常 娜, 王巧俠, 王小平, 趙 倩
(1. 陜西中醫(yī)藥大學(xué) 分子病理學(xué)研究室, 咸陽 712046; 2. 西安中心醫(yī)院感染科, 西安 710000)
癌癥是一類常見病、多發(fā)病,2014年世界衛(wèi)生組織稱,癌癥是造成人類死亡的主要原因,每年世界上約有820萬人死于惡性腫瘤,而這其中約一半來自中國(guó)。大多癌癥都以手術(shù)治療為主,然而某些癌癥后期復(fù)發(fā)率依然很高[1];化療、放療等作為輔助治療手段給人體帶來太大的副作用。天然藥物具有多靶點(diǎn)、多成分的特點(diǎn),使得植物源化合物逐漸成為臨床抗腫瘤研究熱點(diǎn)。1985年Kuttan等[2]首次提出姜黃素可以治療腫瘤,隨后大量的研究[3-5]證明姜黃素有抗感染、抗炎、抗氧化、抑制腫瘤生長(zhǎng)等作用,因其具有抗癌譜廣、高效、低毒等特點(diǎn),已經(jīng)被稱為第3代抗癌藥物[3],其對(duì)腫瘤的主要作用及機(jī)制如下。
1抑制生長(zhǎng)與增殖
細(xì)胞生命活動(dòng)的基本過程是一個(gè)完整的細(xì)胞周期,一般按照G1-S-G2-M的順序發(fā)展,當(dāng)某些因素?fù)p害細(xì)胞DNA完整性時(shí),細(xì)胞不能順利通過G1/S和G2/M檢測(cè)點(diǎn),所以需要將受損基因修復(fù)才可以繼續(xù)發(fā)育或及時(shí)啟動(dòng)凋亡系統(tǒng),發(fā)揮免疫自穩(wěn)功能[6]。通常周期蛋白依賴性激酶(CDK)和周期蛋白(cyclin)[7]參與細(xì)胞周期的進(jìn)程,因此通過調(diào)節(jié)CDK和cyclin可以阻滯周期,比如:王文廉等[8]發(fā)現(xiàn)姜黃素可以使肝癌SNU475細(xì)胞AKt表達(dá)水平下降,促進(jìn)p21WAF1/CIP, CDK的活性受到抑制,最終抑制其增殖;姜黃素通過下調(diào)cyclin、CDK2[9-10]分別使頭頸鱗狀細(xì)胞癌、肺癌細(xì)胞周期阻滯于G1/S期和G2/M期;姜黃素也可以通過下調(diào)cyclin D1、上調(diào)cyclin B1使胃癌細(xì)胞周期阻滯在G2/S期[11]。
姜黃素也能通過調(diào)控某些信號(hào)通路的活性抑制腫瘤的發(fā)展[12],比如ATK/Fox M1信號(hào)通路。AKT是該通路的重要分子,AKt[13]能使多種蛋白磷酸化,是調(diào)節(jié)細(xì)胞存活的關(guān)鍵蛋白激酶;Fox M1作為Forrkhead轉(zhuǎn)錄因子的一員也參與細(xì)胞存活[14],因此Fox通路和ATK通路能調(diào)控癌細(xì)胞的生長(zhǎng)[15]。賀東黎[16]證實(shí)姜黃素通過下調(diào)Fox M1和p-AKT蛋白,抑制p-ATK/Fox M1信號(hào)通路阻礙胃癌細(xì)胞的增殖。
凋亡可以保護(hù)機(jī)體,預(yù)防炎癥擴(kuò)散從而阻止病變向惡性方向發(fā)展,因此凋亡是抗癌的關(guān)鍵。
Caspase是參與細(xì)胞的生長(zhǎng)與凋亡的[17-18],通過調(diào)節(jié)Caspase可以促進(jìn)凋亡。有研究[19]表明姜黃素通過上調(diào)caspase-3 和下調(diào)磷酸化的AKt使 Ewing′s 肉瘤細(xì)胞的SK-NEP-1周期阻滯,進(jìn)而促進(jìn)該細(xì)胞凋亡;姜黃素通過上調(diào)caspase-3、caspase-9,可以誘導(dǎo)肺癌細(xì)胞凋亡[20];姜黃素通過上調(diào) caspase-3 和下調(diào)NF-κB的表達(dá)來促進(jìn)卵巢癌細(xì)胞的凋亡[21]。
Bcl-2家族由抗凋亡蛋白(如Bcl-2)和促凋亡蛋白(如Bax)組成,有研究[22-24]表明姜黃素或許通過調(diào)節(jié)細(xì)胞內(nèi)Bcl-2/Bax的值而促進(jìn)凋亡,比如:姜黃素抑制Bcl-2蛋白而使卵巢癌細(xì)胞凋亡[25];姜黃素增加Bax、減少Bcl-2蛋白含量使人肝癌細(xì)胞發(fā)生凋亡[26]。
p53是正常存在于細(xì)胞核內(nèi)的蛋白,是一種抗癌基因,可以作為“分子警察”在細(xì)胞周期中發(fā)揮作用[27],負(fù)責(zé)檢查DNA是否損傷,如果細(xì)胞DNA受損傷,p53蛋白會(huì)進(jìn)行細(xì)胞修復(fù),若無法修復(fù),p53會(huì)啟動(dòng)細(xì)胞凋亡功能,阻礙細(xì)胞的生長(zhǎng)增殖。江燕妮等[28]研究發(fā)現(xiàn)姜黃素能激活p53蛋白,上調(diào) P21蛋白而抑制腎癌786-O細(xì)胞生長(zhǎng)、阻滯該細(xì)胞周期并促進(jìn)其凋亡,從而發(fā)揮抗癌作用;姜黃素可以激活p53蛋白、下游蛋白P21、細(xì)胞周期調(diào)節(jié)蛋白p16以及下游視網(wǎng)膜母細(xì)胞瘤蛋白來抑制乳腺癌細(xì)胞的增殖[29]。
侵襲和轉(zhuǎn)移通常是癌細(xì)胞從原發(fā)部位脫離、浸潤(rùn)到周邊的正常組織,形成繼發(fā)瘤,尤其轉(zhuǎn)移在臨床上為絕大多數(shù)腫瘤的致死因素[27],因此抑制腫瘤細(xì)胞的轉(zhuǎn)移是抗癌的關(guān)鍵。與此相關(guān)的機(jī)制主要有如下幾種。
基質(zhì)金屬蛋白酶(MMP)可以抑制癌細(xì)胞生殖并阻止其侵襲,有研究指出抑制MMP-2/MMP-9可能成為腫瘤治療的新靶點(diǎn)[30],而MMP活性通常與基因轉(zhuǎn)錄水平有關(guān),比如齊瑞芳等[31]發(fā)現(xiàn)姜黃素通過抑制MMP2及 mRNA的表達(dá)可以阻止前列腺癌 PC3 細(xì)胞的遷移[32];還有研究[33]證實(shí)姜黃素通過下調(diào)MTl-MMP、MMP-2和抑制NF-κB表達(dá)阻止宮頸癌細(xì)胞的侵襲遷移。
核轉(zhuǎn)錄因子(NF-κB)能調(diào)控許多基因的表達(dá),包括MMP-2/MMP-9[32],有很多研究發(fā)現(xiàn)通過調(diào)控NF-κB的活性可以有效抑制腫瘤轉(zhuǎn)移。比如:姜黃素通過阻礙NF-κB的活化,下調(diào)MMP-2、MMP-9,由此阻止子宮內(nèi)膜癌細(xì)胞侵襲和增殖[34];Su等[35]發(fā)現(xiàn)姜黃素能有效抑制NF-κB /p65信號(hào)通路及環(huán)氧合酶 COX-2 的表達(dá),同時(shí)下調(diào)MMP2,達(dá)到阻礙結(jié)腸癌細(xì)胞的侵襲的目的。
血管的生成可以給癌細(xì)胞提供新的營(yíng)養(yǎng),是腫瘤侵襲轉(zhuǎn)移的關(guān)鍵[36],而與血管生成最相關(guān)的就是血管內(nèi)皮生長(zhǎng)因子(VEGF)[37],而VEGF/VEGFR通路是血管內(nèi)皮細(xì)胞生長(zhǎng)的重要分子信號(hào)[38]。研究發(fā)現(xiàn)[39]姜黃素能夠通過抑制VEGF的表達(dá),抑制內(nèi)皮細(xì)胞生長(zhǎng)與轉(zhuǎn)移;還有研究[40]證實(shí)姜黃素可以通過抑制c-Met/AKT/m TOR/S6 信號(hào)通路活化進(jìn)而抑制 VEGF蛋白表達(dá)最終能夠抑制血管內(nèi)皮細(xì)胞遷移。
化療一般多用于中晚期癌癥的治療,但其最大的阻礙就是多藥耐藥(MDR),與MDR 發(fā)生的機(jī)制有關(guān)的有以下兩種。
NF-κB位于PI3K/Akt通路下游,一些化療藥物如順鉑等激活NF-κB時(shí),會(huì)使該通路上的相關(guān)Akt蛋白磷酸化,從而影響細(xì)胞存活[41]。姜黃素可能通過PI3K/Akt通路,使胸苷酸合成酶上游的NF-κB抑制來提高乳腺癌細(xì)胞對(duì)5 -氟尿嘧啶的化療敏感性[42];姜黃素也可以通過抑制NF-κB通路,抑制MDR1和COX-2的表達(dá),從而可加強(qiáng)大腸癌細(xì)胞對(duì)阿霉素的敏感性[43]。
FEN1在 DNA 的表達(dá)、修復(fù)中起著關(guān)鍵作用[44],如果FEN1表達(dá)的基因異常,就會(huì)使FEN1的含量在機(jī)體內(nèi)不正常變化,相關(guān)的基因組就會(huì)呈不穩(wěn)定變化,最后容易發(fā)展為腫瘤[45],因此通過抑制FEN1的表達(dá)或許能達(dá)到抗癌的目的。有研究[46-47]發(fā)現(xiàn)經(jīng)NRF2通路可以下調(diào)FEN1從而阻礙乳腺癌細(xì)胞的增殖同時(shí)還能增強(qiáng)其對(duì)順鉑的敏感性。
尋找一種低毒高效的藥物來抗癌一直是醫(yī)者們的研究方向,姜黃素由于來源容易、低毒高效且抗腫瘤范圍廣等優(yōu)點(diǎn)在預(yù)防癌癥和抗癌中有巨大的潛力,多項(xiàng)體內(nèi)外實(shí)驗(yàn)均表明姜黃素可以通過不同機(jī)制治療腫瘤。但筆者瀏覽大量的文獻(xiàn)發(fā)現(xiàn):1)體外實(shí)驗(yàn)多,體內(nèi)實(shí)驗(yàn)少;2)誘導(dǎo)凋亡和抑制增殖的研究多,其他機(jī)制的研究少。事實(shí)上這些抗癌機(jī)制是相互影響的,并不是獨(dú)自發(fā)揮作用的。所以今后研究者們應(yīng)該多做體內(nèi)實(shí)驗(yàn),全面深入地研究姜黃素各個(gè)方面的抗癌機(jī)制,為姜黃素在抗癌治療中提供參考。
[1]WANG Y, LUO Q, LI Y, et al. Radiofrequency ablation versus hepatic resection for small hepatocellular carcinomas: a meta-analysis of randomized and nonrandomized controlled trials[J]. PLoS One, 2014, 9(1):e84484.
[2]KUTTAN R, BHANUMATHY P, NIRMALA K, et al. Potential anticancer activity of turmeric (Curcumalonga) [J]. Cancer Lett,1985, 29(2):197-202.
[3]DAI X Z, YIN H T, SUN L F, et al. Potential therapeutic efficacy of curcumin in liver cancer[J]. Asian Pac J Cancer Prev, 2013, 14(6):3855-3859.
[4]SHISHODIA S, CHATURVEDI M M, AGGARWAL B B. Role of curcumin in cancer therapy [J].Curr Probl Cancer, 2007, 31(4):243-305.
[5]GUPTA S C, PATCHVA S, AGGARWAL B B. Therapeutic roles of curcumin: lessons learned from clinical trials [J].AAPS J, 2013, 15(1):195-218.
[6]SIEGEL R, DESANTIS C, VIRGO K, et al. Cancer treatment and survivorship statistics, 2012[J].CA Cancer J Clin, 2012 , 62(4):220-241.
[7]YANG P, YIN K, ZHONG D, et al. Inhibition of osteosarcoma cell progression by MacroH2A via the downregulation of cyclin D and cyclin dependent kinase genes[J]. Mol Med Rep, 2014, 11(3):1905-1910.
[8]王文廉,姬穎華,萬立新,等.姜黃素對(duì)人肝癌細(xì)胞 SNU475 增殖及凋亡的影響[J]. 中藥藥理與臨床,2015,31(4):47-50.
[9]SIVANANTHAM B,SETHURAMAN S,KRISHNAN U M. Combinatorial effects of curcumin with an anti-neoplastic agent on head and neck squamous cell carcinoma through the regulation of EGFR-ERK1/2 and apoptotic signaling pathways[J]. ACS Comb Sci,2016,18(1):22-35.
[10]XIA Y Q ,WEI X Y ,LI W L ,et al. Curcumin analogue A501 induces G2/M arrest and apoptosis in non-small cell lung cancer cells[J].Asian Pac J Cancer Prev, 2014, 15(16):6893-6898.
[11]CAO A L,TANG Q F,ZHOU W, et al. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells[J]. J Asian Nat Prod Res, 2015, 17(1):56-63.
[12]ARUMUGGAM N, BHOWMICK N A, UPASINGHE H P. A review:phytoschemicals targeting JAK/STAT signaling and iDO expression in caneer[J]. Phytother Res, 2015, 29(6):805-817.
[13]POLIVKA J J R, JANKU F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway[J]. Pharmacol Ther, 2014, 142(2):164-175.
[14]NING Y X, LI Q X, REN K Q, et al. 7-difluoromethoxyl-5,4′-di-n-octyl genistein inhibits ovarian cancer stem cell characteristics through the downregulation of FOXM1[J]. Oncol Lett, 2014, 8(1):295-300.
[15]YUNG M M, CHAN D W, LIU V W, et al. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade[J]. BMC Cancer, 2013, 13:327.
[16]賀東黎. 姜黃素通過ATK/FoxM1信號(hào)通路調(diào)控胃癌干細(xì)胞增殖及凋亡[J]. 中國(guó)組織工程研究,2016,20(32):4731-4737.
[17]YAO G, YANG L, HU Y, et al. Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization[J]. Mol Immunol, 2006,43(7):915-926.
[18]NICHOLSON D W. Caspase structure, proteolytic substrates, and function during apoptotic cell death[J]. Cell Death Differ, 1999, 6(11):1028-1042.
[19]SINGH M, PANDEY A, KARIKARI C A, et al. Cell cycle inhibition and apoptosis induced by curcumin in Ewing sarcoma cell line SK-NEP-1[J].Med Oncol, 2010, 27(4):1096-1101.
[20]KANG J H, KANG H S, KIM I K, et al. Curcumin sensitize human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin[J]. Exp Biol Med, 2015, 240(11):1416-1425.
[21]ZHENG L D,TONG Q S, WU C H. Inhibitory effects of curcumin on apoptosis of human ovary cancer cell line A2780 and its molecular mechanism[J].Ai Zheng, 2002, 21(12):1296-1300.
[22]郭立達(dá),焦振霞,宋 瑛,等. 姜黃素誘導(dǎo)結(jié)腸癌 LoVo細(xì)胞凋亡的作用及機(jī)制研究[J].中國(guó)中藥雜志,2013,38(13):2191-2194.
[23]張菁茹.姜黃素在體外對(duì)人大腸癌細(xì)胞株生長(zhǎng)和凋亡的影響[J].中華中醫(yī)藥學(xué)刊,2008,26(6):1284-1286.
[24]SUN L, XIE P, WADA J, et al. Rap1b GTPase ameliorates glucose-induced mitochondrial dysfunction[J]. J Am Soc Nephrol, 2008, 19(12):2293-2301.
[25]孫桂霞,張紅霞,高 超,等. 姜黃素對(duì)卵巢癌細(xì)胞 SKOV-3增值抑制作用[J]. 中國(guó)臨床藥理學(xué)雜志,2016, 7(32):637-639.
[26]YU J, ZHOU X, HE X, et al. Curcumin induces apoptosis involving bax/bcl-2 in human hepatoma SMMC-7721 cells[J]. Asian Pac J Cancer Prex, 2011, 12(8):1925-1929.
[27]范維珂.現(xiàn)代腫瘤學(xué)基礎(chǔ)[M].北京:人民衛(wèi)生出版社,2005:97-98.
[28]江燕妮,邵紅偉,譚宇蕙,等.姜黃素誘導(dǎo)腎癌786-O細(xì)胞 G2/M期阻滯及其分子機(jī)制的研究[J]. 中藥新藥與臨床藥理,2015(4):460-463.
[29]LI Y B, GAO J L, ZHONG Z F, et al. Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways[J]. Pharmacol Rep, 2013, 65(3):700-709.
[30]SUN W, LIU D B, LI W W, et al. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9[J]. Int J Oncol, 2014, 44(5):1551-1560.
[31]齊瑞芳,于小玲,趙 輝. 姜黃素對(duì)前列腺癌PC3細(xì)胞遷移的抑制作用及對(duì)MMP2體內(nèi)外表達(dá)影響[J]. 中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志, 2015(11):1398-1400.
[32]LI J, LAU G K, CHEN L, et al. Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression[J]. PLoS One, 2011, 6(7):e21816.
[33]徐 嘮,牟曉玲,趙 敬.姜黃素對(duì)人宮頸癌細(xì)胞ci-ski侵襲轉(zhuǎn)移的影響[J].中山大學(xué)學(xué)報(bào),2009,30(1):92-95.
[34]陳 茜,陳麗娟,黨媛媛,等. 姜黃素對(duì)人子宮內(nèi)膜癌細(xì)胞 HEC-1-B侵襲轉(zhuǎn)移的影響[J].西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2016, 37(1):135-138.
[35]SU C C, CHEN G W, LIN J G, et al. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions[J]. Anticancer Res, 2006, 26(2A):1281-1288.
[36]CHOI H S, LEE K, KIM M K, et al. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis[J]. Oncotarget, 2016, 7(16):21775-21785.
[37]FU X, YANG Y, LI X, et al. RGD peptide-conjugated selenium nanoparticles: antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway[J]. Nanomedicine, 2016,12(6):1627-1639.
[38]LEE W S, PYUN B J, KIM S W, et al. TTAC-0001, a human monoclonal antibody targeting VEGFR-2/KDR, blocks tumor angiogenesis[J]. MAbs, 2015, 7(5):957-968.
[39]FU Z P, CHEN X, GUAN SW, et al. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway[J]. Oncotarget, 2015, 6(23):19469-19482.
[40]宋 嘉,王 劍,李 玉,等.姜黃素抑制 HGF 誘導(dǎo)血管內(nèi)皮細(xì)胞遷移和 VEGF 表達(dá)的體內(nèi)外研究[J].中國(guó)病理生理雜志,2016,32(11):1949-1957.
[41]CHATURVEDI M M,SUNG B,YADAV V R. et al. NF-κB addiction and its role in cancer: “one size does not fit all”[J]. Oncogene, 2011, 30(14):1615-1630.
[42]KANG J, KIM E, KIM W, et al. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines[J]. J Biol Chem, 2013, 288(38):27343-27357.
[43]CHUANG S E, YEH P Y, LU Y S, et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells[J]. Biochem Pharmacol, 2002, 63(9):1709-1716.
[44]VINOD B S, ANTONY J, NAIR H H, et al. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil[J]. Cell Death Dis, 2013, 4(2):e505.
[45]LIU Z, DUAN Z J, CHANG J Y, et al. Sinomenine sensitizes multidrug-resistant colon cancer cells to doxorubicin by downregulation of MDR-1 expression[J]. PloS One, 2014, 9(6):e98560.
[46]BALAKRISHNAN L, STEWART J, POLACZEK P, et al. Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates[J]. J Biol Chem, 2010, 12, 285(7):4398-4404.
[47]BALAKRISHAN L, BAMBARA R A. Flap endonueclease 1[J]. Annu Rev Bioebem, 2013, 82:119-138.
[48]CHEN B, ZHANG Y, WANG Y, et al. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression[J]. J Steroid Biochem Mol Biol, 2014, 143:11-18.
[49]鄒 嬌,陳 彬,李 強(qiáng), 等. 姜黃素對(duì)乳腺癌細(xì)胞順鉑敏感性的影響[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2016, 38(16):1809-1814.