劉 雄, 龔 婷,2
(1.西南大學(xué) 食品科學(xué)學(xué)院, 重慶 400715; 2.重慶醫(yī)藥高等專科學(xué)校, 重慶 401331)
辣椒是在全世界范圍內(nèi)被廣泛消費(fèi)的蔬菜和香料之一,在國(guó)際香辛料貿(mào)易中占有重要地位。辣椒在全世界近三分之二的國(guó)家均有種植。世界范圍內(nèi)約有20%的人口食用辣椒,主要集中在中國(guó)、韓國(guó)、墨西哥、印度、越南、泰國(guó)等國(guó)家。我國(guó)食用辣椒的人數(shù)高達(dá)40%,主要集中在湖南、湖北、江西、四川、云南、貴州、重慶等省市。近年來(lái),隨著川菜、重慶火鍋以及麻辣食品在國(guó)內(nèi)外的迅速流行,食用辣椒的人群正在不斷擴(kuò)大。
辣椒中含有一類生物堿,是辣椒辛辣刺激口感的主要成分,也是辣椒的主要活性成分,主要包括辣椒素(capsaicin)、二氫辣椒素(dihydrocapsaicin)、降二氫辣椒素(nordihydrocapsaicin)、高二氫辣椒堿(homodihydrocapsaicin)和高辣椒堿(homocapsaicin)等[1],其中辣椒素、二氫辣椒素兩者占辣椒堿總量的80%~90%[2]。現(xiàn)代研究表明,辣椒具有多種生理活性,如調(diào)節(jié)代謝紊亂[3]、預(yù)防心血管疾病[3-5]、鎮(zhèn)疼[6]、抗癌[7-8]、緩解呼吸道疾病[9]、抗炎癥[10]、抗氧化[11-12]、治療皮膚病[13]、減肥[14]、降血脂[15-16]、降血糖[17]等。在美國(guó)和加拿大,辣椒已被食品藥品監(jiān)管局 (Food and Drug Administration,F(xiàn)DA)批準(zhǔn)為非處方藥(over the counter drug,OTC),辣椒素是已被批準(zhǔn)的辣椒辣素乳膏(Zostrix)的活性成分。機(jī)體內(nèi)糖脂代謝異常是導(dǎo)致高脂血癥、糖尿病、肥胖癥等慢性疾病的主要原因,通過(guò)生活習(xí)慣和飲食調(diào)節(jié)對(duì)預(yù)防糖脂代謝異常有重要作用,作為天然食物成分的辣椒堿在調(diào)節(jié)糖脂代謝異常方面表現(xiàn)出良好效果。
研究發(fā)現(xiàn),辣椒堿對(duì)高脂膳食誘導(dǎo)的肥胖大鼠有明顯降低餐后血糖的效果,提高葡萄糖耐受性,還可以通過(guò)提高胰島素敏感性改善糖尿病大鼠的血糖代謝,并且辣椒堿也能降低肥胖小鼠空腹血糖含量,提高胰島素水平和血糖耐受性[17-18]。Iancu等[19]研究了辣椒素對(duì)狗的血糖、血漿胰島素和胰島素受體的作用,發(fā)現(xiàn)辣椒素可顯著降低狗的血糖、增加胰島素分泌,其作用主要是通過(guò)提高胰島素水平來(lái)實(shí)現(xiàn)的。張世奇等[20]研究發(fā)現(xiàn)辣椒素可降低1型糖尿病大鼠空腹血糖、增加肝糖原水平。在人體試驗(yàn)中也發(fā)現(xiàn),辣椒素可有效預(yù)防肥胖和2型糖尿病的發(fā)生[3,21],Yuan等[22]對(duì)44位懷孕22~33周患有妊娠期高血糖的孕婦進(jìn)行觀察,發(fā)現(xiàn)她們每天食用5 mg辣椒堿,連續(xù)食用4周后血糖明顯下降。Urbina等[23]對(duì)77名志愿者,持續(xù)12周喂食低劑量的辣椒素,發(fā)現(xiàn)辣椒素能增加糖尿病患者的胰島素分泌水平、降低高膽固醇癥患者的膽固醇水平。
辣椒堿還具有明顯減肥和降低血漿中甘油三酯濃度的效果。Manjunatha等[24]研究發(fā)現(xiàn)辣椒堿可以明顯降低高脂血癥豚鼠肝臟總膽固醇(TC)、甘油三酯(TG)的含量,對(duì)肝臟有保護(hù)作用。筆者研究團(tuán)隊(duì)也發(fā)現(xiàn)用辣椒素處理脂質(zhì)代謝異常大鼠和糖尿病大鼠時(shí),辣椒素通過(guò)降低患病大鼠血清中TC、TG的含量,增加高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDL-L)含量,可以在一定程度上改善患病大鼠血脂代謝異常,而且也降低了糖尿病大鼠肝臟中脂肪的含量,進(jìn)而改善了脂肪的堆積,同時(shí)也使肝臟的組織狀態(tài)得到明顯改進(jìn),辣椒堿可顯著降低去勢(shì)大鼠血漿TC、TG和低密度脂蛋白膽固醇(low-density lipoprotein cholesterol,LDL-C)的濃度、抑制肝臟中膽固醇合成、提高高膽固醇飼料大鼠肝臟膽汁酸的合成與糞便固醇的排泄量[15-16,25-26]。也有研究發(fā)現(xiàn)辣椒素能升高低HDL-C患者的HDL-C濃度,降低患冠心病的風(fēng)險(xiǎn)[5]。
由于辣椒堿在減肥、降脂和改善高血糖癥方面效果明顯,其作用機(jī)理引起了國(guó)內(nèi)外科研人員的廣泛關(guān)注,開(kāi)展了大量研究工作,也取得了許多研究成果。辣椒堿對(duì)機(jī)體糖脂代謝作用的可能機(jī)理包括對(duì)膳食糖脂的腸道消化吸收、肝臟轉(zhuǎn)運(yùn)代謝、脂肪組織沉積、胰島素分泌、食欲調(diào)控等多個(gè)途徑的調(diào)控。
辣椒素受體(transient receptor potential vanilloid-1,TRPV1)廣泛分布于哺乳動(dòng)物的感覺(jué)神經(jīng)纖維,在中樞神經(jīng)、外周神經(jīng)、呼吸、消化、心腦血管和泌尿等多個(gè)系統(tǒng)中均有表達(dá)[27]。TRPV1 的生物學(xué)功能很多,包括參與免疫激活、介導(dǎo)炎性疼痛、調(diào)節(jié)體溫、調(diào)節(jié)胃腸功能、調(diào)節(jié)脂肪生成以及參與多種腫瘤的生理和病理過(guò)程[28]。研究發(fā)現(xiàn),通過(guò)激活TRPV1可增加脂肪細(xì)胞內(nèi)鈣離子流抑制高脂膳食大鼠的脂肪積累和肥胖[12,29],減弱其炎癥反應(yīng)和脂肪氧化,進(jìn)而改善肥胖導(dǎo)致的血糖不耐癥[10]。Chen等[12]也證實(shí)辣椒堿激活高脂飼料大鼠內(nèi)臟脂肪組織的TRPV1通道,引起Ca2+在脂肪細(xì)胞之間的轉(zhuǎn)運(yùn),產(chǎn)生Ca2+流,并調(diào)整葡萄糖轉(zhuǎn)運(yùn)載體4(GLUT4)的表達(dá),達(dá)到改善其胰島素抵抗的效果。辣椒素酯類化合物也能激活TRPV1鈣離子通道,提高腎上腺髓質(zhì)的兒茶酚胺分泌,促進(jìn)機(jī)體產(chǎn)熱,減低體重和脂肪生成[30-31],激活小鼠腸道TRPV1增加熱量生成[32]。Zhang等[17]研究發(fā)現(xiàn)辣椒素處理T1D大鼠能增加其肝臟、胰腺和腸黏膜細(xì)胞中TRPV1的基因表達(dá),激活肝臟中與糖代謝的關(guān)鍵基因LXR和PDX-1大量表達(dá),胰腺中調(diào)控胰島素分泌的PDX-1表達(dá),顯著降低T1D鼠的血糖水平、改善其口服糖耐量、增加胰島素水平和糖原的含量、抑制腸道對(duì)糖的吸收以及促進(jìn)便糖的排出。而在喂高脂飼料的 TRPV1基因敲除小鼠中辣椒素的這些作用效果卻降低或消失了[33-35]。這些研究結(jié)果,證明了TRPV1通道在辣椒素調(diào)控機(jī)體糖脂代謝方面起著至關(guān)重要的介導(dǎo)作用。
食物是人體糖分和脂肪的主要來(lái)源,膳食中脂肪和糖類的消化吸收對(duì)血糖、血脂有著重要的影響,膳食脂肪和碳水化合物的消化吸收主要在小腸中完成。因此,腸道消化酶數(shù)量和活性直接影響膳食脂肪和碳水化合物的消化。張世奇等[20]研究發(fā)現(xiàn)大鼠灌胃6、9 mg/(kg·bw)劑量辣椒素可顯著抑制大鼠腸道淀粉酶和葡萄糖苷酶的活性,降低負(fù)荷(葡萄糖、蔗糖和淀粉)的餐后血糖含量。小腸中淀粉酶和脂肪酶主要來(lái)自胰腺分泌,辣椒素是否影響消化酶的分泌,尚缺乏研究報(bào)道。
另外,大量研究表明,辛辣調(diào)料可以改變腸道的超微結(jié)構(gòu)和滲透性,從而影響腸道對(duì)營(yíng)養(yǎng)物質(zhì)的吸收。紅辣椒、胡椒、生姜改變腸黏膜細(xì)胞刷狀緣膜流動(dòng)性,增加細(xì)胞微絨毛長(zhǎng)度,從而增加小腸的吸收表面積[36]。Prakash等[37]研究發(fā)現(xiàn),喂食辣椒素、姜素等辛辣成分的大鼠小腸對(duì)鈣、鐵、鋅的吸收顯著提高,胡椒堿和姜素對(duì)大鼠小腸谷氨酸的吸收能力分別提高87%和62%。Domotor等[38]以14位健康受試人員先口服75 g葡萄糖,再食用辣椒素(半數(shù)有效量,ED50),檢測(cè)4 h內(nèi)的血糖變化,發(fā)現(xiàn)辣椒素增加了胃腸道中的葡萄糖吸收同時(shí)促進(jìn)了胰高血糖素釋放,從而有效調(diào)節(jié)血糖平衡。在筆者團(tuán)隊(duì)的研究中發(fā)現(xiàn)[20,25],辣椒素并沒(méi)有增加灌胃葡萄糖大鼠餐后血糖濃度,辣椒素顯著下調(diào)了1型糖尿病大鼠回腸鈉-葡萄糖共轉(zhuǎn)運(yùn)載體1(SGLT1)信號(hào)通路中相關(guān)信號(hào)因子(SGTL1、GLUT2和GLUT5)的表達(dá),增加糞便中糖分的排泄量,降低膳食總糖表觀消化率。SGLT1能夠直接作用小腸并且能夠配合GLUT2共同抑制腸道對(duì)葡萄糖的吸收,以上研究結(jié)果進(jìn)一步證實(shí)辣椒素可降低膳食碳水化合物的消化吸收。
肝臟是脂肪合成、糖原合成和膽固醇代謝的中樞器官。葡萄糖進(jìn)入肝臟,除了合成肝糖原儲(chǔ)存外,過(guò)量的葡萄糖也可轉(zhuǎn)變成甘油三酯進(jìn)入血液中。肝臟糖脂代謝是通過(guò)胰島素和核受體(包括PPAR,LXR,FXR,LRH1和維生素D受體)信號(hào)通路調(diào)節(jié)的。筆者團(tuán)隊(duì)研究發(fā)現(xiàn),灌胃辣椒素的糖尿病大鼠肝臟中LXR和PDX-1的mRNA水平和蛋白表達(dá)均顯著上調(diào),而受其調(diào)控的G6Pase的mRNA水平與蛋白表達(dá)顯著下調(diào),GK和GLUT2的mRNA及蛋白表達(dá)顯著上調(diào),相應(yīng)地肝糖原合成明顯增加,空腹血糖明顯降低[17]。辣椒素可以通過(guò)激活肝臟中TRPV1、調(diào)節(jié)肝臟中膽固醇-7α羥化酶(CYP7A1)和羥甲基戊二酸單酰輔酶A(HMG-CoA)還原酶以及膽囊中的環(huán)氧合酶(COX-2)和黏蛋白(MUC5AC),促進(jìn)膽汁酸的合成和排泄,抑制高脂肪飲食誘導(dǎo)膽固醇的形成,降低體內(nèi)膽固醇濃度[15-16,39]。辣椒素激活TRPV1增加肝細(xì)胞PPARδ和自噬相關(guān)蛋白的表達(dá),降低細(xì)胞中游離脂肪酸和脂肪的含量,預(yù)防脂肪肝[40]。
關(guān)于辣椒堿是如何調(diào)控肝臟中糖脂代謝相關(guān)酶和受體基因的,是辣椒堿直接作用還是其在肝臟中代謝產(chǎn)物產(chǎn)生的作用,這些都有待于進(jìn)一步研究。
胰島β細(xì)胞分泌的胰島素是血糖調(diào)節(jié)的關(guān)鍵信號(hào)因子。辣椒堿對(duì)胰島素的分泌有明顯促進(jìn)作用,從而達(dá)到降低血液中糖類含量的目的,可以對(duì)糖尿病發(fā)揮某種緩和及治療作用[41]。Carlsson等[42]發(fā)現(xiàn)辣椒素降低胰腺和胰島血流量,然而辣椒素反復(fù)刺激則導(dǎo)致胰腺和胰島血流量增加。調(diào)節(jié)胰島細(xì)胞血流量可能會(huì)影響胰島素的分泌,也可能影響胰腺中消化酶的分泌。Ahuja等[41]研究發(fā)現(xiàn),辣椒降低餐后血漿胰島素增加量、曲線面積(iAUC)、C-肽和能量消耗值,相反,肝胰島素清除指標(biāo)C-肽/胰島素比值明顯高于對(duì)照組,然而對(duì)餐后血糖值沒(méi)有明顯影響。Urbina 等[23]也發(fā)現(xiàn)食用12周高劑量的辣椒素能明顯增加血漿中胰島素含量,降低血漿HDL-C濃度,然而對(duì)口服耐糖量(OGTT)測(cè)試中血漿胰島素水平?jīng)]有影響。Akiba等[43]的研究顯示,TRPV1在胰島中有豐富的表達(dá),激活TRPV1可促進(jìn)大鼠胰島β細(xì)胞分泌胰島素,進(jìn)而降低血糖。陳健[44]研究表明,激活TRPV1可通過(guò)上調(diào)GLUT4的表達(dá)改善因高脂膳食誘導(dǎo)的胰島素抵抗。Zhang等[17]研究表明,辣椒素能激活T1D大鼠胰腺中TRPV1的蛋白表達(dá),顯著上調(diào)糖尿病大鼠胰臟中PDX-1、IRS1、IRS2和GLUT2的 mRNA 水平和蛋白表達(dá),增加血漿中胰島素濃度。大量研究表明,PDX-1具有調(diào)控胰島β細(xì)胞的增生和凋亡功能,能夠促進(jìn)大鼠胰腺導(dǎo)管細(xì)胞上皮細(xì)胞分化為胰島素分泌細(xì)胞[45]。IRS1 和IRS2作為胰島β細(xì)胞的關(guān)鍵信號(hào)蛋白,并且能夠通過(guò)PI3K和MAPK信號(hào)通路進(jìn)行β細(xì)胞發(fā)育和有絲分裂,具有改善胰島素分泌的功能[46-47]。因此,辣椒素可能通過(guò)刺激胰島素分泌和改善胰腺功能障礙這兩種途徑降低血糖。
脂肪組織是血糖、血脂的調(diào)節(jié)池,與肥胖和胰島素抵抗直接相關(guān),動(dòng)物實(shí)驗(yàn)和人體研究都表明,辣椒素具有明顯減肥作用。Kim等[48]發(fā)現(xiàn)辣椒素降低解偶聯(lián)蛋白3(UCP3)的表達(dá),提高腺苷酸活化蛋白激酶(AMPK)和乙酰輔酶A羧化酶(acetyl-co A carboxylase,ACC)的磷酸化作用,從而提高脂聯(lián)素和其受體的表達(dá),改善胰島素的調(diào)節(jié)作用。脂聯(lián)素是一種胰島素增敏激素,可以減輕炎癥反應(yīng)改善胰島素抗性。局部應(yīng)用辣椒素可以增加脂聯(lián)素的表達(dá),進(jìn)而導(dǎo)致肥胖型大鼠的脂肪組織中的脂肪堆積減少,達(dá)到減肥的效果[49]。Bartness等[50]將辣椒素注射到大鼠的白脂肪組織(white adipose tissue, WAT)中,結(jié)果表明WAT的傳入和傳出神經(jīng)分別得到改善,重新恢復(fù)了調(diào)節(jié)脂肪的功能,并且辣椒素能通過(guò)抑制炎癥和促進(jìn)高脂誘導(dǎo)小鼠脂肪組織或肝臟中脂肪酸氧化,改善糖耐量,進(jìn)而改善胰島素抵抗的癥狀[18]。
肥胖人群大多食欲旺盛,適度控制食欲,控制食物攝入量,是調(diào)控三高人群和肥胖人群的有效途徑之一。最近許多報(bào)道證實(shí)了TRPV1不僅存在于主要感覺(jué)神經(jīng)節(jié)的神經(jīng)肽中,也在其他大腦區(qū)域包括下丘腦(尾側(cè))和弓狀核中。免疫組織學(xué)研究顯示,小鼠的TRPV1是由下丘腦和弓形細(xì)胞核(ARC)控制的,同時(shí)它們也是大腦的食品監(jiān)管和情感表達(dá)的主要部分。Baboota等[51]研究表明,辣椒素刺激腸道敏感神經(jīng)細(xì)胞,將信號(hào)傳遞給下丘腦,下丘腦再刺激一些厭食基因表達(dá)降低,一些促進(jìn)食欲的基因表達(dá)上升,厭食基因的表達(dá)可能是防御性的控制,這些基因的相互作用,會(huì)引起下丘腦中神經(jīng)肽及神經(jīng)生長(zhǎng)因子的增加,引起TRPV1受體和BDNF(brain derived neurotrophic factor)的表達(dá),從而降低血漿中甘油三酯和膽固醇的含量。除此之外,辣椒素還增加了其他主要的神經(jīng)性神經(jīng)肽類,如CARTPT(CART prepropeptide)、GRP(gastrin releasing peptide)和CCK(gastrin releasing peptide),亦顯著地逆轉(zhuǎn)了高脂膳食誘導(dǎo)的致病基因增加,如CNR1(cannabinoid receptor 1)、GALR1(galanin receptor 1)、GHRL(ghrelin)和GHSR(growth hormone secretagogue receptor),這些基因的聯(lián)合作用導(dǎo)致高脂膳食小鼠血脂和體重均下降。Spiridonov等[52]的研究也證明辣椒素刺激特異性敏感性神經(jīng),可引起硫酸脫氫表雄酮降低,導(dǎo)致血液中甘油三酯降低,調(diào)節(jié)了脂代謝的平衡。Lee等[49]發(fā)現(xiàn)辣椒素通過(guò)TRPV1通道降低采食量,Janssens等[53]發(fā)現(xiàn)添加辣椒素可增加飽腹感、預(yù)防攝入過(guò)多食物。
近年來(lái),大量研究表明,腸道微生態(tài)失調(diào)對(duì)肥胖和代謝綜合征發(fā)生起重要作用[54-55]。腸道微生物與人體眾多的生理和病理相關(guān),如能量平衡調(diào)節(jié)、血糖代謝和慢性炎癥等[56]。腸道菌群能夠調(diào)控腸上皮細(xì)胞產(chǎn)生一種脂蛋白脂肪酶(LPL)的抑制因子——禁食誘導(dǎo)脂肪細(xì)胞因子(Fiaf) 的表達(dá)。微生物發(fā)酵產(chǎn)生的短鏈脂肪酸還可以刺激肝臟中脂肪代謝相關(guān)的酶,而膳食成分會(huì)影響腸道細(xì)菌的數(shù)量和菌群分布,進(jìn)而影響腸道微生態(tài)環(huán)境,如高脂膳食增加腸道硬壁菌門和蛋白菌門,降低雙歧桿菌和乳桿菌的豐度[55]。Song 等[56]研究發(fā)現(xiàn)低劑量或高劑量的辣椒素均可降低體重和肥胖指數(shù),明顯降低空腹血糖和胰島素水平,提高葡萄糖和胰島素耐受力,改善腸道微生物的α-多樣性和β-多樣性,提高硬壁門/細(xì)菌門比值,增加Roseburia豐度和降低擬桿菌Bacteroides和Parabacteroides豐度。Roseburia豐度與空腹血糖值呈負(fù)相關(guān),而B(niǎo)acteroides和Parabacteroides豐度與空腹血糖值呈正相關(guān)。辣椒素明顯增加糞便中丁酸和血漿中總 GLP-1水平,降低血漿中饑餓激素、TNF-α、IL-1β和 IL-6 水平。Shen等[57]通過(guò)對(duì)腸道菌群16S rRNA 基因測(cè)序,發(fā)現(xiàn)辣椒素降低高脂飼料小鼠腸道Proteobacteria,增加Akkermansiamuciniphila的豐度,提高小腸黏液素2基因Muc2和抗菌蛋白基因Reg3g的表達(dá)量。Baboota等[51]的研究也發(fā)現(xiàn),辣椒素可以顯著降低大腸桿菌和厚壁菌的相對(duì)豐度,增加Akkermansia,Bacteroidetes,Bacteroides-Prevotella和Lactobacillus菌的相對(duì)豐度,誘導(dǎo)了短鏈脂肪酸的生成量增加,從而調(diào)節(jié)血脂和膽固醇含量。康超[58]的研究還發(fā)現(xiàn)辣椒素可顯著提高腸道產(chǎn)短鏈脂肪酸細(xì)菌的豐度,而且相應(yīng)地增加了糞便丁酸水平,丁酸作為膳食纖維在腸道菌群的重要代謝產(chǎn)物,可以刺激腸道上皮細(xì)胞分泌HIF-1,增加腸道上皮細(xì)胞間連接蛋白的表達(dá),進(jìn)而改善腸道屏障功能,抑制脂多糖進(jìn)入血液,從而改善炎癥,調(diào)節(jié)脂代謝。
隨著人們生活水平的提高,以及人口老齡化的加重,肥胖、高脂血癥和糖尿病發(fā)病率呈逐年上升趨勢(shì)。據(jù)統(tǒng)計(jì),截至2016年全球共有4.15億成年人患有糖尿病。預(yù)計(jì)到2040年糖尿病發(fā)病人數(shù)將上升到6.42億,而肥胖和超重人數(shù)到2030年將分別達(dá)到11.2億和 21.6億。血脂血糖代謝異常是導(dǎo)致肥胖、高脂血癥和糖尿病的主要因素之一。作為天然香辛料中種植和食用最廣泛的辣椒,其特有的辣椒堿成分在動(dòng)物和人體實(shí)驗(yàn)中均表現(xiàn)出良好的控糖、降脂、減肥功效,它通過(guò)分布于體內(nèi)眾多組織器官中的TRPV1發(fā)揮調(diào)控糖脂代謝的作用,通過(guò)抑制腸道中糖脂消化酶、腸壁細(xì)胞糖脂轉(zhuǎn)運(yùn)子、改善腸道菌群、刺激胰島素分泌、促進(jìn)肝臟糖脂代謝、抑制脂肪生成等多種功能靶器官和多種調(diào)控途徑,共同作用來(lái)調(diào)節(jié)糖脂代謝。當(dāng)然,這種聯(lián)合調(diào)控是辣椒堿直接作用于各個(gè)靶器官,還是辣椒堿體內(nèi)代謝產(chǎn)物或辣椒堿作用腸道菌群的代謝產(chǎn)物發(fā)揮對(duì)機(jī)體糖脂代謝的調(diào)控,還有待進(jìn)一步的探究。
[1] ASNIN L,PARK S W. Isolation and analysis of bioactive compounds inCapsicumpeppers[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(2): 254-289.
[2] ZEWDIE Y,BOSLAND P W. Capsaicinoid profiles are not good chemotaxonomic indicators forCapsicumspecies[J]. Biochemical Systematics and Ecology, 2001, 29(2): 161-169.
[3] SUN F,XIONG S Q,ZHU Z M. Dietary capsaicin protects cardiometabolic organs from dysfunction[J]. Nutrients, 2016, 8(5): 174-187.
[4] TREMARIN C S,CASALI K R,MEURER L,et al. Capsaicin induced metabolic and cardiovascular autonomic improvement in an animal model of the metabolic syndrome[J]. British Journal Nutrition, 2014, 111(2): 207-214.
[5] QIN Y,RAN L,WANG J,et al. Capsaicin supplementation improved risk factors of coronary heart disease in individuals with low HDL-C levels[J]. Nutrients, 2017, 9(9): 1037-1049.
[6] O’NEILL J,BROCK C,OLESEN A E,et al. Unravelling the mystery of capsaicin: a tool to understand and treat pain[J]. Pharmacological Reviews, 2012, 64(4): 939-971.
[7] CHAPA-OLIVER A M,MEJIA-TENIENTE L. Capsaicin: from plants to a cancer-suppressing agent[J]. Molecules, 2016, 21(8): 931-945.
[8] ROLLYSON W D,STOVER C A,BROWN K C,et al. Bioavailability of capsaicin and its implications for drug delivery[J]. Journal Control Release, 2014, 196: 96-105.
[9] BANNER K H,IGNEY F,POLL C. TRP channels: emerging targets for respiratory disease[J]. Pharmacology & Therapeutics, 2011, 130(3): 371-384.
[10] KANG J H,GOTO T,HAN I S,et al. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet[J]. Obesity, 2010, 18(4): 780-787.
[11] HASSAN M H,EDFAWY M,MANSOUR A,et al. Antioxidant and antiapoptotic effects of capsaicin against carbon tetrachloride-induced hepatotoxicity in rats[J]. Toxicology and Industrial Health, 2012, 28(5): 428-438.
[12] CHEN K S,CHEN P N,HSIEH Y S,et al. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action[J]. Chemico-Biological Interactions, 2015, 228: 35-45.
[13] SHARMA S K,VIJ A S,SHARMA M. Mechanisms and clinical uses of capsaicin[J]. European Journal of Pharmacology, 2013, 720(1/3): 55-62.
[14] TAN S R,GAO B,TAO Y,et al. Antiobese effects of capsaicin-chitosan microsphere (CCMS) in obese rats induced by high fat diet[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8): 1866-1874.
[15] ZHANG L,ZHOU M,FANG G S,et al. Hypocholesterolemic effect of capsaicinoids by increased bile acids excretion in ovariectomized rats[J]. Molecular Nutrition & Food Research, 2013, 57(6): 1080-1088.
[16] ZHANG L,FANG G S,ZHENG L H,et al. The hypocholesterolemic effect of capsaicinoids in ovariectomized rats fed with a cholesterol-free diet was mediated by inhibition of hepatic cholesterol synthesis[J]. Food & Function, 2013, 4(5): 738-744.
[17] ZHANG S Q,MA X H,ZHANG L,et al. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11): 2323-2330.
[18] OKUMURA T,TSUKUI T,HOSOKAWA M A. Effect of caffeine and capsaicin on the blood glucose levels of obese/diabetic KK-A (gamma) mice[J]. Journal of Oleo Science, 2012, 61(9): 515-523.
[19] IANCU A D,PETCU I,RADU B M,et al. Capsaicin short term administration effect on different immune parameters[J]. Roumanian Archives of Microbiology and Imimmology, 2012, 71(4): 221-237.
[20] 張世奇,秦春青,王倩倩,等.辣椒素對(duì)1型糖尿病大鼠糖代謝影響作用的研究[J].營(yíng)養(yǎng)學(xué)報(bào),2017,39(1):76-80, 85.
ZHANG S J,QIN C Q,WANG Q Q,et al.Effect of capsaicin on glucose metabolism in type 1 diabetes rats[J].Acta Nutrimenta Sinica,2017,39(1):76-80, 85.
[21] ZSOMBOK A. Vanilloid receptors: do they have a role in whole body metabolism? Evidence from TRPV1[J]. Journal of Diabetes and Its Complications, 2013, 27(3): 287-292.
[22] YUAN L J,QIN Y,WANG L,et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns[J]. Clinical Nutrition, 2015, 35(2): 388-393.
[23] URBINA S L,ROBERTS M D,KEPHART W C,et al. Effects of twelve weeks of capsaicinoid supplementation on body composition, appetite and self-reported caloric intake in overweight individuals[J]. Appetite, 2017, 113(1): 264-273.
[24] MANJUNATHA H,SRINIVASAN K. Hypolipidemic and antioxidant effects of dietary curcumin and capsaicin in induced hypercholesterolemic rats[J]. Lipids, 2007, 42(12): 1133-1142.
[25] 王倩倩.辣椒素對(duì)糖尿病大鼠碳水化合物和脂質(zhì)消化代謝的影響[D].重慶:西南大學(xué),2015.
[26] 陸紅佳,陳朝軍,鄭龍輝,等.辣椒素劑量對(duì)去勢(shì)雌性大鼠血脂、肝脂及盲腸內(nèi)環(huán)境的影響[J].食品科學(xué),2014,35(3):203-208.
LU H J,CHEN C J,ZHENG L H,et al.Effect of capsaicinoid dose on serum lipids, hepatic lipids and cecum environment in ovariectomized rats[J].Food Science,2014,35(3):203-208.
[27] GRAM D X,HOLST J J,SZALLASI A. TRPV1:a potential therapeutic target in type 2 diabetes and comorbidities?[J]. Trends in Molecular Medicine, 2017, 23(11): 1002-1013.
[28] 劉兆國(guó),陶羽,吳紅雁,等.辣椒素抗腫瘤作用研究進(jìn)展[J].腫瘤,2014,34(4): 383-386.
LIU Z G,TAO Y,WU H Y,et al.Research progress on antitumor effect of capsaicin[J].Tumor,2014,34(4): 383-386.
[29] ZHANG L L,LIU D Y,MA L Q,et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity[J]. Circulation Research, 2007, 100(7): 1063-1070.
[30] KAWABATA F,INOUE N,YAZAWA S,et al. Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans[J]. Bioscience Biotechnology and Biochemistry, 2006, 70(12): 2824-2835.
[31] HACHIYA S,KAWABATA F,OHNUKI K,et al. Effects of CH-19 sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans[J]. Bioscience Biotechnology and Biochemistry, 2007, 71(3): 671-676.
[32] KAWABATA F,INOUE N,MASAMOTO Y A,et al. Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice[J]. Bioscience Biotechnology and Biochemistry, 2009, 73(12): 2690-2697.
[33] LEE E,JUNG D Y,KIM J H,et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance[J]. FASEB Journal, 2015, 29(8): 3182-3192.
[34] MOTTER A L,AHERN G P. TRPV1-null mice are protected from diet-induced obesity[J]. FEBS Letters, 2008, 582(15): 2257-2262.
[35] MARSHALL N J,LIANG L H,BODKIN J A,et al. A role for TRPV1 in influencing the onset of cardiovascular disease in obesity[J]. Hypertension, 2013, 61(1): 246-252.
[36] PRAKASH U,SRINIVASAN K. Beneficial influence of dietary spices on the ultra structure and fluidity of the intestinal brush border in rats[J]. British Journal of Nutrition, 2010, 104(1): 31-39.
[37] PRAKASH U N,SRINIVASAN K. Enhanced intestinal uptake of iron, zinc and calcium in rats fed pungent spice principles: piperine, capsaicin and ginger (Zingiberofficinale)[J]. Journal of Trace Elements in Medicine and Biology, 2013, 27(3): 184-190.
[38] DOMOTOR A,SZOLCSANYI J,MOZSIK G. Capsaicin and glucose absorption and utilization in healthy human subjects[J]. European Journal of Pharmacology, 2006, 534(1/3): 280-283.
[39] PI P X,WANG Y Z,CHEN P. Effects of capsaicin on the cholesterol lithogenesis in the gallbladder of C57BL/6 mice[J]. International Journal of Clinical and Experimental Medicine, 2017, 10(2): 2066-2075.
[40] LI Q,LI L,WANG F,et al. Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activated receptor delta activation[J]. Pflügers Archiv: European Journal of Physiology, 2013, 465(9): 1303-1316.
[41] AHUJA K D,ROBERTSO I K,GERAGHTY D P,et al. Effect of chili consumption on postprandial glucose, insulin, and energy metabolism[J]. American Journal of Clinical Nutrition, 2006, 84(1): 63-69.
[42] CARLSSON P O,SANDLER S,JANSSON L. Influence of the neurotoxin capsaicin on rat pancreatic islets in culture, and on the pancreatic islet blood flow of rats[J]. European Journal of Pharmacology, 1996, 312(1): 75-81.
[43] AKIBA Y,KATO S,KATSUBE K,et al. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats[J]. Biochemical and Biophysical Research Communications, 2004, 321(1): 219-225.
[44] 陳健.激活TRPV1上調(diào)Cx43、GLUT4改善肥胖小鼠糖脂代謝紊亂[D].重慶:第三軍醫(yī)大學(xué),2013.
[45] LI Y,CAO X,LI L X,et al. Beta-cell PDX1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1[J]. Diabetes, 2005, 54(2): 482-491.
[46] HENNIGE A M,BURKS D J,OZCAN U,et al. Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes[J]. The Journal of Clinical Investigation, 2003, 112(10): 1521-1532.
[47] ASPINWALL C A,QIAN W J,ROPER M G,et al. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+stores in insulin-stimulated insulin secretion in beta-cells[J]. The Journal of Biological Chemistry, 2000, 275(29): 22331-22338.
[48] KIM J K,GIMENO R E,HIGASHIMORI T,et al. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle[J]. Journal of Clinical Investigation, 2004, 113(5): 756-763.
[49] LEE G R,SHIN M K,YOON D J,et al. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice[J]. Obesity, 2013, 21(1): 115-122.
[50] BARTNESS T J,KAY SONG C,SHI H,et al. Brain-adipose tissue cross talk[J]. The Proceedings of the Nutrition Society, 2005, 64(1): 53-64.
[51] BABOOTA R K,MURTAZA N,JAGTAP S,et al. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice[J]. Journal of Nutritional Biochemistry, 2014, 25(9): 893-902.
[52] SPIRIDONOV V K,TOLOCHKO Z S,OVSYUKOVA M V,et al. The role of capsaicin-sensitive nerves in regulating blood dehydroepiandrosterone sulfate levels in rats in normal conditions and in metabolic syndrome[J]. Neuroscience and Behavioral Physiology, 2017, 47(1): 33-39.
[53] JANSSENS P L,HURSEL R,WESTERTERP-PLANTENGA M S. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance[J]. Appetite, 2014, 77(6): 46-51.
[54] SONNENBURG J L,BCKHED F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64.
[55] WANG J,JIA H J. Metagenome-wide association stu-dies: fine-mining the microbiome[J]. Nature Reviews Microbiology, 2016, 14(8): 508-522.
[56] SONG J X,REN H,GAO Y F,et al. Dietary capsaicin improves glucose homeostasis and alters the gut micro-biota in obese diabetic ob/ob mice[J]. Frontiers in Physiology, 2017, 8: 1-12.
[57] SHEN W,SHEN M Y,ZHAO X,et al. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gutBacteriumakkermansiamuciniphila[J]. Frontiers in Microbi-ology, 2017, 8: 1-10.
[58] 康超.腸道菌群在辣椒素代謝調(diào)節(jié)效應(yīng)中的作用及機(jī)制研究[D].重慶:中國(guó)人民解放軍陸軍軍醫(yī)大學(xué),2017.