白 丹,孫淑貞,任培琦,徐先伯,梁志棟
?
地下灌豎管灌水器濕潤體時空變化規(guī)律
白 丹,孫淑貞,任培琦,徐先伯,梁志棟
(西安理工大學(xué)水利水電學(xué)院,西安 710048)
研究地下豎管灌水器的土壤濕潤體特性時空變化規(guī)律及影響因素,對進一步研究豎管地下灌溉技術(shù)要素,并將這一節(jié)水灌溉技術(shù)用于實際具有重要意義。該文基于室內(nèi)豎管灌水器入滲試驗,研究了土壤物理特性參數(shù)(土壤初始含水率和土壤容重)、豎管灌水器工作壓力水頭和灌水器技術(shù)參數(shù)(豎管管徑)對土壤濕潤體空間分布的影響。根據(jù)試驗數(shù)據(jù),構(gòu)建了在不同方向上豎管灌水器工作壓力水頭、土壤初始含水率、土壤容重、豎管灌水器直徑和豎管灌水器埋深等因素與濕潤體時空變化特征值的量化關(guān)系,其決定系數(shù)均在0.85以上。按標(biāo)準(zhǔn)化回歸系數(shù)分析得濕潤鋒運移距離與壓力水頭、初始含水率、豎管直徑及豎管埋深呈正相關(guān),與土壤容重呈負(fù)相關(guān)。濕潤鋒在各個方向的運移距離由大到小依次為:向下、水平和向上。根據(jù)不同方向濕潤鋒運移距離和各影響因素的量化關(guān)系,建立了不同方向濕潤鋒運移速率和各影響因素的量化關(guān)系,這一關(guān)系表明:在入滲初期,各個方向的濕潤鋒運移速率較大,隨著入滲時間的延續(xù),其值逐漸減小,在200 min左右,開始逐步趨于穩(wěn)定。
含水率;土壤;灌水器;地下灌溉;濕潤體;運移距離;運移速率
地下灌溉是一種高效節(jié)水灌溉方法[1],灌溉水通過埋入地下的灌水器滲入作物周圍根系土壤中,其對土壤結(jié)構(gòu)的破壞性小,并能有效地減少土壤表面的水分蒸發(fā)損失,節(jié)水增產(chǎn)效果十分顯著。研究地下灌溉土壤濕潤體時空變化特征對地下灌溉灌水器的合理布置具有重要意義,國內(nèi)外學(xué)者在這一領(lǐng)域開展了大量的研究,主要集中在地下滴灌濕潤體形狀、濕潤體含水率分布[2-6]、濕潤體特征值變化規(guī)律[7-10]及各種影響因素[11]分析等方面。近年來針對學(xué)者提出的一些新的地下灌溉技術(shù),開展了陶土頭灌水器地下灌溉[12-13]、微潤灌溉[14]和無壓灌溉[15]等濕潤體時空變化規(guī)律的研究,為這些新型地下灌溉技術(shù)推廣應(yīng)用提供了依據(jù)。濕潤體形狀及大小決定著作物的生長情況以及田間水分利用率。目前對濕潤體特性的研究集中在分析濕潤鋒運移與入滲時間、流量、壓力水頭、容重和土壤初始含水率等關(guān)系方面[16-22],對于各影響因素與濕潤鋒運移距離的量化關(guān)系研究較少。目前地下灌溉應(yīng)用中要解決的問題之一是如何合理確定灌水器流量、間距、埋深[17,23-26]等參數(shù),而確定這些參數(shù)的重要依據(jù)是確定土壤濕潤體形狀、大小及含水率分布。
豎管灌水器是一種新型地下灌溉灌水器,對豎管灌水器入滲過程研究[27-29]表明:土壤質(zhì)地越重,入滲量越小。入滲條件相同時,砂質(zhì)壤土入滲量大于粉質(zhì)壤土。壓力水頭和管徑的大小對累計入滲量影響較大,隨入滲時間延長,壓力水頭和管徑對累計入滲量影響程度均減弱;在壓力勢、重力勢和基質(zhì)勢的共同作用下,可根據(jù)土壤含水率,自動調(diào)節(jié)豎管灌水器向土壤入滲的流量,具有自適應(yīng)灌溉技術(shù)的特征;對豎管灌水器入滲結(jié)束后的濕潤體進行了初步研究[28]表明:濕潤體含水率的分布在水平方向呈現(xiàn)為圓環(huán)形濕潤鋒,垂直方向正向減小略慢于負(fù)向,濕潤半徑大小依次為負(fù)向濕潤距離最大,正向濕潤距離最小,水平濕潤距離居中;且豎管地下灌溉濕潤體的平均含水率變化范圍大于微潤灌溉。上述成果僅研究了豎管灌水器入滲結(jié)束后濕潤體含水率分布特征。為了合理的設(shè)計豎管地下灌溉系統(tǒng)、提高灌溉水利用率,本文根據(jù)地下灌溉灌水器入滲過程中濕潤體的時空變化規(guī)律和作物根系的分布特征,確定合理的豎管灌水器技術(shù)參數(shù)(豎管灌水器壓力水頭、土壤容重、土壤初始含水率、豎管直徑和豎管(水土結(jié)合面)埋深等),探討豎管灌水器的技術(shù)參數(shù)與入滲過程中土壤濕潤體時空變化的關(guān)系。
試驗所使用土樣取自楊凌,供試土壤經(jīng)風(fēng)干、碾碎、均勻混合后過2 mm的篩子,采用Mastersizer 2000激光粒度分析儀(英國馬爾文公司)測定土壤粒徑組成,其黏粒所占體積分?jǐn)?shù)為18.7%,粉粒為34.7%,砂粒為45.6%,依據(jù)國際制土壤分類標(biāo)準(zhǔn),該土壤質(zhì)地為黏壤土。
試驗裝置如圖1所示,其由土箱、供水裝置和豎管灌水器等組成。試驗土箱是一個半徑20 cm的1/4圓柱有機玻璃土箱,供水裝置采用馬氏瓶供水(馬氏瓶尺寸為內(nèi)徑為5 cm,高度50 cm)。試驗土箱中豎管灌水器和馬氏瓶由橡膠管連接,通過調(diào)節(jié)可變高度的鐵架高度來調(diào)節(jié)豎管壓力水頭。實際工程中豎管灌水器[15]是一個埋在土壤中與毛管相接的豎管,其上端和毛管相接,下端和土壤接觸,水土結(jié)合面直徑為豎管直徑,水土結(jié)合面深度為豎管埋深。
圖1 地下灌溉豎管灌水器試驗裝置圖
表1 試驗設(shè)計
將試驗土按照表1配制不同含水率,按照所定容重分層(5 cm)裝入有機玻璃土箱中,層間打毛,使兩層土緊密結(jié)合。在裝土20 cm后開始埋入豎管灌水器,埋深按照表1設(shè)置的不同深度裝入土箱中。入滲開始后,用秒表計時,并定時觀測記錄土壤濕潤鋒在3個方向(水平、向上和向下方向)上的運移距離,得到在不同時刻所對應(yīng)的濕潤體形狀。由馬氏瓶上的刻度記錄滲入土壤中的水量。上述試驗在西北旱區(qū)生態(tài)水利工程國家重點實驗室培育基地的室內(nèi)試驗室(西安理工大學(xué))進行。
為了比較不同影響因素條件下得到的濕潤體大小及其形狀,由于試驗組數(shù)較多選取具有代表性的3組試驗(試驗1、3和5)進行說明,圖2分別為試驗1、3和5濕潤體隨時間的變化過程,濕潤體形狀近似于一個橢球體,出水口位置位于縱坐標(biāo)原點,對比試驗1、3和5濕潤體,試驗因素值不同,濕潤范圍也有所不同,表明各影響因素對濕潤鋒運移影響大小不一。在灌水前期,3個方向上的濕潤距離基本一致,濕潤體呈圓形,隨入滲時間增加,垂直向下方向濕潤距離逐漸大于水平和垂直向上方向。土壤濕潤體的大小由水平入滲距離和垂直入滲距離2個要素共同決定,水平運移距離和垂直運移距離是濕潤體的2個重要特征。掌握濕潤體的形狀及大小變化規(guī)律,可以正確指導(dǎo)在實際工程中合理的布置豎管灌水器。
在不同試驗處理下,水平、垂直向上和垂直向下3個方向上濕潤鋒運移距離隨入滲時間的變化如圖3所示。結(jié)合圖3中數(shù)據(jù)可以看出,土壤濕潤變化范圍在6.7~19.1 cm之間。以試驗10為例,繪制在3個方向上濕潤鋒運移距離隨時間的變化關(guān)系圖,如圖4所示。由圖3和圖4可知,土壤濕潤體在水平方向、垂直向上和垂直向下方向的濕潤距離均隨入滲時間的增加而增大。在灌水開始,3個方向的濕潤距離基本上保持一致,隨灌水時間延長,垂直向下方向的濕潤距離明顯大于其他2個方向。這由于入滲初期土壤水分的運移驅(qū)動力主要是基質(zhì)勢,受重力作用較小,而此時灌水器周圍基質(zhì)勢基本一樣,隨著水分的不斷入滲,土壤基質(zhì)勢梯度不斷減小,此時入滲過程中灌溉水受基質(zhì)勢、壓力勢和重力勢的共同作用,基質(zhì)勢的作用逐漸減小,壓力勢和重力勢影響逐漸增大。隨著入滲時間的不斷增大,土壤含水率飽和圈增大,水分向周圍土壤的擴散速度逐漸減小,最終趨于一個穩(wěn)定值[19]。
2.2.1 濕潤鋒運移距離經(jīng)驗公式
假設(shè)各個方向濕潤鋒運移距離與各影響因素(包括入滲時間)函數(shù)關(guān)系如下:
注:濕潤鋒等高線由里向外表示1、10、20、60、90、120、150、180、240、300、360、420 min的濕潤鋒。
Note: Contour line from inside to outside represents wetting front at 1, 10, 20, 60, 90, 120, 150, 180, 240, 300, 360 and 420 min, respectively.
圖2 濕潤鋒隨時間的變化過程
Fig.2 Changing process of wetting front with time
圖3 濕潤鋒運移距離隨時間變化過程
圖4 試驗10濕潤距離隨時間變化過程
式中,1和2分別表示水平方向,垂直向上方向,垂直向下方向濕潤鋒運移距離,cm;為豎管工作壓力水頭,m;為土壤容重,g/cm3;為土壤初始含水率,%;為豎管直徑,mm;為豎管埋深cm:1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3均為經(jīng)驗參數(shù)。
將第1~18組試驗所得的不同時間不同方向的濕潤距離與各試驗因素數(shù)值采用多元回歸分析,得到不同方向上各經(jīng)驗參數(shù)計算值,將得出的經(jīng)驗值代入式(1)、(2)和(3)中得到式(4)、(5)和(6),經(jīng)回歸分析得垂直向上方向上的決定系數(shù)2為0.85(<0.05),均方根誤差(root-mean-square error,RMSE)為0.24 cm,水平方向2為0.86(<0.05),RMSE為0.23 cm和垂直向下方向2為0.87(<0.05),RMSE為0.22 cm,表明該量化關(guān)系式可以較好地反映豎管灌水器濕潤體運移距離與各影響因素間的量化關(guān)系。
2.2.2 濕潤鋒運移經(jīng)驗公式驗證
為驗證不同方向濕潤距離與各因素間的量化關(guān)系,用第19組試驗數(shù)據(jù)驗證濕潤鋒運移經(jīng)驗公式,將第19組有關(guān)數(shù)據(jù)(見表1)代入式(4)、(5)和(6),可計算其濕潤距離預(yù)測值見圖5,水平、向上、向下3個方向?qū)崪y與預(yù)測值2分別為0.98、0.99、0.99(<0.05),RMSE分別為0.13、0.05、0.09 cm。說明所建立的量化關(guān)系式能較好地反映濕潤體運移距離與各影響因素的量化關(guān)系。
2.2.3 各影響因素對濕潤鋒運移距離的影響
根據(jù)試驗數(shù)據(jù)(見圖3),采用SPSS統(tǒng)計軟件,分別計算3個方向上影響濕潤鋒運移距離的各因素的標(biāo)準(zhǔn)化回歸系數(shù)(見表2)。表2中,每一方向上各影響因素的標(biāo)準(zhǔn)化回歸系數(shù)可反映該因素對濕潤鋒運移距離的影響程度,比較同一方向上各影響因素對應(yīng)的標(biāo)準(zhǔn)化回歸系數(shù)絕對值,水平方向各因素影響程度從大到小依次為:入滲時間>壓力水頭>土壤容重>土壤初始含水率>豎管埋深>豎管直徑。垂直向上方向各因素影響程度從大到小依次為:入滲時間>壓力水頭>土壤容重>豎管埋深> 土壤初始含水率>豎管直徑。垂直向下方向各因素影響程度從大到小依次為:入滲時間>壓力水頭>土壤容重>土壤初始含水率> 豎管埋深>豎管直徑。從表2數(shù)據(jù)中可看出在3個方向上土壤初始含水率差異較為顯著,垂直向下方向土壤初始含水率對應(yīng)的標(biāo)準(zhǔn)化回歸系數(shù)大于其他2個方向,這主要由于在入滲前期主要受土壤基質(zhì)勢作用,當(dāng)土壤含水率增大,重力勢的作用相對于基質(zhì)勢增大,重力勢使得土壤水分垂向入滲總勢能大于相同條件下的徑向水分入滲的總勢能,更有利于濕潤峰的垂向前進。在3個方向上均呈現(xiàn)入滲時間、壓力水頭和土壤容重對濕潤鋒運移距離的影響較為顯著。壓力水頭、豎管直徑、土壤初始含水率和豎管埋深參數(shù)的標(biāo)準(zhǔn)化回歸系數(shù)為正值,表明其與濕潤鋒運移距離為正相關(guān),即當(dāng)、、和增大時,濕潤鋒運移距離增大;土壤容重參數(shù)的標(biāo)準(zhǔn)化回歸系數(shù)為負(fù)值,表明其與濕潤距離為負(fù)相關(guān),即當(dāng)增大時,濕潤鋒運移距離減小。
圖5 試驗預(yù)測值與實測值的關(guān)系
表2 標(biāo)準(zhǔn)化回歸系數(shù)
壓力水頭、豎管管徑和豎管埋深均為豎管灌水器技術(shù)參數(shù),這3個因素對濕潤體的特征參數(shù)的影響各不相同。灌水器工作壓力水頭、土壤的初始含水率、豎管埋深和豎管灌水器直徑增大時,濕潤體越大;灌水器埋深直接影響作物根系對土壤水分、養(yǎng)分的吸收[26],是土壤濕潤體與作物根系有效匹配關(guān)鍵因素, 從而影響植物整體的生長發(fā)育,埋深越大,濕潤體越大;濕潤體體積及濕潤鋒運移距離隨初始含水率增大而增大,主要是與土壤水分的入滲能力等有關(guān),通常初始含水率越小,基質(zhì)勢越大,所產(chǎn)生的基質(zhì)勢梯度也越大,土壤水分運動也就越快[19];土壤容重是反映土壤緊密程度的一個重要指標(biāo)[22],容重小的土壤,大孔隙多,入滲能力大,其濕潤鋒運移距離越大。由于土壤水分在垂直方向上受重力作用,水分向下的入滲梯度加大,使得在垂直方向水土結(jié)合面以下的濕潤距離大于水土結(jié)合面以上的濕潤距離。在確定豎管灌水器技術(shù)參數(shù)時,應(yīng)首先根據(jù)作物根系在土壤中的分布,確定濕潤體的影響范圍,再根據(jù)作物根系分布與濕潤體影響范圍的關(guān)系,合理確定豎管灌水器技術(shù)參數(shù),以保證土壤中的水分能充分被作物根系吸收,并盡量減少土壤表面蒸發(fā)。
2.2.4 濕潤鋒運移速率
濕潤鋒運移速率可反映濕潤鋒運移距離隨時間變化快慢的程度。在式(4)、(5)和(6)中,對時間求導(dǎo),得到3個方向上濕潤鋒運移速率:
式中分別表示水平方向,垂直向上方向,垂直向下方向濕潤鋒運移速率,cm/min。
根據(jù)建立的各因素之間的量化關(guān)系式,以試驗19驗證,將試驗19中各試驗因素數(shù)值(見表1)代入式(7)、(8)和(9)中,計算可得到預(yù)測濕潤鋒運移速率,繪制實測濕潤鋒運移速率與預(yù)測濕潤鋒運移速率關(guān)系如圖6所示。
圖6 濕潤鋒運移速率與時間關(guān)系
由圖6可以看出濕潤鋒運移速率在灌水開始較大,隨著入滲時間的增大逐漸減小,在入滲開始200 min左右,入滲逐漸趨于穩(wěn)定。由于在入滲的開始階段,土壤濕潤體體積很小,基質(zhì)勢梯度較高,濕潤峰的推進速率較快;隨著入滲時間的延長,濕潤體體積不斷增加,基質(zhì)勢梯度明顯降低,導(dǎo)致濕潤峰的推進速率隨著入滲時間的延長在逐漸的變小,即入滲距離增加的幅度不斷減小。在灌水初期,土壤含水率較低,土壤水分?jǐn)U散為非飽和入滲[31];隨著水分的不斷入滲,水土結(jié)合面周圍的土壤含水率逐漸增大,在水土結(jié)合面周圍土壤含水率趨于飽和,在該過程中灌溉水受基質(zhì)勢、壓力勢和重力勢的共同作用,基質(zhì)勢的作用逐漸減小,壓力勢和重力勢的影響逐漸增大。
本研究表明,各試驗因素對地下灌豎管灌水器濕潤體大小和形狀都有不同程度的影響。在3個方向上濕潤鋒運移距離變化范圍在6.7~19.1 cm之間,其濕潤范圍較大,濕潤體的形狀及大小決定了作物有效水分的利用率,因此,根據(jù)這一特點,可將豎管灌水器應(yīng)用于根系較深的作物或果樹中,可滿足不同作物需水要求。對土壤濕潤體的時空變化規(guī)律進行研究,可為豎管灌水器地下灌溉技術(shù)提供科學(xué)依據(jù),該研究結(jié)果對大田土壤水分調(diào)節(jié)和管理具有指導(dǎo)作用。從而有利于促進豎管灌水器地下灌溉技術(shù)的推廣和應(yīng)用。
影響豎管灌水器入滲特性的因素較多,本文研究了壓力水頭、豎管直徑、容重、初始含水率等對豎管灌水器入滲特性的影響,后續(xù)工作中需考慮土壤質(zhì)地和不同作物等因素對豎管地下灌溉土壤水分入滲特性的影響,以滿足實際需要。
本文通過豎管灌水器室內(nèi)土柱入滲試驗,研究了不同因素對土壤濕潤體時空變化的影響,可得到如下結(jié)論:
1)豎管灌水器入滲試驗所形成的濕潤體形狀近似為一個橢球體。濕潤體水平擴散半徑和垂直入滲距離均隨著入滲時間的增大而增大。在灌水初期濕潤鋒在3個方向運移基本一致,而隨著時間的推移,向下運移的距離與其他2個方向的差距逐步擴大,最終向下方運移距離最大,水平運移的距離居中,向上運移距離最小。
2)根據(jù)所建立的濕潤距離與各影響因素的量化關(guān)系式,通過對試驗所得實測值與公式模擬預(yù)測值比較,3個方向上所得量化關(guān)系式與各影響因素的決定系數(shù)均在0.85以上,用該模型對土壤入滲濕潤鋒運移距離進行預(yù)測,其預(yù)測值與實測值進行比較,其決定系數(shù)均在0.98以上,表明該模型具有較高精度,用其計算地下灌豎管灌水器土壤水分入滲是可行的。
3)按標(biāo)準(zhǔn)化回歸系數(shù)分析各影響因素對入滲濕潤體的影響程度,其中入滲時間、壓力水頭、土壤容重對濕潤體的影響是較為顯著的。且壓力水頭、土壤初始含水率、豎管直徑及豎管埋深對濕潤體的影響是正相關(guān),土壤容重對濕潤體的影響是負(fù)相關(guān)。5個因素對濕潤體的特征參數(shù)的影響各不相同,灌水器工作壓力水頭、土壤初始含水率和豎管灌水器直徑增大時,濕潤體越大;土壤容重越大,大孔隙數(shù)量越少,導(dǎo)水率越低,濕潤體越小。
4)分析濕潤鋒運移變化速率結(jié)果表明,入滲初期濕潤鋒運移速率很大,隨著灌水時間的延長,濕潤鋒運移速率逐漸減小,在200 min左右,其變化率趨于穩(wěn)定,直至入滲達(dá)到穩(wěn)定。
[1] 陳新明,蔡煥杰,王占兵,等. 無壓根區(qū)地下灌溉技術(shù)試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(1): 76-79. Chen Xinming, Cai Huanjie, Wang Zhanbing, et al. Experiment of non-pressure subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 76-79. (in Chinese with English abstract)
[2] Hachum, A Y, Willardson L S, Alfaro J F. Water movement in soil from trickle source[J]. Journal of the Irrigation and Drainage Division, 1976, 102(2): 179-192.
[3] Yao Weiwei, Ma Xiaoyi, Li Juan, et al. Simulation of point source wetting pattern of subsurface drip irrigation[J]. Irrigation Science, 2011, 29(4): 331-339
[4] Singh D K, Rajput T B S, Singh D K, et al. Simulation of soil wetting pattern with subsurface drip irrigation from line source[J]. Agricultural Water Management, 2006, 83(1/2): 130-134.
[5] Siyal A A, Skaggs T H. Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation [J]. Agricultural Water Management, 2009, 96(6): 893-904.
[6] 趙偉霞,蔡煥杰,陳新明,等. 無壓灌溉土壤濕潤體含水率分布規(guī)律與模擬模型研究[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(3): 7-12. Zhao Weixia, Cai Huanjie, Chen Xinming, et al. Distribution rule of soil moisture and simulation model in wetting front under non-pressure irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23 (3): 7-12. (in Chinese with English abstract)
[7] 趙偉霞,張振華,蔡煥杰,等. 間接地下滴灌土壤濕潤體特征參數(shù)[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(4):87-92. Zhao Weixia, Zhang Zhenhua, Cai Huanjie, et al. Characteristic parameters of soil wetted volume under indirect subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 87-92. (in Chinese with English abstract)
[8] 李就好,譚穎,張志斌,等. 滴灌條件下磚紅壤水分運動試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(6): 36-39. Li Jiuhao, Tan Ying, Zhang Zhibin, et al. Experimental study on water movement of latosol under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(6): 36-39. (in Chinese with English abstract)
[9] Provenzano Guiseppe. Using hydrus-2d simulation model to evaluate wetted soil volume in subsurface drip irrigation system[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 342-349.
[10] Mohammad Sadegh Monjezi, Hamed Ebrahimian, Abdolmajid Liaghat, et al. Soil-wetting front in surface andsubsurface drip irrigation[J]. Water Management, 2013, 166(5): 272-284.
[11] 張振華,蔡煥杰,郭永昌,等. 滴灌土壤濕潤體影響因素的實驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2002,18(2): 17-20. Zhang Zhenhua, Cai Huanjie, Guo Yongchang, et al. Experimental study on factors effecting soil wetted volume of clay loam under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(2): 17-20. (in Chinese with English abstract)
[12] Wu Pute, Zhang Lin, Zhu Delan, et al. Simulation of soil water movement under subsurface irrigationwith porous ceramic emitter[J]. Agricultural Water Management, 2017, 192(10): 244-256.
[13] 蔡耀輝,吳普特,張林,等. 微孔陶瓷滲灌與地下滴灌土壤水分運移特性對比[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(4): 242-249. Cai Yaohui, Wu Pute, Zhang Lin, et al. Comparison ofcharacteristics of soil moisture transfer for porous ceramic infiltration irrigation and subsurface drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 242-249. (in Chinese with English abstract)
[14] 薛萬來,牛文全,羅春艷,等. 微潤灌溉土壤濕潤體運移模型研究[J]. 水土保持學(xué)報,2014,28(4):49-54. Xue Wanlai, Niu Wenquan, Luo Chunyan, et al. Prediction model of wetted front migration distance under moistube- irrigation[J]. Journal of Soil and Water Conservation, 2014, 28(4): 49-54. (in Chinese with English abstract)
[15] 陳新明,蔡煥杰,單志杰,等. 作物根區(qū)局部控水無壓灌溉的土壤水動力學(xué)機理[J]. 農(nóng)業(yè)機械學(xué)報,2006,37(11): 80-83. Chen Xinming, Cai Huanjie, Shan Zhijie, et al. Experiment using soil water dynamics for non-pressure subsurface irrigation in crop root[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(11): 80-83. (in Chinese with English abstract)
[16] 劉小剛,朱益飛,余小弟,等. 不同水頭和土壤容重下微潤灌濕潤體內(nèi)水鹽分布特性[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(7): 189-197. Liu Xiaogang Zhu Yifei Yu Xiaodi, et al. Water-Salinity distribution characteristics in wetted soil of moistube irrigation under different pressure heads and soilbulk densities[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 189-197. (in Chinese with English abstract)
[17] 李明思,康紹忠,孫海燕. 點源滴灌滴頭流量與濕潤體關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(4): 32-35. Li Mingsi, Kang Shaozhong, Sun Haiyan. Relationships between dripper discharge and soil wetting patternfor drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(4): 32-35. (in Chinese with English abstract)
[18] 牛文全,張俊,張琳琳,等. 埋深與壓力對微潤灌濕潤體水分運移的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,44(12): 128-134. Niu Wenqua, Zhang Jun, Zhang Linlin, et al. Effects of buried depth and pressure head on water movement of wetted soil during moistube-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 44(12): 128-134. (in Chinese with English abstract)
[19] 張俊,牛文全,張琳琳,等. 初始含水率對微潤灌溉線源入滲特征的影響[J]. 排灌機械工程學(xué)報,2014, 32(1): 72-79. Zhang Jun, Niu Wenquan, Zhang Linlin, et al. Effects of soil initial water content on line-source infiltration characteristic in moistube irrigation[J]. Journal of drainage & Irrigation Machinery Engineering, 2014, 32(1): 72-79. (in Chinese with English abstract)
[20] 張建豐,帖西寧,楊瀟,等. 土壤初始含水率對深層坑滲灌入滲特性的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2013,18(5):44-50. Zhang Jianfeng, Tie Xining,Yang Xiao, et al. The impact of initial soil water content on infiltration properties of deep pit infiltration irrigation[J]. Journal of China Agricultural University, 2013,18(5):44-50. (in Chinese with English abstract)
[21] Naglic B, Kechavarzi C, Coulon F, et al. Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size[J]. Irrigation Science, 2014, 32(6): 421-436.
[22] 李卓,吳普特,馮浩,等. 容重對土壤水分入滲能力影響模擬試驗[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(6):40-45. Li Zhuo, Wu Pute, Feng Hao, et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6):40-45. (in Chinese with English abstract)
[23] 何華,康紹忠,曹紅霞. 地下滴灌埋管深度對冬小麥根冠生長及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2001,17(6):31-33. He Hua, Kang Shaozhong, Cao Hongxia. Effects of lateral depth on root and seedling growth and water use efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(6): 31-33. (in Chinese with English abstract)
[24] 張子卓,張珂萌,牛文全,等. 微潤帶埋深對溫室番茄生長和土壤水分動態(tài)的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2015,33(2): 122-129. Zhang Zizhuo, Zhang Kemeng, Niu Wenquan, et al. Effects of burying depth on growth of tomato and soil moisture dynamics by moistube-irrigation in green house [J]. Agricultural Research in the Arid Areas, 2015, 33(2): 122-129. (in Chinese with English abstract)
[25] 劉玉春,李久生. 毛管埋深和層狀質(zhì)地對番茄滴灌水氮利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(6):7-12. Liu Yuchun, Li Jiusheng. Effects of lateral depth andlayered- textural soils on water and nitrogen use efficiency of drip irrigated tomato[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 7-12. (in Chinese with English abstract)
[26] 任杰,溫新明,王振華,等. 地下滴灌毛管適宜埋深及間距研究進展[J]. 水資源與水工程學(xué)報,2007,18(6): 48-51. Ren Jie, Wen Xinming, Wang Zhenhua, et al. Research progress on appropriate depth and interval of lateral pipes in subsurface drip irrigation[J]. Journal of Water Resources& Water Engineering, 2007, 18(6): 48-51. (in Chinese with English abstract)
[27] 白丹,何靖,郭霖,等. 地下灌豎管灌水器直徑壓力對土壤水入滲特性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(14):97-102. Bai Dan, He Jing, Guo Lin, et al. Effects of pressurehead and vertical tube diameter on infiltration characteristics of soil moisture in subsurface irrigation system with vertical tube emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 97 - 102. (in Chinese with English abstract)
[28] 白丹,何靖,郭霖,等. 多因素影響下豎管地下灌溉入滲特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):101-105. Bai Dan, He Jing, Guo Lin, et al. Infiltration characteristics of vertical tube subirrigation as affected by various factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 101-105. (in Chinese with English abstract)
[29] 何靖,白丹,郭霖,等. 豎管地下灌溉粉質(zhì)壤土入滲濕潤體的試驗研究[J]. 水土保持研究,2016,23(6): 69-72. He Jing, Bai Dan, Guo Lin, et al. Study on wetted volume of silt loam under sub-irrigation with vertical tube emitter [J]. Research of Soil and Water Conservation, 2016, 23(6): 69-72. (in Chinese with English abstract)
[30] 任露泉. 試驗優(yōu)化設(shè)計與分析[M]. 北京:高等教育出版社, 2003.
[31] 仵峰,吳普特,范永申,等. 地下滴灌條件下土壤水能態(tài)研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(12): 31-35. Wu Feng, Wu Pute, Fan Yongshen, et al. Distribution of soil water potential energy under subsurface irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 31-35. (in Chinese with English abstract)
Temporal and spatial variation of wetting volume under sub-irrigation with vertical emitter
Bai Dan, Sun Shuzhen, Ren Peiqi, Xu Xianbo, Liang Zhidong
(710048,)
The temporal and spatial variation of soil wetting characteristics and the influencing factors of vertical tube sub-irrigation were studied. In this article, the effects of working head, soil bulk density, initial soil moisture, diameter of vertical tube and buried depth of vertical tube on the spatial distribution of soil wetting were studied based on the experiment of indoor vertical tube emitter infiltration. In this experiment, the experiment was conducted using an orthogonal design method including 18 treatments. The orthogonal experimental design was adopted to arrange the influenced factors including water head, soil bulk density, initial soil moisture, diameter of vertical tube and buried depth of vertical tube (all the factors had 3 levels) and to study the characteristic parameters of wetted soil volume under sub-irrigation with vertical tube emitter. In the test, the pressure head was designed with different levels of 0.8, 1.1 and 1.4 m, and the soil bulk density was 1.32, 1.35 and 1.38 g/cm3. The initial soil moisture was 4%, 7% and 10%, and the diameter of the vertical tube was 4, 8 and 12 mm, the depth of vertical tube was 15, 20 and 25 cm. After the infiltration of started, observed and recorded the wetting front in the horizontal, upward and downward directions with the stopwatch, the corresponding wet body shape was obtained at different times. The cumulative infiltration into the soil was recorded by the scale on the Markov's bottle. The result showed that the shape of the wet body formed by the infiltration test of the vertical tube emitter was approximately an ellipsoid, and the horizontal diffusion radius and vertical infiltration distance of the wetting body increased with the infiltration time. At the early stage of irrigation, the wet front was basically consistent in the 3 directions, the distance between the downward movement and the upward and horizontal directions gradually increased with time, and finally the downward migration distance was the largest. According to the wet front migration distance in the 3 directions recorded at different times, the water head, soil bulk density, initial soil moisture, diameter of vertical tube emitter and buried depth of vertical tube in the 3 directions were established by using multiple regression and the coefficient of determination was above 0.85, which showed the reliable quantitative relationship between the migration distance of the wetting body and the influencing factors.According to the standardized regression coefficients, the infiltration time, water head and soil bulk density had a significant effect on the wetting body. The influence of the water head, the initial soil moisture, the diameter of the vertical pipe and the depth of the vertical tube on the wetting body was positive correlation. The effect of soil bulk density on the wetting body was negative. The 5 factors had different influential degree on the characteristic parameters of the wetting body. When the vertical tube emitter diameter, the initial moisture content and water head were increased, the wetting distance was increased. According to the quantitative relationship between the wet front migration distance and the influencing factors in different directions, the relationship between the wetting front migration rate and the influencing factors in different directions was established. It showed that the wetting front migration rate began to increase at the beginning of irrigation. With the increase of infiltration time, the wetting front migration rate gradually decreased. After infiltration for 200 min, infiltration gradually stabilized.
moisture; soils; emitters; sub-irrigation; wetted soil volume; migration distance; migration rate of wetting front
白 丹,孫淑貞,任培琦,徐先伯,梁志棟. 地下灌豎管灌水器濕潤體時空變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(7):107-113.doi:10.11975/j.issn.1002-6819.2018.07.014 http://www.tcsae.org
Bai Dan, Sun Shuzhen, Ren Peiqi, Xu Xianbo, Liang Zhidong. Temporal and spatial variation of wetting volume under sub-irrigation with vertical emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 107-113. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.014 http://www.tcsae.org
2017-10-16
2018-02-10
國家自然科學(xué)基金(41571222;51279156);高等學(xué)校博士學(xué)科點專項科研基金聯(lián)合資助課題(20116118110010);陜西省農(nóng)業(yè)科技攻關(guān)項目(2010K02-08)。
白 丹,重慶開縣人,教授,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與技術(shù)研究。Email:baidan@xaut.edu.cn
10.11975/j.issn.1002-6819.2018.07.014
S275.6
A
1002-6819(2018)-07-0107-07