陳麗麗 高璐 周晶
摘要:集值映射的不動(dòng)點(diǎn)理論在近代變分問(wèn)題、最優(yōu)化問(wèn)題、經(jīng)濟(jì)均衡問(wèn)題等研究中發(fā)揮著極其重要的作用, 已成為非線性泛函分析理論的重要組成部分。為了研究Banach空間中平均非擴(kuò)張集值映射的穩(wěn)定點(diǎn)問(wèn)題, 我們依據(jù)集值映射的不動(dòng)點(diǎn)理論, 利用漸近穩(wěn)定點(diǎn)序列、漸近中心、漸近半徑等給出了平均非擴(kuò)張集值映射具有穩(wěn)定點(diǎn)的充分必要條件。
關(guān)鍵詞:穩(wěn)定點(diǎn); 平均非擴(kuò)張集值映射; 漸近穩(wěn)定點(diǎn)序列; 漸近中心; Banach空間
DOI:10.15938/j.jhust.2018.01.025
中圖分類號(hào): O177.2
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2018)01-0137-06
Abstract:The fixed point theory of the setvalued mappings has important applications in many branches such as modern variation problems, optimization problems and economic equilibrium problems, and it has been an essential part of nonlinear functional analysis theory. In order to study the problem of the stationary points of the mean nonexpansive setvalued mappings in Banach spaces, we based on Fixed Point Theory of the setvalued mapping, by use of the asymptotic stationary points sequence, the asymptotic center and the asymptotic radius, the necessary and sufficient conditions for the mean nonexpansive setvalued mappings which have the stationary points are obtained.
Keywords:stationary point; mean nonexpansive setvalued mapping; asymptotic stationary points sequence; asymptotic center; Banach space
0引言
20世紀(jì)30年代初, 人們開始關(guān)注集值映射的不動(dòng)點(diǎn)問(wèn)題, 將Brouwer不動(dòng)點(diǎn)定理、Schauder不動(dòng)點(diǎn)定理等結(jié)果推廣到集值映射的情形。 近四十年來(lái), 集值映射的不動(dòng)點(diǎn)理論在近代變分問(wèn)題、最優(yōu)化問(wèn)題、經(jīng)濟(jì)均衡問(wèn)題等研究中發(fā)揮著極其重要的作用,數(shù)學(xué)家Debreu正是以集值映射的不動(dòng)點(diǎn)定理為工具給出Walras完全競(jìng)爭(zhēng)均衡存在定理的嚴(yán)格證明, 因此于1983年獲得諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)。 1968年Markin[1]在Hilbert空間中將Brouwer定理推廣到非擴(kuò)張集值映射的情形, 1969年Nadler[2]將Banach壓縮映射原理進(jìn)行了推廣, 1974年Lim[3]利用Edelstein方法給出了一致凸Banach空間中非擴(kuò)張集值映射的不動(dòng)點(diǎn)定理, 1990年Kirk[4]和 Massa將Lim定理進(jìn)行了推廣, 2003年Benavides利用非緊凸性模研究了非擴(kuò)張集值映射的不動(dòng)點(diǎn)等問(wèn)題[5-7]。
集值映射作為一類特殊的多值映射, 在研究其不動(dòng)點(diǎn)性質(zhì)、算法的構(gòu)造和收斂性條件及不動(dòng)點(diǎn)序列的選取等問(wèn)題相比于單值映射更為復(fù)雜, 目前對(duì)該理論的研究尚不完備, 對(duì)于平均非擴(kuò)張集值映射的穩(wěn)定點(diǎn)存在性等問(wèn)題尚未解決。 研究發(fā)現(xiàn)穩(wěn)定點(diǎn)的存在性問(wèn)題很大程度上都依賴于集值映射是壓縮的[8-11], 近年來(lái), 該問(wèn)題引起了國(guó)內(nèi)外數(shù)學(xué)學(xué)者的關(guān)注, 開始嘗試?yán)脻u近穩(wěn)定點(diǎn)序列等方法來(lái)解決廣義非擴(kuò)張集值映射的穩(wěn)定點(diǎn)問(wèn)題[12-14] (強(qiáng)漸近不動(dòng)點(diǎn)序列在這里也稱為漸近穩(wěn)定點(diǎn)序列[14]),漸近穩(wěn)定點(diǎn)序列在尋找穩(wěn)定點(diǎn)時(shí)扮演了十分重要的角色[15-18]。 本文主要借助Banach空間的幾何性質(zhì), 將非擴(kuò)張集值映射的穩(wěn)定點(diǎn)問(wèn)題推廣到平均非擴(kuò)張集值映射的情形, 利用漸近穩(wěn)定點(diǎn)序列、漸近中心、漸近半徑等概念給出了平均非擴(kuò)張集值映射具有穩(wěn)定點(diǎn)的充分必要條件。
1預(yù)備知識(shí)
3結(jié)語(yǔ)
本文主要解決了平均非擴(kuò)張集值映射的穩(wěn)定點(diǎn)問(wèn)題, 討論了滿足各種幾何性質(zhì)的Banach空間中平均非擴(kuò)張集值映射具有穩(wěn)定點(diǎn)的充分必要條件。 我們可以在此基礎(chǔ)上繼續(xù)利用Banach空間的幾何性質(zhì)研究平均非擴(kuò)張集值映射具有穩(wěn)定點(diǎn)的其它充分必要條件。
參 考 文 獻(xiàn):
[1]MARKIN J. A Fixed Point Theorem for Set Valued Mappings[J]. Bull. Amer. Math. Soc.,1968(74): 39-640.
[2]NADLER S B. Multivalued Contraction Mappings[J]. Pacific J. Math, 1969(30): 475-488.
[3]LIM T C. A Fixed Point Theorem for Multivalued Nonexpansive Mappings in a Uniformly Convex Banach Space[J]. Bull.Amer. Math. Soc,1974(80):1123-1126.
[4]KIRK W A, MASSA S. Remarks on Asymptotic and Chebyshev Centers[J]. Houston J. Math., 1990, 16(3): 357-364.
[5]DOMNGUEZ Benavides T, LORENZO Ramírez P. Fixed Point Theorems for Multivalued Nonexpansive Mappings Without Uniform Convexity[J]. Abstr .Appl .Anal, 2003(6): 375-386 .
[6]DOMNGUEZ Benavides T, LORENZO Ramírez P. Fixed Point Theorems for Multivalued Nonexpansive Mappings Satisfying Inward Ness Conditions[J]. Math. Anal. Appl, 2004, 291(1):100-108.
[7]ESPNOLA R, LORENZO Ramírez P, NICOLAE A. Fixed Points, Selections and Common Fixed Points for Nonexpansivetype Mappings[J]. Math. Anal. Appl., 2001, 382(2): 503-515.
[8]AUBIN J P, SIEGEL J. Fixed Points and Stationary Points of Dissipative Multivalued Mappings[J]. Proc. Amer. Math. Soc., 1980(78): 391-398.
[9]MORADI S, KHOJASTEH F. Endpoints of Fweakand Generalized Fweak Contractive Mappings[J]. Filomat, 2012, 26(4): 725- 732.
[10]WODARCZYK K, KLIM D, PLEBANIAK R. Endpoint Theory for Setvalued Nonlinear Asymptotic Contractions with Respect to Generalized Pseudodistances in Uniform Spaces[J]. J. Math. Anal. Appl, 2008(339): 344-358 .
[11]WODARCZYK K, KLIM D, PLEBANIAK R. Existence and Uniqueness of Endpoints of Closed Setvalued Asymptotic Contractions in Metric Spaces[J]. J. Math. Anal. Appl, 2007(328): 46-57.
[12]BUTSAN T, DHOMPONGSA S, TAKAHASHI W. A Fixed Point Theorem for Pointwise Eventually Nonexpansive Mappings in Nearly Uniformly Convex Banach Spaces[J]. Nonlinear Analysis, 2011,74(5): 1694-1701.
[13]DHOMPONGSA S, NANAN N. Fixed Point Theorems by Ways of Ultraasymptotic Centers[J]. Abstr. Appl. Anal., 2011:1-21.DOI: 826851.
[14]GARCA Falset J, LLORENS Fuster E, MORENO GLVEZ E. Fixed Point Theory for Multivalued Generalized Nonexpansive Mappings[J]. Appl. Anal. Discrete Math, 2012, 6(2): 265-286.
[15]PANYANAK B. Endpoints of Multivalued Nonexpansive Mappings in Geodesic Spaces[J]. Fixed Point Theory and Applications, 2015(147): 1-11.
[16]SAEJUNG S. Remarks on Endpoints of Multivalued Mappings on Geodesic Spaces. Preprint.
[17]RAFA E, MERAJ H, KOUROSH N. On Stationary Points of Nonexpansive Setvalued Mappings[J]. Fixed Point Theory and Applications, 2015(236): 1-13.
[18]KHAMSI M A, KIRK W A. An Introduction to Metric Spaces and Fixed Point Theory[M]. Pure and Applied Mathematics,New York, WileyInterscience, 2001.
[19]AGARWAL R P, OREGAN D, SAHU D R. Fixed Point Theory for LipschitzianType Mappings with Applications[M]. New York,2009.
[20]GOSSEZ J P, LAMI D E. Some Geometric Properties Related to the Fixed Point Theory for Nonexpansive Mappings[J]. Pac. J.Math,1972(40): 565-573.
[21]DHOMPONGSA S, DOMNGUEZ Benavides T, KAEWCHAROEN A, et al. The Jordanvon Neumann Constans and Fixed Points for Multivalued Nonexpansive Mappings[J]. Math. Anal. Appl, 2006,320(2): 916-927.
[22]GOEBEL K. On a Fixed Point Theorem for Multivalued Nonexpansive Mappings[J]. Ann. Univ. Mariae CurieSkodowska Sect. A,1975(29): 69-72.
(編輯:關(guān)毅)