林偉廷, 曹 娟
(1.國防科技大學(xué)信息通信學(xué)院, 湖北 武漢 430010;2.火箭軍指揮學(xué)院, 湖北 武漢 430017)
常規(guī)導(dǎo)彈作戰(zhàn)體系構(gòu)成要素多,各要素間信息交互關(guān)系復(fù)雜,是典型的復(fù)雜巨系統(tǒng),其作戰(zhàn)體系效能的發(fā)揮很大程度上依賴于作戰(zhàn)體系的同步能力。影響常規(guī)導(dǎo)彈作戰(zhàn)體系同步能力的因素較多,本文重點(diǎn)關(guān)注指揮信息流程這個(gè)關(guān)鍵因素對(duì)作戰(zhàn)體系同步效能的影響。
常規(guī)導(dǎo)彈作戰(zhàn)體系內(nèi)包含大量偵察情報(bào)單元、指揮控制單元和火力打擊單元等實(shí)體,如果將各類實(shí)體抽象為具有動(dòng)力學(xué)特性的節(jié)點(diǎn)V1,V2,…Vi,那么各實(shí)體之間的信息交互關(guān)系,則可以抽象為節(jié)點(diǎn)V1,V2,…Vi之間的連接邊E11,E12,…Eij?;谏鲜龀橄筮^程,常規(guī)導(dǎo)彈作戰(zhàn)體系則可以看作是由大量周期性變化振子按照一定拓?fù)浣Y(jié)構(gòu)組成的動(dòng)力學(xué)系統(tǒng)。
常規(guī)導(dǎo)彈作戰(zhàn)體系的同步效能受到認(rèn)知、信息和行動(dòng)等多個(gè)方面的影響,覆蓋戰(zhàn)役戰(zhàn)術(shù)等不同層面,因此對(duì)常規(guī)導(dǎo)彈作戰(zhàn)體系同步效能進(jìn)行評(píng)估時(shí),難以建立綜合全面的指標(biāo)體系覆蓋所有因素。為了簡(jiǎn)化建模的難度,參照相關(guān)研究成果的思路[1-2],選取時(shí)間作為主要特征參數(shù),從時(shí)間維度重點(diǎn)考察作戰(zhàn)體系內(nèi)不同指揮信息流程對(duì)作戰(zhàn)體系同步效能的影響。
本文將常規(guī)導(dǎo)彈作戰(zhàn)體系同步抽象為多周期振子耦合的復(fù)雜系統(tǒng)同步問題,利用經(jīng)典的Kuramoto同步模型對(duì)常規(guī)導(dǎo)彈作戰(zhàn)體系的同步過程進(jìn)行定量描述,進(jìn)而分析指揮信息流程模式對(duì)作戰(zhàn)體系同步效能影響,如圖1所示。首先,利用OODA模型描述作戰(zhàn)體系內(nèi)各節(jié)點(diǎn)的指揮活動(dòng)過程,將其區(qū)分為“觀察、判斷、決策、行動(dòng)”四種基本狀態(tài)。其次,假設(shè)作戰(zhàn)體系內(nèi)各個(gè)節(jié)點(diǎn)按照各自獨(dú)立的頻率四種狀態(tài)間不斷循環(huán),各節(jié)點(diǎn)通過指揮信息交互,調(diào)整各自周期實(shí)現(xiàn)整體同步。
在對(duì)常規(guī)導(dǎo)彈作戰(zhàn)同步過程進(jìn)行抽象的基礎(chǔ)上,進(jìn)一步提出建模的假設(shè)條件,并基于Kuramoto相振子模型構(gòu)建常規(guī)導(dǎo)彈作戰(zhàn)體系同步模型。
Kuramoto相振子模型利用相位方程對(duì)有限個(gè)振子組成的網(wǎng)絡(luò)動(dòng)態(tài)特性進(jìn)行描述,非常適合研究系統(tǒng)的同步問題。由于模型清晰簡(jiǎn)單,易于理解,在電力、軍事、社會(huì)等領(lǐng)域的復(fù)雜系統(tǒng)同步行為建模研究中得到廣泛應(yīng)用。
N維Kuramoto模型的數(shù)學(xué)描述為
(1)
式中,θi表示振子節(jié)點(diǎn)Vi的相位,ωi表示振子節(jié)點(diǎn)Vi的固有頻率,K表示耦合強(qiáng)度。當(dāng)兩個(gè)振子之間沒有耦合作用(K=0)時(shí),每個(gè)振子以自然頻率運(yùn)動(dòng),當(dāng)引入耦合后,振子之間會(huì)出現(xiàn)相同步,振子之間保持穩(wěn)定的相位差[3]。
對(duì)于振子網(wǎng)絡(luò)的同步能力利用參序量r(t)進(jìn)行衡量。參序量r(t)定義為
(2)
式中,φ(t)表示振子集合的相位平均值;θj表示網(wǎng)絡(luò)中節(jié)點(diǎn)Vj的相位;參序量r(t)描述網(wǎng)絡(luò)內(nèi)振子動(dòng)力學(xué)行為的一致性,用來衡量網(wǎng)絡(luò)整體同步程度,r(t)∈(0,1)。當(dāng)r(t)→0時(shí),表示整個(gè)網(wǎng)絡(luò)處于完全無序狀態(tài),當(dāng)r(t)→1時(shí),表示網(wǎng)絡(luò)實(shí)現(xiàn)整體同步。
假設(shè)條件一:將常規(guī)導(dǎo)彈作戰(zhàn)體系內(nèi)主要節(jié)點(diǎn)區(qū)分為情報(bào)單元、火力單元和指控單元三類。情報(bào)單元包括無人機(jī)、偵察衛(wèi)星、預(yù)警機(jī)等各類戰(zhàn)場(chǎng)偵察系統(tǒng)等;火力單元主要包括火力發(fā)射單元;指揮單元是具有作戰(zhàn)指揮職能的實(shí)體,如常規(guī)導(dǎo)彈旅等指揮機(jī)構(gòu)。
假設(shè)條件二:將常規(guī)導(dǎo)彈作戰(zhàn)體系內(nèi)各單元抽象為具有時(shí)間周期的節(jié)點(diǎn),各節(jié)點(diǎn)按照各自的頻率進(jìn)行著“偵察、判斷、決策、行動(dòng)”的OODA循環(huán)。其中,節(jié)點(diǎn)處在作戰(zhàn)體系內(nèi)的層級(jí)越高,其OODA周期越長;反之,其OODA周期較短。
假設(shè)條件三:節(jié)點(diǎn)之間的連接則表示作戰(zhàn)單元之間的信息交互關(guān)系,其連接強(qiáng)度由節(jié)點(diǎn)之間的信息交互頻率和信息量決定。信息交互越頻繁,連接強(qiáng)度越大,反之則越小。
基于上述的假設(shè)條件,在對(duì)常規(guī)導(dǎo)彈作戰(zhàn)體系進(jìn)行適度抽象和簡(jiǎn)化的基礎(chǔ)上,構(gòu)建常規(guī)導(dǎo)彈作戰(zhàn)體系同步模型如下。
(3)
式中,θi表示各節(jié)點(diǎn)Vi所處的OODA階段,θi∈[0,2π],按照固定頻率ωi勻速變化。將0~2π均分為4個(gè)象限,以相位所處象限表示節(jié)點(diǎn)Vi的OODA階段。當(dāng)θi∈[0,π/2)時(shí),表示節(jié)點(diǎn)Vi處于偵察情報(bào)獲取階段;當(dāng)θi∈[π/2,π)時(shí),表示節(jié)點(diǎn)Vi處于信息分析處理階段;當(dāng)θi∈[π,3π/2)時(shí),表示節(jié)點(diǎn)Vi處于決策計(jì)劃階段;當(dāng)θi∈[3π/2,2π)時(shí),表示節(jié)點(diǎn)Vi處于執(zhí)行任務(wù)階段,如圖2所示。
ωi表示節(jié)點(diǎn)Vi的固有頻率,與節(jié)點(diǎn)Vi的OODA周期成反比。ωi與節(jié)點(diǎn)Vi所處作戰(zhàn)體系的層級(jí),作戰(zhàn)指揮環(huán)境,以及節(jié)點(diǎn)自身信息處理效率等因素相關(guān)。通常,位于指揮體系底層的節(jié)點(diǎn),如常規(guī)導(dǎo)彈旅指揮所,完成OODA的循環(huán)速度較快,則ωi較大;而位于作戰(zhàn)體系高層的節(jié)點(diǎn),例如高層的常規(guī)導(dǎo)彈作戰(zhàn)指揮機(jī)構(gòu),完成一次OODA循環(huán)較慢,則ωi較小。
aij表示節(jié)點(diǎn)Vi和節(jié)點(diǎn)Vj之間的信息交互關(guān)系。當(dāng)aij=0時(shí),表示節(jié)點(diǎn)Vi和節(jié)點(diǎn)Vj之間不存在信息交互關(guān)系,當(dāng)aij=1時(shí),表示節(jié)點(diǎn)Vi和節(jié)點(diǎn)Vj之間存在信息交互關(guān)系。
kij表示節(jié)點(diǎn)Vi和節(jié)點(diǎn)Vj之間的信息耦合強(qiáng)度。在作戰(zhàn)體系同步的過程中,各節(jié)點(diǎn)之間通過信息交互,不斷調(diào)整自身頻率ωi,也就是加快或減慢相應(yīng)節(jié)點(diǎn)信息處理的速度。耦合強(qiáng)度kij通常受節(jié)點(diǎn)之間信息交互數(shù)量、交互頻率以及信息相關(guān)度等因素影響。kij越大,表示交互強(qiáng)度大;kij越小,表示交互強(qiáng)度弱。
N表示作戰(zhàn)體系內(nèi)節(jié)點(diǎn)的數(shù)量。
為了有效評(píng)估不同指揮信息流程控制模式對(duì)作戰(zhàn)體系同步能力的影響,論文將同步能力評(píng)估指標(biāo)r(t)定義為
(4)
式中,φ(t)表示作戰(zhàn)體系內(nèi)所有節(jié)點(diǎn)的相位平均值;θj(t)表示網(wǎng)絡(luò)中節(jié)點(diǎn)Vj處于OODA的具體階段;參序量r(t)描述作戰(zhàn)體系內(nèi)各節(jié)點(diǎn)的整體同步程度,r(t)∈(0,1),當(dāng)r(t)→0時(shí),表示整個(gè)作戰(zhàn)體系狀態(tài)處于無序狀態(tài),當(dāng)r(t)→1時(shí),表示作戰(zhàn)體系實(shí)現(xiàn)了整體同步。
對(duì)于編組內(nèi)信息流程模式的同步能力,主要采用參序量r(t)和同步時(shí)間Tsyn兩個(gè)參數(shù)綜合進(jìn)行衡量。
r(t)表示同一編組內(nèi)節(jié)點(diǎn)之間的同步程度,r(t)∈[0,1];當(dāng)r(t)的數(shù)值越接近1時(shí),表示各個(gè)節(jié)點(diǎn)狀態(tài)一致性越好,反之,r(t)越小,說明各節(jié)點(diǎn)所處OODA的一致性就越差。r(t)=1表示作戰(zhàn)體系內(nèi)所有節(jié)點(diǎn)之間保持完全同步的狀態(tài)。對(duì)于由N個(gè)節(jié)點(diǎn)組成的編組,參序量r(t)計(jì)算方法如下。
(5)
r(t)具有三種取值的可能:一是保持固定的數(shù)值;二是在一定范圍內(nèi)保持波動(dòng);三是呈現(xiàn)發(fā)散狀態(tài)。判斷作戰(zhàn)體系是否達(dá)到同步可采取以下方法。
對(duì)于參序量r(t),當(dāng)t>tε時(shí),如果能夠找到一個(gè)足夠小的常數(shù)ε,對(duì)于任意Δt>0,均滿足|r(t+Δt)-r(t)|≤ε,則認(rèn)為節(jié)點(diǎn)組成的編組實(shí)現(xiàn)了狀態(tài)同步。式中能夠滿足要求的最小時(shí)間Tsyn,是編組的同步穩(wěn)定時(shí)間。
當(dāng)編組實(shí)現(xiàn)穩(wěn)定同步時(shí),編組的同步能力計(jì)算方法如下。
Ms=rs·βTsyn
(6)
式中,Ms表示編組的同步能力,rs是系統(tǒng)穩(wěn)定后的參序量均值,Tsyn表示體系實(shí)現(xiàn)同步穩(wěn)定的時(shí)間,β∈[0,1]表示調(diào)節(jié)因子。
根據(jù)常規(guī)導(dǎo)彈作戰(zhàn)指揮的特點(diǎn),選取三種典型的指揮信息流程控制模式,進(jìn)行仿真實(shí)驗(yàn)和數(shù)值分析,比較不同指揮信息流程控制模式對(duì)于整個(gè)常規(guī)導(dǎo)彈作戰(zhàn)體系同步能力的影響。
本文重點(diǎn)考慮常規(guī)導(dǎo)彈作戰(zhàn)情報(bào)保障關(guān)系和指揮層級(jí)兩個(gè)因素,構(gòu)建三種典型的指揮信息流程控制模式,研究相關(guān)因素對(duì)常規(guī)導(dǎo)彈作戰(zhàn)體系同步效能的影響。
第一種稱之為“三層指揮體制+獨(dú)立情報(bào)保障”指揮信息流程控制模式。在該模式中,常規(guī)導(dǎo)彈作戰(zhàn)采取三層指揮體制,偵察情報(bào)信息直接提供給最高層聯(lián)合作戰(zhàn)指揮機(jī)構(gòu),聯(lián)合作戰(zhàn)指揮機(jī)構(gòu)逐級(jí)指揮導(dǎo)彈旅作戰(zhàn),其指揮信息流程拓?fù)浣Y(jié)構(gòu)如圖3所示。
第二種稱之為“兩層指揮體制+獨(dú)立情報(bào)保障”指揮信息流程控制模式。在該模式中,常規(guī)導(dǎo)彈作戰(zhàn)指揮體制由三層壓縮為兩層,偵察情報(bào)信息仍然由外部情報(bào)源直接傳遞給最高指揮機(jī)構(gòu),其指揮信息流程拓?fù)浣Y(jié)構(gòu)如圖4所示。
第三種稱之為“兩層情報(bào)保障+分散情報(bào)保障”指揮信息流程控制模式。在該模式中,常規(guī)導(dǎo)彈作戰(zhàn)采取扁平化的兩層指揮體制,外部情報(bào)機(jī)構(gòu)將情報(bào)信息同時(shí)推送給最高指揮機(jī)構(gòu)和導(dǎo)彈旅,縮短偵察情報(bào)信息在整個(gè)作戰(zhàn)體系內(nèi)的流通路徑,實(shí)現(xiàn)偵察情報(bào)信息在末端直接交聯(lián),其指揮信息流程拓?fù)浣Y(jié)構(gòu)如圖5所示。
本文基于Kuramoto的作戰(zhàn)體系同步模型進(jìn)行仿真實(shí)驗(yàn),目的是為了得到趨勢(shì)性的結(jié)論,因此,在保持合理比例的情況下,可以適當(dāng)控制模型中節(jié)點(diǎn)數(shù)量,減少仿真計(jì)算量。在仿真過程中,假設(shè)常規(guī)導(dǎo)彈作戰(zhàn)指揮機(jī)構(gòu)直接指揮4個(gè)常規(guī)導(dǎo)彈旅,每個(gè)導(dǎo)彈旅直接指揮3個(gè)發(fā)射架;偵察情報(bào)體系的指控單元下轄3個(gè)偵察情報(bào)源,節(jié)點(diǎn)總數(shù)控制在23~25的規(guī)模。
本文在Matlab7.0環(huán)境下對(duì)采取三種典型指揮信息流程模式時(shí),常規(guī)導(dǎo)彈作戰(zhàn)體系的同步效能進(jìn)行仿真評(píng)估,得到參序量r(t)變化曲線圖,如圖6、圖7、圖8所示。
采取三種指揮信息流程控制模式時(shí),常規(guī)導(dǎo)彈作戰(zhàn)體系的同步能力參數(shù)具體如表1所示。
表1 采取三種信息流程模式時(shí)系統(tǒng)同步能力
比較表1實(shí)驗(yàn)結(jié)果,發(fā)現(xiàn)采用模式三“兩層指揮體制+分散情報(bào)保障”指揮信息流程模式時(shí)作戰(zhàn)體系同步效能最好,采用模式二“兩層指揮體制+獨(dú)立情報(bào)保障”指揮信息流程模式時(shí)作戰(zhàn)體系同步效能次之,采用模式一“三層指揮體制+獨(dú)立情報(bào)保障”時(shí)作戰(zhàn)體系同步效能最差。在模式一中,不同的編組都能夠最終保持同步,但是參序量r(t)呈現(xiàn)周期性震蕩,作戰(zhàn)體系的同步效果不理想。這是由于指揮信息鏈路過長,不同層級(jí)節(jié)點(diǎn)間OODA周期相差較大,無法形成完全同步的行動(dòng)。在模式二中,各個(gè)編組的參序量r(t)趨于固定的數(shù)值,這是由于兩層的指揮體系,使得不同指揮層級(jí)間節(jié)點(diǎn)的OODA周期差距變小,在同一編組內(nèi)的各節(jié)點(diǎn)能夠保持較為穩(wěn)定狀態(tài)差。模式三相比模式二,各個(gè)編組的參序量r(t)均有所提高,同步時(shí)間得到縮短。這是由于偵察情報(bào)信息直接推送至常規(guī)導(dǎo)彈旅,打通了偵察情報(bào)節(jié)點(diǎn)和火力打擊節(jié)點(diǎn)之間信息交互通道,使得整個(gè)作戰(zhàn)體系的同步效能得到進(jìn)一步的增強(qiáng)。
根據(jù)上述分析,提高常規(guī)導(dǎo)彈作戰(zhàn)體系的同步效能,可以重點(diǎn)從以下幾個(gè)方面著手。一是構(gòu)建扁平化的指揮體系,減少不同層級(jí)之間的OODA周期差距;二是依托信息網(wǎng)絡(luò)增強(qiáng)作戰(zhàn)體系內(nèi)各節(jié)點(diǎn)之間的信息交互強(qiáng)度;三是構(gòu)建多維協(xié)同關(guān)系,提高作戰(zhàn)體系內(nèi)各節(jié)點(diǎn)之間的聯(lián)通密度。
本文分析了影響常規(guī)導(dǎo)彈作戰(zhàn)體系同步效能的相關(guān)因素,重點(diǎn)研究指揮信息流程對(duì)作戰(zhàn)體系同步效能的影響。在對(duì)常規(guī)導(dǎo)彈作戰(zhàn)體系同步過程進(jìn)行抽象的基礎(chǔ)上,建立基于Kuramoto的常規(guī)導(dǎo)彈作戰(zhàn)體系同步模型,提出作戰(zhàn)體系同步的相關(guān)判據(jù)。將常規(guī)導(dǎo)彈作戰(zhàn)體系的信息流程模式歸納為“兩層指揮體制+分散情報(bào)保障”、“ 兩層指揮體制+獨(dú)立情報(bào)保障“、”三層指揮體制+獨(dú)立情報(bào)保障”三種類型,并通過仿真比較了三種指揮信息流程模式對(duì)作戰(zhàn)體系同步效能的影響。最后,結(jié)合常規(guī)導(dǎo)彈作戰(zhàn)體系特點(diǎn),從指揮體制、信息網(wǎng)絡(luò)和協(xié)同關(guān)系等三個(gè)方面給出提高常規(guī)導(dǎo)彈作戰(zhàn)體系同步效能的相關(guān)建議。
[1] 李啟元.網(wǎng)絡(luò)化指揮控制系統(tǒng)同步特性分析[J].海軍工程大學(xué)學(xué)報(bào),2014,26(5):48-52.
[2] 王欣等.基于任務(wù)的網(wǎng)絡(luò)中心戰(zhàn)作戰(zhàn)同步能力度量[J]. 火力與指揮控制,2013,38(1):96-101.
[3] 湯亞鋒,于小紅.空間信息支援力量編組模式分析[J].指揮控制與仿真,2015,37(6):12-17.
[4] 王樹國.幾類復(fù)雜動(dòng)力網(wǎng)絡(luò)的同步分析與控制研究[D].江蘇大學(xué),2013.
[5] 李福濤,馬靜,鄒艷麗.幾種Kuramoto振子網(wǎng)絡(luò)同步性能的比較[J].廣西師范大學(xué)學(xué)報(bào),2011,29(4):16-20.
[6] 鄒志剛,劉付顯,夏璐.從時(shí)間角度看作戰(zhàn)決策同步[J].電光與控制,2013,20(3):25-29.
[7] 趙明,周濤,陳關(guān)榮.復(fù)雜網(wǎng)絡(luò)上動(dòng)力系統(tǒng)同步的研究進(jìn)展[J].物理學(xué)進(jìn)展,2008(1):22-34.
[8] 王斌.基于復(fù)雜網(wǎng)絡(luò)的作戰(zhàn)同步建模研究[D].長沙:國防科學(xué)技術(shù)大學(xué),2007.
[9] Anthony H. Dekker. Analyzing C2 Structures and Self-Synchronization with Simple Computational Models[C]. Quebec City, Canada:16the ICCRTS,2011.
[10] Alexander Kalloniatis, Mathew Zuparic. The J-Staff System, Network Synchronisation and Noise[C]. Alexandria, VA:19th ICCRTS, 2014.