王 歌,崔星毅,王晉安
(西北機(jī)電工程研究所,陜西 咸陽(yáng) 712099)
隨著科技的不斷進(jìn)步,現(xiàn)在戰(zhàn)爭(zhēng)的作戰(zhàn)模式已經(jīng)改變?yōu)楹?、陸、空三維一體的空間戰(zhàn)[1]。而空襲與反空襲戰(zhàn)爭(zhēng)也將是未來(lái)戰(zhàn)爭(zhēng)中主要的作戰(zhàn)模式。
高炮武器系統(tǒng)作為反空襲戰(zhàn)爭(zhēng)中的主要“成員”,其研制與發(fā)展備受關(guān)注。高炮跟蹤瞄準(zhǔn)系統(tǒng)使用方式一般分為半自動(dòng)跟瞄和全自動(dòng)跟瞄,半自動(dòng)跟瞄方式是指高炮使用數(shù)字化瞄具或者瞄準(zhǔn)鏡進(jìn)行瞄準(zhǔn),而全自動(dòng)跟瞄方式是火控發(fā)送主令,隨動(dòng)系統(tǒng)進(jìn)行跟瞄[2]。高炮隨動(dòng)系統(tǒng)是典型的伺服系統(tǒng),其用途是按照火控系統(tǒng)輸出的主令信號(hào),驅(qū)動(dòng)炮塔方位運(yùn)動(dòng)和起落部分高低運(yùn)動(dòng),同時(shí)檢測(cè)并輸出炮塔的方位、高低角位置量給火控分系統(tǒng)和跟蹤伺服系統(tǒng),完成方位和高低的調(diào)轉(zhuǎn)、穩(wěn)定跟蹤任務(wù)。高炮隨動(dòng)系統(tǒng)是否能夠保持穩(wěn)定和精確的跟蹤,以及其靜態(tài)特性和動(dòng)態(tài)特性都會(huì)直接影響到武器系統(tǒng)的作戰(zhàn)效能[3]。所以隨動(dòng)系統(tǒng)中方位角、高低角瞄準(zhǔn)速度和加速度作為高炮武器系統(tǒng)前期論證的主要環(huán)節(jié),其指標(biāo)論證的正確性和精確性將至關(guān)重要。目前,反空襲戰(zhàn)爭(zhēng)中主要的作戰(zhàn)目標(biāo)為巡航導(dǎo)彈和制導(dǎo)彈藥兩種[4]。傳統(tǒng)的跟蹤瞄準(zhǔn)指標(biāo)是通過《炮兵論證手冊(cè)》中的公式進(jìn)行出所需的最大值,并不能實(shí)時(shí)顯示跟蹤瞄準(zhǔn)方位角、高低角速度和加速度的變化,并且傳統(tǒng)的計(jì)算方法是按照零飛狀態(tài)進(jìn)行計(jì)算,但實(shí)際情況下目標(biāo)瞄準(zhǔn)系統(tǒng)則是要隨目標(biāo)未來(lái)點(diǎn)進(jìn)行射擊瞄準(zhǔn)。所以筆者在改進(jìn)傳統(tǒng)計(jì)算方法的基礎(chǔ)上,分別對(duì)巡航導(dǎo)彈和制導(dǎo)彈藥進(jìn)行高炮跟蹤瞄準(zhǔn)系統(tǒng)方位角、高低角速度和加速度指標(biāo)論證計(jì)算模型研究。
取巡航導(dǎo)彈的巡航段為計(jì)算對(duì)象,假設(shè)目標(biāo)水平、勻速、直線巡航飛行,作戰(zhàn)示意如圖1所示。其中目標(biāo)航路在xOz平面,航路軌跡為AC,目標(biāo)高度為H,目標(biāo)勻速水平直線飛行,速度為v,OP為水平航路捷徑,長(zhǎng)度為D0。圖中標(biāo)出的α為方位角,λ為高低角,D為炮目斜距離。
由圖1可知,目標(biāo)高低角為
(1)
目標(biāo)方位角為
α(t)=arctan(vt/D0)
(2)
對(duì)高低角和方位角進(jìn)行關(guān)于時(shí)間的一階求導(dǎo),得出目標(biāo)高低角速度為
(3)
方位角速度為
(4)
對(duì)高低角和方位角進(jìn)行關(guān)于時(shí)間的二階求導(dǎo)可得出目標(biāo)高低角和方位角的角加速度。由于推出的加速度公式冗長(zhǎng),這里不做敘述。
取制導(dǎo)炸彈的航路段為計(jì)算對(duì)象,假設(shè)目標(biāo)在xOz平面做直線俯沖,作戰(zhàn)簡(jiǎn)化示意如圖2所示,其中航路軌跡為AO,目標(biāo)在任意時(shí)刻的垂直高度為H,目標(biāo)速度為v,目標(biāo)俯沖角為θ,炮車布置P點(diǎn)上,φ為炮車在xOy平面內(nèi)的位置角度。
由圖2可知,目標(biāo)高低角為
λ=arcsin(H/D)=
(5)
目標(biāo)方位角為
(6)
對(duì)高低角和方位角進(jìn)行關(guān)于時(shí)間的一階求導(dǎo)和二階求導(dǎo),即可得出目標(biāo)高低、方位的角速度和角加速度。建立目標(biāo)現(xiàn)在點(diǎn)方位、高低角速度和加速度計(jì)算模型的流程圖,如圖3所示。
彈丸從炮口射出,飛行一定時(shí)間將與目標(biāo)在空中未來(lái)點(diǎn)相遇。彈丸在飛行過程中只考慮其受到的空氣阻力,彈丸飛行時(shí)間可通過外彈道方程進(jìn)行求解[5]。所以假設(shè)目標(biāo)現(xiàn)在點(diǎn)與未來(lái)點(diǎn)坐標(biāo)分別是某一時(shí)間函數(shù)F(t)和Fq(t),則未來(lái)點(diǎn)坐標(biāo)與現(xiàn)在點(diǎn)坐標(biāo)之間存在如下關(guān)系:
(7)
由式(7)可知,未來(lái)點(diǎn)坐標(biāo)函數(shù)的值可通過現(xiàn)在點(diǎn)坐標(biāo)函數(shù)求得,即:
Fq(t)=F(t+tf)
(8)
將式(8)對(duì)時(shí)間t進(jìn)行一階和二階微分,可得:
Fq′(t)=F′(t+tf)(1+tf′)
(9)
Fq″(t)=F″(t+tf)(1+tf′)2+F′(t+tf)tf″
(10)
式中,F(xiàn)′(t+tf)、F″(t+tf) 是在目標(biāo)到達(dá)未來(lái)點(diǎn)時(shí),目標(biāo)現(xiàn)在坐標(biāo)的一階與二階導(dǎo)數(shù)。
對(duì)于任一坐標(biāo)在t+tf瞬時(shí)的導(dǎo)數(shù),可由該坐標(biāo)對(duì)時(shí)間t的導(dǎo)數(shù)獲得,只要自變量t用t+tf替換即可。所以結(jié)合式(9)、(10)和上文推導(dǎo)出的目標(biāo)現(xiàn)在點(diǎn)角速度、角加速度的公式,可得到目標(biāo)未來(lái)點(diǎn)高低角速度、角加速度及方位角速度、角加速度。
高炮系統(tǒng)對(duì)空中目標(biāo)射擊時(shí),為保證彈丸對(duì)目標(biāo)具有一定的殺傷能力,要求彈丸在彈道的上升階段與目標(biāo)遭遇[6]。而上升段的彈道比較平伸,根據(jù)外彈道理論,彈丸飛行時(shí)間為[7]:
(11)
式中:Dq為提前點(diǎn)斜距離;v0為彈丸初速;β為高角。
由于高角β的變化較小,對(duì)式(11)進(jìn)一步近似處理,有:
(12)
對(duì)式(12)求一階與二階導(dǎo)數(shù),有:
(13)
(14)
式中,擬合函數(shù)Gt(CHD,v0)=exp(u),擬合參數(shù)的取值與求解參考文獻(xiàn)[7]。
將公式(13)、(14)代入公式(9)、(10),可得出等速直線俯沖運(yùn)動(dòng)目標(biāo)未來(lái)點(diǎn)高低角和方位角速度以及加速度模型,建立其計(jì)算模型的流程圖,如圖4所示。
目標(biāo)以速度v=300 m/s,航高H=50 m,水平航路捷徑D0=500 m進(jìn)行水平航路勻速飛行,基于35 毫米牽引高炮發(fā)射榴彈的情況,根據(jù)所建計(jì)算模型,可得出水平全航路高炮隨動(dòng)系統(tǒng)跟蹤瞄準(zhǔn)的高低角、方位角的速度和加速度實(shí)時(shí)變化的仿真曲線,如圖5、6所示。
將計(jì)算結(jié)果與傳統(tǒng)方法計(jì)算出的結(jié)果進(jìn)行對(duì)比,如表1所示。按照所建的數(shù)學(xué)模型計(jì)算出來(lái)的結(jié)果較傳統(tǒng)計(jì)算方法的結(jié)果在數(shù)值上大0.3~0.5。
表1 水平航路計(jì)算結(jié)果對(duì)比表
目標(biāo)以速度v=500 m/s,俯沖角θ=60°,水平航路捷徑D0=500 m進(jìn)行俯沖航路飛行?;?5 毫米牽引高炮發(fā)射榴彈的情況,根據(jù)所建計(jì)算模型,可得出俯沖全航路高炮隨動(dòng)系統(tǒng)跟蹤瞄準(zhǔn)的高低角、方位角的速度和加速度實(shí)時(shí)變化的仿真曲線,如圖7、8所示。
將計(jì)算結(jié)果與傳統(tǒng)方法計(jì)算出的結(jié)果進(jìn)行對(duì)比,如表2所示。按照所建的數(shù)學(xué)模型計(jì)算出來(lái)的結(jié)果較傳統(tǒng)計(jì)算方法的結(jié)果在數(shù)值上大0.6~0.8。
表2 俯沖航路計(jì)算結(jié)果對(duì)比表
根據(jù)實(shí)例計(jì)算結(jié)果,可以看出,筆者建立的高炮隨動(dòng)跟蹤瞄準(zhǔn)系統(tǒng)計(jì)算模型計(jì)算得出的結(jié)果與傳統(tǒng)計(jì)算方法的結(jié)果有些許偏差,原因分析為:傳統(tǒng)計(jì)算方法是按照高炮零飛狀態(tài)下進(jìn)行高低角、方位角的速度和加速度計(jì)算,并沒有考慮到彈丸與目標(biāo)交匯過程中的飛行時(shí)間,此外,在彈飛時(shí)間的計(jì)算過程中,由于高角變化較小,忽略其變化,這也會(huì)造成最終計(jì)算結(jié)果的偏差。
筆者在結(jié)合實(shí)際情況下,建立目標(biāo)未來(lái)點(diǎn)的高炮跟蹤瞄準(zhǔn)系統(tǒng)計(jì)算模型。該模型可求解目標(biāo)從出現(xiàn)到過航階段內(nèi)方位角和高低角跟蹤瞄準(zhǔn)速度、加速度隨時(shí)間連續(xù)變化的曲線。傳統(tǒng)計(jì)算方法只是計(jì)算出高低角、方位角的最大速度和加速度,即只計(jì)算出一個(gè)點(diǎn)。但本文建立的計(jì)算模型能夠顯示目標(biāo)在飛行過程中隨動(dòng)系統(tǒng)跟蹤目標(biāo)的方位角、高低角速度和加速度的實(shí)時(shí)動(dòng)態(tài)指標(biāo),如方位、高低的角速度和角加速度峰值出現(xiàn)的位置和時(shí)間。此模型較傳統(tǒng)計(jì)算方法更加符合高炮實(shí)際作戰(zhàn)情況,得到的計(jì)算結(jié)果更加貼合作戰(zhàn)需求,并且可為高炮系統(tǒng)計(jì)算最大瞄準(zhǔn)速度和加速度的選擇提供充足的數(shù)據(jù)支持,為分析計(jì)算不同防空武器系統(tǒng)觀測(cè)設(shè)備及火力系統(tǒng)的角速度、角加速度提供理論計(jì)算幫助。
參考文獻(xiàn)(References)
[1] 羅霄.未來(lái)戰(zhàn)爭(zhēng)模式及對(duì)策淺議[J].現(xiàn)代防御技術(shù), 2005, 33(3):1-4.
LUO Xiao. Future war mode and game[J]. Modern Defense Technology,2005, 33(3): 1-4. (in Chinese)
[2] 李相民,孫瑾.火力控制原理[M].北京:國(guó)防工業(yè)出版社,2007.
LI Xiangmin,SUN Jin. Modern fire control theory[M]. Beijing: National Defense Industry Press,2007. (in Chinese)
[3] 王克強(qiáng).防空概論[M].北京:國(guó)防工業(yè)出版社,2012.
WANG Keqiang. Introduction to air defense[M]. Beijing: National Defense Industry Press,2012. (in Chinese)
[4] 李魁武.現(xiàn)代自行高炮武器系統(tǒng)總體技術(shù)[M].北京:國(guó)防工業(yè)出版社,2012.
LI Kuiwu.Modern antiaircraft weapons system overall technical[M]. Beijing: National Defense Industry Press,2012.(in Chinese)
[5] 李向東.彈藥概論[M].北京:國(guó)防工業(yè)出版社,2012.
LI Xiangdong. Overview of ammunition[M]. Beijing: National Defense Industry Press, 2012. (in Chinese)
[6] 李銀伢,陳黎,戚國(guó)慶,等.高炮對(duì)超高速目標(biāo)射擊死界與射擊時(shí)限的研究[J]. 兵工學(xué)報(bào),2009,30(6):663- 667.
LI Yinya, CHEN Li, QI Guoqing, et al. Research on utmost shooting boundary and time limit of anti-craft artillery against hypervelocity target[J]. Acta Armamentarii,2009,30(6):663-667. (in Chinese)
[7] 肖元星,張冠杰.地面防空武器系統(tǒng)效費(fèi)分析[M]. 北京:國(guó)防工業(yè)出版社,2006.
XIAO Yuanxing,ZHANG Guanjie. Effectiveness-cost ana-lysis on land-based air defense weapon system[M]. Beijing: National Defense Industry Press, 2006. (in Chinese)