)DA的完全分離.同時(shí)其最低檢測限為0.05 μg·mL-1.Thabano等[33]以Si納米-異丁烯酸作為填充柱材料來提高對DA等的離子交換能力,從而提高CE法檢測DA的靈敏度.Fang等[34]將Pd納米粒子修飾于碳纖維微盤電極表面,并通過CE法成功測定單個(gè)大鼠嗜鉻細(xì)胞瘤細(xì)胞中DA的含量.Zhao等[35]通過CE與電化學(xué)發(fā)光聯(lián)用法(CE-CL)同時(shí)檢測DA和腎上腺素.在這項(xiàng)研究中,CdTe量子點(diǎn)加入到CE的電泳緩沖溶液中來促建CL中魯米諾和H2O2的反應(yīng),以增強(qiáng)CE的信號,達(dá)到檢測的目的,該方法對于DA和腎上腺素的檢出限分別達(dá)到23 nmol/L和9.3 nmol/L.

CE法中的毛細(xì)管柱效高,成本低,操作較為簡便,但是分離能力較弱,對pH值要求較高,而且更為關(guān)鍵的是該方法的重現(xiàn)性差.

4 比色法

比色法無需通過精密的設(shè)備,可直接用肉眼觀察顏色變化并結(jié)合其它儀器如紫外可見分光光度計(jì)、熒光光譜儀或者顏色處理軟件來測定相關(guān)組分濃度,具有經(jīng)濟(jì)、快速等優(yōu)點(diǎn)[36].Liu等[8]開發(fā)出一種新型的AuNRs-Ag+非聚集比色傳感器檢測DA的新方法,該方法的檢測范圍為6.5-65 μmol/L,檢出限為0.3 μmol/L,而且該方法已經(jīng)成功被應(yīng)用于血液中DA含量的測定,其反應(yīng)的機(jī)理為:DA與Ag+作用釋放出Ag0納米粒子,之后與AuNRs反應(yīng)形成Au@Ag納米材料,使得體系的顏色發(fā)生變化.Leng等[37]將DA修飾于金納米粒子表面(DA-AuNPs),在堿性溶液中,通過巰基乙酸的水解產(chǎn)物作為交聯(lián)劑,使得DA-AuNPs發(fā)生聚集導(dǎo)致體系顏色變化,從而實(shí)現(xiàn)對DA的測定,該方法在水中、尿液中和血液中的檢出限分別達(dá)到33 nmol/L、0.1 μmol/L和94 nmol/L.Tao等[38]基于BSA-金納米簇(BSA-AuNCs)復(fù)合材料,制備出一個(gè)簡單的熒光-比色雙通道檢測器,該檢測器可以高靈敏地檢測DA的含量.其機(jī)理如圖2所示,BSA-AuNCs溶液熒光發(fā)射很強(qiáng),而當(dāng)DA加入時(shí),DA通過靜電吸附于BSA-AuNCs表面,使體系的熒光強(qiáng)度減弱,從而實(shí)現(xiàn)熒光光譜檢測;此外,DA與BSA-AuNCs作用后,體系的顏色也隨著DA的濃度而發(fā)生改變,因此,也可以通過視覺觀察來確定其濃度,檢出限為10 nmol/L.Wen等[39]使用β-環(huán)糊精-Au納米粒子作為光信號源,制備出DA紫外-比色傳感器,該方法的檢出限達(dá)到20 nmol/L.

比色法雖然方便、快捷,但是其準(zhǔn)確度不高且靈敏度不好,并且提高準(zhǔn)確度還需要借助其它儀器進(jìn)一步分析.

圖2 BSA-AuNCs與DA的作用機(jī)理[38]

5 電化學(xué)分析方法

電化學(xué)分析方法具有操作簡便、靈敏度高、選擇性好等優(yōu)點(diǎn),同時(shí),其還可以對活體進(jìn)行分析,這一優(yōu)勢是其它方法都無法比擬的[40-45].由于DA具有良好的電化學(xué)響應(yīng)性能,在電流作用下,其分子中苯環(huán)上的羥基被氧化生成醌,之后醌會被還原回去,從而實(shí)現(xiàn)電化學(xué)方法檢測.但是,由于抗壞血酸(AA)和尿酸(UA)與DA共存于大腦和體液中,在裸電極上三者的氧化電位相近,容易對DA的檢測造成干擾[46-48].因此,在直接電化學(xué)檢測時(shí),必須考慮AA與UA對DA檢測的影響.同時(shí),電化學(xué)分析方法雖然快速簡單但其穩(wěn)定性還不夠好,因此,在過去的幾十年時(shí)間里,大量的研究人員通過不斷開發(fā)與改進(jìn)電極修飾材料,以進(jìn)一步更加準(zhǔn)確地、靈敏地、穩(wěn)定地檢測DA的含量.目前,常見的用于DA檢測的電極修飾材料有有機(jī)膜材料和納米材料兩種.

5.1 有機(jī)膜材料

5.1.1 有機(jī)聚合物膜

聚合物膜修飾電極具有良好的選擇性、穩(wěn)定性和重現(xiàn)性[49-51],同時(shí),具備導(dǎo)電性能好、化學(xué)性能穩(wěn)定等優(yōu)勢,此類修飾電極在DA的電化學(xué)檢測中也得到廣泛的應(yīng)用.

Wu等[52]用β-環(huán)糊精-聚(N-異丙基丙烯酰胺)(β-CD-PNIPAM)修飾電極來檢測DA的含量,由于β-CD-PNIPAM具有包容特性,其與DA之間能夠通過氫鍵作用,提高了對DA檢測的靈敏度、選擇性和穩(wěn)定性;通過用微分脈沖伏安法(DPV),對于DA濃度檢測范圍為0.1-60 μmol/L,檢測極限為3.34 nmol/L.該課題組也使用了聚乙二醇單甲醚[53]檢測DA,結(jié)果表明,該聚合物對于DA的檢測具有很好的靈敏度和穩(wěn)定性.Zhang等[54]在石墨烯表面修飾上聚(四苯基卟啉亞鐵)和聚(4-苯乙烯磺酸鈉)實(shí)現(xiàn)了在高濃度的UA和AA的溶液中對于DA的測定,且檢出限達(dá)到了5.73 nnmol/L.Silva等[55]將聚烯丙胺鹽酸鹽與金納米粒子作為平臺固定漆酶,通過該復(fù)合材料的特定催化作用,使用方波伏安法(SWV)實(shí)現(xiàn)對DA的測定,其測定范圍為0.49-23.0 μmol/L,檢出限達(dá)0.26 μmol/L.Vasantha等[56]將聚3,4-乙撐二氧噻吩(PEDOT)聚合物修飾于玻碳電極上,并用于DA的檢測.在PEDOT中,由于S原子與AA的陰離子之間存在靜電吸引作用,使得AA的氧化峰電位向低電位移動,雖然其與DA陽離子之間的作用為靜電排斥,但是由于DA與PEDOT間存在著作用而部分抵消,其氧化峰并無明顯移動,這樣通過利用AA與DA兩者的氧化峰電位不同,來實(shí)現(xiàn)二者的同時(shí)檢測.Sheng等[57]通過一種低成本的電沉積方法,成功制備了PEDOT摻雜非水溶性離子液體1-乙基-3-甲基咪唑雙三氟甲磺酰亞胺鹽的復(fù)合材料.直接電聚合沉積法,大大減少了實(shí)驗(yàn)中所需的昂貴的離子液體的用量,大大降低了實(shí)驗(yàn)成本.實(shí)驗(yàn)結(jié)果顯示該復(fù)合材料的導(dǎo)電率高、性能穩(wěn)定,而且呈現(xiàn)出高度的納米微孔結(jié)構(gòu),對DA具有良好的電化學(xué)催化活性,其檢測限低至51 nmol/L.

雖然聚合物膜修飾電極為檢測DA濃度的發(fā)展中起了重要的推動作用,但是有些聚合物的合成過程復(fù)雜,有些聚合物還具有一定的毒性,對環(huán)境會造成一定的污染.

5.1.2 Nafion膜

Nafion膜(全氟磺酸質(zhì)子交換膜)是典型的陽離子交換膜,其具有優(yōu)良的離子交換特性,同時(shí)其具備優(yōu)異的電化學(xué)性能、良好的化學(xué)性質(zhì)和機(jī)械穩(wěn)定性[58-60].由于Nafion膜存在陽離子傳遞通道,有利于DA分子的擴(kuò)散,同時(shí)可以抵消部分中性分子和陰離子,這樣就大大縮短了體系的響應(yīng)時(shí)間.同時(shí),由Nafion膜修飾電極之后,傳感器對AA和UA的響應(yīng)靈敏度隨著吸附時(shí)間的增加而逐漸降低,而對于DA的響應(yīng)則逐漸增大,因此,Nafion修飾電極對DA的檢測具備良好的選擇性和高的靈敏度[61].Zhou等[62]直接將Nafion涂于微電極表面,使得微電極表面產(chǎn)生屏障,這樣就可以抑制干擾物質(zhì)擴(kuò)散到電極表面,而對于DA,其在親水區(qū)域可以通過陽離子通道富集于電極表面,從而達(dá)到選擇性地富集DA的作用,提高對DA濃度檢測的靈敏性和選擇性.Hou等[63]通過EDTA與石墨烯鍵合之后,再跟Nafion作用,并修飾于電極表面(EDTA-rGO-Nafion),由于Nafion膜具有陽離子通道,且EDTA-rGO復(fù)合材料表面帶有負(fù)電荷及其與DA之間能夠形成作用,這樣就有利于選擇性地檢測DA,而避免了AA的干擾.其檢測范圍為0.2-25 μmol/L,檢出限達(dá)到0.01 μmol/L.Quan等[64]使用Nafion/單壁碳納米管/聚3-甲基噻吩修飾波碳電極(NF/SWCNT/PMT/GCE)在高濃度的AA和UA存在的情況下實(shí)現(xiàn)對DA進(jìn)行檢測,結(jié)果表明,在1.0 mmol/L AA和1.0 mmol/L UA存在時(shí),使用DPV對DA濃度進(jìn)行檢測,其濃度范圍分別在1.5-20 μmol/L和20-120 μmol/L之間呈現(xiàn)出良好的線性關(guān)系,同時(shí)該方法可用于實(shí)際血液的檢測.Hsieh等[65]將立方Pd納米粒子沉積于還原石墨烯表面(rGO-Pd-NCs),之后將該材料與Nafion混合作用,制備出rGO-Pd-NCs/Nafion納米復(fù)合材料,并修飾于玻碳電極表面,基于該材料對DA的優(yōu)異選擇性,實(shí)現(xiàn)對DA的測定,檢出限達(dá)到了7.0 μmol/L.Tyszczuk-Rotko等[66]制備硼摻雜金剛石納米粒子,并通過Nafion和Pb2+作用,制備出性能良好的納米電極膜,該電極可以同時(shí)測定人體尿液和血液中的DA和對乙酰氨基酚,對于DA和乙酰氨基酚的檢出限達(dá)到54 nmol/L和140 nmol/L.

總之,Nafion膜作為電極修飾材料在DA檢測方面體現(xiàn)出明顯的優(yōu)勢,不過Nafion的價(jià)格會相對比較昂貴.

5.2 納米材料

5.2.1 碳納米材料

由于碳納米材料具有多種多樣的形態(tài)和獨(dú)特的性質(zhì)(良好的導(dǎo)電導(dǎo)熱性、高的比表面積、穩(wěn)定的化學(xué)和機(jī)械性質(zhì)等),使得其在電、磁、光、熱、力學(xué)、機(jī)械等方面得到廣泛的應(yīng)用,同時(shí)碳納米材料在材料科學(xué)、生命科學(xué)以及化學(xué)分析等領(lǐng)域的應(yīng)用研究中.也起著非常重要的作用[67-73].如今,碳納米材料廣泛地被用于電極表面修飾,表2顯示了一些碳納米材料所修飾的電極在DA的檢測方面所做出的許多貢獻(xiàn)[74-97].

表2 基于碳納米材料電化學(xué)傳感器測定DA

Britto等[98]利用溴仿作為粘合劑首次將碳納米管修飾于電極表面,并用該電極研究DA的氧化行為,通過循環(huán)伏安曲線表明了DA在碳納米管電極上可以進(jìn)行可逆的氧化還原反應(yīng).Li等[89]使用碳納米管(CNTs)與鈦鐵試劑摻雜的聚吡咯(PPy)層層組裝與電極表面,制備出PPy-CNTs電極.由于摻雜了負(fù)離子,該修飾電極對DA的檢測具備靈敏度高、選擇性好的優(yōu)點(diǎn).在最優(yōu)化條件下用方波伏安法檢測多巴胺,該修飾電極檢測范圍為0.02-100.0 μmol/L,檢測限為3 nmol/L.該修飾電極具備背景電流小,重現(xiàn)性好的特點(diǎn),對多巴胺的檢測具有良好的抗干擾能力.Gao等[91]將氧化石墨烯(GO)通過共價(jià)固定法固定于玻碳電極(GCE)表面,該電極在大濃度AA的環(huán)境下實(shí)現(xiàn)對DA的檢測,主要是由于DA分子較易與GO通過堆積或者靜電作用提高電化學(xué)響應(yīng).由于AA不能與GO產(chǎn)生作用,同時(shí)二者之間存在電子排斥作用,從而導(dǎo)致AA電信號消失,因此,GO/GCE能在AA存在的情況下對DA實(shí)現(xiàn)高選擇性檢測.

本課題組基于CDs-殼聚糖(CDs-CS)復(fù)合材料,制備了靈敏、穩(wěn)定的新型DA電化學(xué)傳感器,因?yàn)镃Ds表面帶有-COOH官能團(tuán),其更易與帶正電荷的DA作用,同時(shí)可以排斥帶負(fù)電荷AA和UA的干擾,該傳感器的檢測范圍為0.1-30 μmol/L,檢出限達(dá)到11.2 nmol/L[92].之后我們又制備了Au@CDs[93]納米材料,由于Au納米粒子具有良好的導(dǎo)電性能,從而提高了DA傳感器的靈敏度.同時(shí),通過制備基于rGO-CDs納米復(fù)合材料的DA傳感器[94],利用rGO對DA良好的催化作用,提升了DA傳感器的靈敏度和選擇性.最近課題組制備出Cu2O-CDs納米復(fù)合材料,利用Cu2O優(yōu)異的催化性能,結(jié)合CDs的良好特性,成功實(shí)現(xiàn)了對血液中DA含量的測定(圖3)[95].本課題組也制備了核殼的Fe3O4@石墨烯(GR)復(fù)合材料用于DA的測定[96],其檢測范圍為0.020 μmol/L-130.0 μmol/L,檢出限達(dá)到了7 nmol/L.同時(shí)我們也制備了氮化碳-GO納米復(fù)合材料,實(shí)現(xiàn)了對DA、AA和UA的同時(shí)測定[97].

圖3 Cu2O-CDs測定DA的機(jī)理[95]

5.2.2 其它納米材料

與碳納米材料一樣,目前還有許多納米材料如納米金、納米氧化銅、納米氧化鋅等,它們具有導(dǎo)電性好、比表面積大等優(yōu)點(diǎn),可以提高現(xiàn)有分析方法的靈敏度.近年來越來越多的納米材料修飾電極被用于DA含量的檢測.

Liu等[99]合成二茂鐵硫醇鹽-Au@Fe3O4納米材料,并與石墨烯片/殼聚糖耦合(Fc-S-Au@Fe3O4/GS-CS),之后修飾于玻碳電極表面,該修飾電極中Fc-S-Au@Fe3O4和GS-CS都能使體系的信號得到增強(qiáng),雙重信號放大作用使得體系的靈敏度大大地增加(圖4),其可以實(shí)現(xiàn)對DA、AA、UA以及對乙酰氨基酚(AC)的同時(shí)檢測.四種物質(zhì)的檢測范圍分別為 0.5-50 μmol/L、4.0-400 μmol/L、1.0-300 μmol/L以及 0.3-250 μmol/L.檢出限分別為 0.1 μmol/L、1.0 μmol/L、0.2 μmol/L和 0.05 μmol/L.Xia 等[100]通過化學(xué)濕選法合成了花瓣?duì)畹募{米ZnO材料(f-ZnO),與傳統(tǒng)的納米ZnO相比,f-ZnO具有更大的比表面積以及更好的導(dǎo)電性.將f-ZnO修飾與電極表面,在AA高濃度存在的情況下,使用DPV檢測法實(shí)現(xiàn)了對DA的靈敏性檢測.其檢測范圍為0.11-180 μmol/L,檢出限達(dá)0.06 μmol/L.Reddy等[101]通過十六烷基三甲基溴化銨(CTAB)和十二烷基硫酸鈉(SDS)共同沉淀的方法合成了不同形狀的CuO納米粒子.之后制備SDS/聚甘氨酸/CuO納米薄片對電極進(jìn)行修飾(MCPE),結(jié)果顯示,MCPE電極在高濃度的AA(250倍)存在下,對于DA的檢測具有高的選擇性和靈敏性.He等[102]制備了鎳銅納米合金,基于該材料的修飾電極可對DA、AA、UA、鳥嘌呤(G)和腺嘌呤同時(shí)測定,其檢測范圍分別為0.25-40 μmol/L、20-2500 μmol/L、0.5-110 μmol/L、0.5-480 μmol/L 和 0.5-450 μmol/L,檢出限分別達(dá)到了 0.01 μmol/L、5 μmol/L、0.05 μmol/L、0.1 μmol/L和 0.1 μmol/L.該傳感器用于維生素C、多巴胺注入、尿液和DNA中相關(guān)分子的測定,結(jié)果顯示鎳銅納米合金在復(fù)雜的生物系統(tǒng)里,具備了優(yōu)異的測試性能.

圖4 Fc-S-Au@Fe3O4/GS-CS檢測DA的機(jī)理[99]

6 結(jié)論與展望

當(dāng)然,除了以上介紹的幾種方法外,還有電化學(xué)發(fā)光法[103-104],氣相色譜法[105],高效液相色譜-熒光聯(lián)用法[106]等方法可用于多巴胺含量的檢測.隨著臨床醫(yī)學(xué)的不斷發(fā)展,對DA分析方法的要求也將會更加苛刻,高靈敏度、高通量、高選擇性以及經(jīng)濟(jì)環(huán)保的分析方法仍然有待進(jìn)一步研究,因此,目前對DA傳感器的研究仍存在以下一些問題亟待解決:

(1)如何開發(fā)探討性能更高效、穩(wěn)定性更強(qiáng)、更加經(jīng)濟(jì)環(huán)保的方法用于DA的測定.

(2)合成新型的功能化材料,提升DA傳感器的靈敏性和選擇性.

(3)測定DA的機(jī)理研究還處于研究基礎(chǔ)階段,還有待深入.

(4)擴(kuò)大DA傳感器的應(yīng)用范圍(如:制成微電極,對活體內(nèi)的DA含量進(jìn)行實(shí)時(shí)檢測).

[1]CARR F.Dual role for dopamine[J].Nature Reviews Neuroscience,2016,17(1):2-3.

[2]SULZER D.How addictive drugs disrupt presynaptic dopamine neurotransmission[J].Neuron, 2011,69(4):628-649.

[3]XING F,HU X,JIANG J,et al.A meta-analysis of low-dose dopamine in heart failure[J].International Journal of Cardiology,2016,222:1003-1011.

[4]BENES F M.Carlsson and the discovery of dopamine[J].Trends in Pharmacological Sciences,2001,22(1):46-47.

[5]HAMID A A,PETTIBONE J R,MABROUK O S,et al.Mesolimbic dopamine signals the value of work[J].Nature Neuroscience,2016,19(1):117.

[6]LIANG L,WANG R,ZHANG Z.The effect of dopamine on working memory[J].Neural Processing Letters,2012,35(3):257-263.

[7]董鈺明,陳曉峰,李春蘭,等.微乳液電動毛細(xì)管色譜-激光誘導(dǎo)熒光法測定中藥和風(fēng)濕性心臟病患者血漿中的腎上腺素和多巴胺[J].蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,45(3):77-81.

[8]LIU J M,WANG X X,CUI M L,et al.A promising non-aggregation colorimetric sensor of AuNRs-Ag+for determination of dopamine[J].Sensors and Actuators B:Chemical,2013,176:97-102.

[9]VOLKOW N D,WANG G J,F(xiàn)OWLER J S,et al.Addiction:beyond dopamine reward circuitry[J].Proceedings of the National Academy of Sciences,2011,108(37):15037-15042.

[10]GEORGE O,LE M M,KOOB G F.Allostasis and addiction:role of the dopamine and corticotropinreleasing factor systems[J].Physiology and Behavior,2012,106(1):58-64.

[11]GRACE A A.Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression[J].Nature Reviews.Neuroscience,2016,17(8):524.

[12]BEAULIEU J M,GAINETDINOV R R.The physiology,signaling,and pharmacology of dopamine receptors[J].Pharmacological Reviews,2011,63(1):182-217.

[13]ZHANG H,HUANG Y,HU S,et al.Fluorescent probes for“off-on”sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets[J].Journal of Materials Chemistry C,2015,3(9):2093-2100.

[14]王永剛,楊光瑞,馬雪青,等.熒光光譜法和分子模擬技術(shù)研究考馬斯亮藍(lán)G-250與牛血清白蛋白的相互作用[J].光譜學(xué)與光譜分析,2017,37(8):2474-2479.

[15]LIN Y,YIN M,PU F,et al.DNA-templated silver nanoparticles as a platform for highly sensitive and selective fluorescence turn-on detection of dopamine[J].Small,2011,7(11):1557-1561.

[16]ZHANG X,ZHU Y,LI X,et al.A simple,fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction[J].Analytica Chimica Acta,2016,944:51-56.

[17]DU Y,GUO S.Chemically doped fluorescent carbon and graphene quantum dots for bioimaging,sensor, catalytic and photoelectronic applications[J].Nanoscale,2016,8(5):2532-2543.

[18]HOU Y,LU Q,DENG J,et al.One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion[J].Analytica Chimica Acta,2015,866:69-74.

[19]LIU X,HU X,XIE Z,et al.In situ bifunctionalized carbon dots with boronic acid and amino groups for ultrasensitive dopamine detection[J].Analytical Methods,2016,8(15):3236-3241.

[20]ZHOU X,MA P,WANG A,et al.Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids[J].Biosensors and Bioelectronics,2015,64:404-410.

[21]ZHU L,XU G,SONG Q,et al.Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite[J].Sensors and Actuators B:Chemical,2016,231:506-512.

[22]LIN F,GUI C,WEN W,et al.Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots[J].Talanta,2016,158:292-298.

[23]GUO X,WU F,NI Y,et al.Synthesizing a nano-composite of BSA-capped Au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection[J].Analytica Chimica Acta,2016,942:112-120.

[24]NIU S,F(xiàn)ANG Y,ZHANG K,et al.Determination of dopamine using the fluorescence quenching of 2,3-diaminophenazine[J].Instrumentation Science&Technology,2017,45(1):101-110.

[25]WANG L,MIAO H,ZHONG D,et al.Synthesis of dopamine-mediated Cu nanoclusters for sensing and fluorescent coding[J].Analytical Methods,2016,8(1):40-44.

[26]ZHAO J, ZHAO L, LAN C, et al.Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine[J].Sensors and Actuators B:Chemical,2016,223:246-251.

[27]TASHKHOURIAN J,DEHBOZORGI A.Determination of dopamine in the presence of ascorbic and uric acids by fluorometric method using graphene quantum dots[J].Spectroscopy Letters,2016,49(5):319-325.

[28]TSUNODA M,AOYAMA C,NOMURA H,et al.Simultaneous determination of dopamine and 3,4-dihydroxyphenylacetic acid in mouse striatum using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography[J].Journal of Pharmaceutical and Biomedical Analysis,2010,51(3):712-715.

[29]CHEN J,SHI Y P,LIU J Y.Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L.by high-performance liquid chromatography[J].Journal of Chromatography A,2003,1003(1):127-132.

[30]RIBEIRO R P,GASPARETTO J C,DE O V R,et al.Simultaneous determination of levodopa,carbidopa,entacapone,tolcapone,3-O-methyldopa and dopamine in human plasma by an HPLC MS/MS method[J].Bioanalysis,2015,7(2):207-220.

[31]AMINI A.Recent developments in chiral capillary electrophoresis and applications of this technique to pharmaceutical and biomedical analysis[J].Electrophoresis,2001,22(15):3107-3130.

[32]馬健,張明洲,李曉,等.高效毛細(xì)管電泳法用于豬尿中萊克多巴胺含量的測定[J].浙江農(nóng)業(yè)學(xué)報(bào),2006,18(5):333-336.

[33]THABANO J R E,BREADMORE M C,HUTCHINSON J P,et al.Silica nanoparticle-templated methacrylic acid monoliths for in-line solid-phase extraction-capillary electrophoresis of basic analytes[J].Journal of Chromatography A,2009,1216(25):4933-4940.

[34]FANG H,PAJSKI M L,ROSS A E,et al.Quantitation of dopamine,serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection[J].Analytical Methods,2013,5(11):2704-2711.

[35]ZHAO Y,ZHAO S,HUANG J,et al.Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J].Talanta,2011,85(5):2650-2654.

[36]LI S X,LIN X,ZHENG F Y,et al.Constituting fully integrated visual analysis system for Cu(II)on TiO2/cellulose paper[J].Analytical Chemistry,2014,86(14):7079-7083.

[37]LENG Y,XIE K,YE L,et al.Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum[J].Talanta,2015,139:89-95.

[38]TAO Y,LIN Y,REN J,et al.A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters[J].Biosensors and Bioelectronics,2013,42:41-46.

[39]WEN D,LIU W,HERRMANN A K,et al.Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles[J].Small,2016,12(18):2439-2442.

[40]LU P,LIU Q,XIONG Y,et al.Nanosheets-assembled hierarchical microstructured Ni(OH)2hollow spheresforhighlysensitive enzyme-free glucose sensors[J].Electrochimica Acta,2015,168:148-156.

[41]LU P,LEI Y,LU S,et al.Three-dimensional roselike α-Ni(OH)2assembled from nanosheet building blocks for non-enzymatic glucose detection[J].Analytica chimica acta,2015,880:42-51.

[42]LIU J,MORRIS M D,MACAZO F C,et al.The current and future role of aptamers in electroanalysis[J].Journal of the Electrochemical Society,2014,161(5):H301-H313.

[43]LIUJ,WAGANS,DáVILA-MORRISM,etal.Achievingreproducibleperformanceofelectrochemical,folding aptamer-based sensors on microelectrodes:challenges and prospects[J].Analytical chemistry,2014,86(22):11417-11424.

[44]JETT S E,BONHAM A J.Reusable electrochemical DNA biosensor for the detection of waterborne uranium[J].Chem Electro Chem,2017,4(4):843-845.

[45]WANG Y H,YU C M,GU H Y,et al.The hemoglobin-modified electrode with chitosan/Fe3O4nanocomposite for the detection of trichloroacetic acid[J].Journal of Solid State Electrochemistry,2016,20(5):1337-1344.

[46]CHANDRA U,SWAMY B E K,KUMAR M,et al.Simple flame etching of pencil electrode for dopamine oxidation in presence of ascorbic acid and uric acid[J].International Journal of Nanotechnology,2017,14(9/10/11):739-751.

[47]ZHANG H,DAI P,HUANG L,et al.A nitrogen-doped carbon dot/ferrocene@ β-cyclodextrin composite as an enhanced material for sensitive and selective determination of uric acid[J].Analytical Methods,2014,6(8):2687-2691.

[48]SAJID M,NAZAL M K,MANSHA M,et al.Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid:a review[J].TrAC Trends in Analytical Chemistry,2016,76:15-29.

[49]YU Y,YU C,YIN T,et al.Functionalized poly(ionic liquid)as the support to construct a ratiometric electrochemical biosensor for the selective determination of copper ions in AD rats[J].Biosensors and Bioelectronics,2017,87:278-284.

[50]BAGHAYERIM,ROUHIM,LAKOURAJ M M,et al.Bioelectrocatalysis of hydrogen peroxide based on immobilized hemoglobin onto glassy carbon electrode modified with magnetic poly(indole-co-thiophene)nanocomposite[J].Journal of Electroanalytical Chemistry,2017,784:69-76.

[51]KARIM-NEZHAD G,KHORABLOU Z,DORRAJI P S.Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/poly(l-arginine)in the presence of surfactant:application to discrimination and simultaneous electrochemical determination of dihydroxybenzene isomers[J].Journal of The Electrochemical Society,2016,163(7):B358-B365.

[52]WU Y,DOU Z,LIU Y,et al.Dopamine sensor development based on the modification of glassy carbon electrode with β-cyclodextrin-poly(N-isopropylacrylamide)[J].Rsc Advances,2013,3(31):12726-12734.

[53]WU Y,CUI L,LIU Y,et al.A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode[J].Analyst,2013,138(4):1204-1211.

[54]ZHANG B,WANG Y,LI M,et al.Graphene-supported poly[iron(II)tetraphenylporphyrin]hybrid fabricated by a solvothermally assistedassembly method and its application for the detection of dopamine[J].Journal of Electroanalytical Chemistry,2015,743:10-17.

[55]SILVA T R,VIEIRA I C.A biosensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride)and decorated with laccase for determination of dopamine[J].Analyst,2016,141(1):216-224.

[56]VASANTHA V S,CHEN S M.Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes[J].Journal of Electroanalytical Chemistry,2006,592(1):77-87.

[57]SHENG G,XU G,XU S,et al.Cost-effective preparation and sensing application of conducting polymerPEDOT/ionic liquid nanocomposite with excellentelectrochemicalproperties[J].RSC Advances,2015,5(27):20741-20746.

[58]WEI C,HUANG Q,HU S,et al.Simultaneous electrochemical determination of hydroquinone,catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode[J].Electrochimica Acta,2014,149:237-244.

[59]ER E, ?ELIKKAN H, ERK N.Highly sensitive and selective electrochemical sensor based on high-quality graphene/nafion nanocomposite for voltammetric determination of nebivolol[J].Sensors and Actuators B:Chemical,2016,224:170-177.

[60]YANY,HUANGQ,WEI C,et al.Microwave-assisted synthesis of carbon dots-zinc oxide/multi-walled carbon nanotubes and their application in electrochemical sensors for the simultaneous determination of hydroquinone and catechol[J].RSC Advances,2016,6(116):115317-115325.

[61]BOULKROUNE M,CHIBANI A,GENESTE F.Monocopper complex based on N-tripodal ligand immobilized in a Nafion@film for biomimetic detection of catechols:application to dopamine[J].Electrochimica Acta,2016,221:80-85.

[62]ZHOU S,LIU C,SONG Y,et al.Highly selective and sensitive determination of dopamine using nafion coated microelectrode arrays[J].Journal of Nanoscience and Nanotechnology,2013,13(2):1598-1601.

[63]HOU S,KASNER M L,SU S,et al.Highly sensitive and selective dopamine biosensor fabricated with silanized graphene[J].The Journal of Physical Chemistry C,2010,114(35):14915-14921.

[64]DAI L T,TRAM P T N,BINH N H,et al.Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene)glassy carbon electrodes[J].Colloids and Surfaces B:Biointerfaces,2011,88(2):764-770.

[65]HSIEH Y S,HONG B D,LEE C L.Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix[J].Microchimica Acta,2016,183(2):905-910.

[66]TYSZCZUK-ROTKO K,SADOK I.The new application of boron doped diamond electrode modified with nafion and lead films for simultaneous voltammetric determination of dopamine and paracetamol[J].Electroanalysis,2016,28(9):2178-2187.

[67]黃啟同,林小鳳,李飛明,等.碳量子點(diǎn)的合成與應(yīng)用[J].化學(xué)進(jìn)展,2015,27(11):1604-1614.

[68]郝玉翠,李艾.Pt-Fe(Ⅲ)/多壁碳納米管修飾電極測定亞硫酸根[J].中國測試,2015(7):41-45.

[69]HUANG Q,LIN X,ZHU J J,et al.Pd-Au@carbon dots nanocomposite:Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum[J].Biosensors and Bioelectronics,2017,94:507-512.

[70]YANG H,LI F,ZOU C,et al.Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide[J].Microchimica Acta,2017,184(7):2055-2062.

[71]HUANG Q,LIN X,LIN C,et al.Ultrasensitive-electrochemical sensor for the detection of luteolin in chrysanthemums and peanut shells using an Au/Pd/reduced graphene oxide nanofilm[J].Analytical Methods,2016,8(33):6347-6352.

[72]LI Q,HUANG Q,ZHU J J,et al.Carbon dots-quinoline derivative nanocomposite:facile synthesis and application as a“turn-off”fluorescent chemosensor for detection of Cu2+ions in tap water[J].RSC Advances,2016,6(90):87230-87236.

[73]胡小蔚,池凌飛,冼志科.錫摻雜氧化銦納米線的制備及場發(fā)射性能研究[J].汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,30(3):76-80.

[74]ZHU Q,BAO J,HUO D,et al.3D Graphene hydrogel-gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid,dopamine and uric acid[J].Sensors and Actuators B:Chemical,2017,238:1316-1323.

[75]EJAZ A,JOO Y,JEON S.Fabrication of 1,4-bis(aminomethyl)benzene and cobalt hydroxide@graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin[J].Sensors and Actuators B:Chemical,2017,240:297-307.

[76]RAJKUMAR C,THIRUMALRAJ B,CHEN S M,et al.A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine[J].Journal of Colloid and Interface Science,2017,487:149-155.

[77]NUMAN A,SHAHID M M,OMAR F S,et al.Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J].Sensors and Actuators B:Chemical,2017,238:1043-1051.

[78]LIU X,SHANGGUAN E,LI J,et al.A novel electrochemical sensor based on FeS anchored reduced graphene oxide nanosheets for simultaneous determination of dopamine and acetaminophen[J].Materials Science and Engineering:C,2017,70:628-636.

[79]RAJ M,GUPTA P,GOYAL R N,et al.Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine[J].Sensors and Actuators B:Chemical,2017,239:993-1002.

[80]GORLE D B,KULANDAINATHAN M A.Electrochemical sensing of dopamine at the surface of a dopamine grafted graphene oxide/poly(methylene blue)composite modified electrode[J].RSC Advances,2016,6(24):19982-19991.

[81]CHANG Z,ZHOU Y, HAO L,et al.Simultaneous determination of dopamine and ascorbic acid using β-cyclodextrin/Au nanoparticles/graphene-modified electrodes[J].Analytical Methods,2017,9(4):664-671.

[82]PANG P,YAN F,LI H,et al.Graphene quantum dots and Nafion composite as an ultrasensitive electrochemicalsensorforthe detection ofdopamine[J].AnalyticalMethods,2016,8(24):4912-4918.

[83]YANG C,GU B,ZHANG D,et al.Coaxial carbon fiber/ZnO nanorods as electrodes for the electrochemical determination of dopamine[J].Analytical Methods,2016,8(3):650-655.

[84]VINOTH V,WU J J,ANANDAN S.Sensitive electrochemical determination of dopamine and uric acid using AuNPs(EDAS)-rGO nanocomposites[J].Analytical Methods,2016,8(22):4379-4390.

[85]BABAEI A,SOHRABI M.Selective simultaneous determination of levodopa and acetaminophen in the presence of ascorbic acid using a novel TiO2hollow sphere/multi-walled carbon nanotube/poly-aspartic acid composite modified carbon paste electrode[J].Analytical Methods,2016,8(5):1135-1144.

[86]LI Y,GU Y,ZHENG B,et al.A novel electrochemical biomimetic sensor based on poly(Cu-AMT)with reduced graphene oxide for ultrasensitive detection of dopamine[J].Talanta,2017,162:80-89.

[87]VILIAN A T E,AN S,CHOE S R,et al.Fabrication of 3D honeycomb-like porous polyurethanefunctionalized reduced graphene oxide for detection of dopamine[J].Biosensors and Bioelectronics,2016,86:122-128.

[88]THANH T D,BALAMURUGAN J,LEE S H,et al.Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine[J].Biosensors and Bioelectronics,2016,81:259-267.

[89]LI J,LIU Y,WEI W,et al.Fabrication of tiron doped poly-pyrrole/carbon nanotubes on low resistance monolayer-modified glassy carbon electrode for selective determination of dopamine[J].Analytical Letters,2011,44(7):1226-1240.

[90]GOYAL R N,GUPTA V K,BACHHETI N,et al.Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a Fullerene-C60 coated gold electrode[J].Electroanalysis,2008,20(7):757-764.

[91]GAO F,CAI X,WANG X,et al.Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J].Sensors and Actuators B:Chemical,2013,186:380-387.

[92]HUANG Q,HU S,ZHANG H,et al.Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine[J].Analyst,2013,138(18):5417-5423.

[93]HUANG Q,ZHANG H,HU S,et al.A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film[J].Biosensors and Bioelectronics,2014,52:277-280.

[94]HU S,HUANG Q,LIN Y,et al.Reduced graphene oxide-carbon dots composite as an enhanced material forelectrochemicaldetermination ofdopamine[J].Electrochimica Acta,2014,130:805-809.

[95]HUANG Q,LIN X,LIN C,et al.A high performance electrochemical biosensor based on Cu2O-carbon dots for selective and sensitive determination of dopamine in human serum[J].RSC Advances,2015,5(67):54102-54108.

[96]ZHANG W, ZHENG J, SHI J, et al.Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine[J].Analytica Chimica Acta,2015,853:285-290.

[97]ZHANG H,HUANG Q,HUANG Y,et al.Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid,dopamine and uric acid[J].Electrochimica Acta,2014,142:125-131.

[98]BRITTO P J,SANTHANAM K S V,AJAYAN P M.Carbon nanotube electrode for oxidation of dopamine[J].Bioelectrochemistry and Bioenergetics,1996,41(1):121-125.

[99]LIU M,CHEN Q,LAI C,et al.A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid,dopamine,uric acid and acetaminophen based on a nanocompositeof ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet[J].Biosensors and Bioelectronics,2013,48:75-81.

[100]XIA C,WANG N,WANG L,et al.Synthesis of nanochain-assembled ZnO flowers and their application to dopamine sensing[J].Sensors and Actuators B:Chemical,2010,147(2):629-634.

[101]REDDY S,SWAMY B E K,JAYADEVAPPA H.CuO nanoparticle sensor for the electrochemical determination of dopamine[J].Electrochimica Acta,2012,61:78-86.

[102]HE W,DING Y,JI L,et al.A high performance sensor based on bimetallic NiCu nanoparticles for the simultaneous determination of five species of biomolecules[J].Sensors and Actuators B:Chemical,2017,241:949-956.

[103]FU X,TAN X,YUAN R, et al.A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II)complex[J].Biosensors and Bioelectronics,2017,90:61-68.

[104]XIN Y,LI Z,WU W,et al.Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain[J].Biosensors and Bioelectronics,2017,87:396-403.

[105]TIAN C Y,XU J J,CHEN H Y.Enhanced electrochemiluminescence of TiO2nanoparticles modified electrode by Nafion film and its application in selective detection of dopamine[J].Electroanalysis,2013,25(5):1294-1300.

[106]SARAJI M,SHAHVAR A.Selective micro solid-phase extraction of epinephrine,norepinephrine and dopamine from human urine and plasma using aminophenylboronic acid covalently immobilized on magnetic nanoparticles followed by high-performance liquid chromatography-fluorescence detection[J].Analytical Methods,2016,8(4):830-839.

猜你喜歡
納米材料檢出限選擇性
環(huán)境監(jiān)測結(jié)果低于最低檢出限數(shù)據(jù)統(tǒng)計(jì)處理方法
武器中的納米材料
定量NMR中多種檢出限評估方法的比較
納米材料在水基鉆井液中的應(yīng)用
納米材料在電化學(xué)免疫傳感器中的應(yīng)用
分析化學(xué)中檢出限與測定下限分析
可研可用 納米材料綻放光彩——納米材料分論壇側(cè)記
選擇性聽力
A practical approach to (2R,3R)-2,3- dimethoxy-1,1,4,4-tetraphenyl-1,4-diol
選擇性Bcl-2抑制劑ABT-199對乳腺癌細(xì)胞MDA-MB-231的放療增敏作用
勃利县| 牡丹江市| 繁峙县| 阳春市| 古丈县| 肥东县| 竹北市| 周宁县| 方山县| 大新县| 正蓝旗| 汨罗市| 甘谷县| 庆元县| 上蔡县| 张掖市| 扶余县| 新昌县| 广丰县| 安远县| 成武县| 奉新县| 枣庄市| 德州市| 定州市| 万源市| 台州市| 承德县| 察雅县| 顺昌县| 威信县| 馆陶县| 怀远县| 伊吾县| 大新县| 石景山区| 文昌市| 永宁县| 库尔勒市| 胶州市| 华容县|