劉 佳,王利民,楊福剛,楊玲波,季富華
?
糧豆輪作遙感監(jiān)測對衛(wèi)星時空及譜段指標(biāo)的需求分析
劉 佳,王利民※,楊福剛,楊玲波,季富華
(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081)
該文面向糧豆輪作遙感監(jiān)測衛(wèi)星數(shù)據(jù)需求,針對最小監(jiān)測地塊、作物類型、時效性的要求,分別對不同空間分辨率影像識別能力、不同波段組合識別能力、最高云覆蓋區(qū)域晴空獲取能力3個方面進(jìn)行分析,提出了光學(xué)遙感衛(wèi)星理想的空間分辨率要優(yōu)于0.3 m,光譜設(shè)置可以采取基本波段(藍(lán)、綠、紅、近紅)+紅邊或者基本波段(藍(lán)、綠、紅、近紅)+短波譜段2種方式,重訪周期要達(dá)到3 d以內(nèi)。在上述指標(biāo)滿足條件下,能夠?qū)χ袊毡榇嬖诘?.3 m寬度田埂進(jìn)行有效識別,從而達(dá)到地塊識別的目標(biāo);能夠利用作物紅邊、短波譜段特征的差異,對生長中期玉米、大豆進(jìn)行有效識別,達(dá)到糧豆輪作主要作物類型識別的目的;以3 d的重訪周期,可以最大限度獲取覆蓋中國全國區(qū)域的晴空有效影像,在數(shù)據(jù)源獲取上保證糧豆輪作業(yè)務(wù)化作業(yè)能力。該研究可為滿足中國糧豆輪作等農(nóng)情遙感監(jiān)測需求的農(nóng)業(yè)監(jiān)測衛(wèi)星研制及相應(yīng)指標(biāo)規(guī)定提供參考。
農(nóng)作物;遙感;輪作;核查;中國;高分辨率;衛(wèi)星數(shù)據(jù)
遙感技術(shù)具有效率高、成本低等優(yōu)勢,近20 a來遙感技術(shù)快速發(fā)展,以農(nóng)業(yè)生產(chǎn)監(jiān)測應(yīng)用為主要目標(biāo)的農(nóng)業(yè)衛(wèi)星研制的條件已經(jīng)成熟。農(nóng)作物種植結(jié)構(gòu)調(diào)整是保證中國農(nóng)業(yè)綠色可持續(xù)發(fā)展的基本國策,在中國的“鐮刀彎”地區(qū),即東北冷涼區(qū)、北方農(nóng)牧交錯區(qū)、西北風(fēng)沙干旱區(qū)、太行山沿線區(qū)及西南石漠化區(qū),通過減少籽粒玉米種植面積,重點發(fā)展青貯玉米、大豆、雜糧雜豆、春小麥、經(jīng)濟(jì)林果和生態(tài)功能型植物等,實現(xiàn)穩(wěn)糧增收、提質(zhì)增效和可持續(xù)發(fā)展,玉米-大豆輪作的方式是其中重要的調(diào)整方式之一。相比于已經(jīng)在輪作休耕上取得較好成果的國家,中國還處于初級探索階段[1-2],目前主要多從不同輪作復(fù)種模式比較[3-6]、輪作對土壤環(huán)境的影響[7-11]等方面進(jìn)行研究,對于輪作的遙感核查方面報道較少,針對這一需求為依托的衛(wèi)星能力建設(shè)研究也較少。
基于遙感技術(shù)開展耕地輪作監(jiān)測研究,從研究內(nèi)容上看可以包括耕地輪作和農(nóng)作物類型識別遙感監(jiān)測研究兩個方面。直接以耕地輪作作為研究對象進(jìn)行的遙感監(jiān)測方法研究,一般以中低空間分辨率遙感數(shù)據(jù)源為主[12-16],主要注重于區(qū)域尺度上農(nóng)業(yè)生態(tài)規(guī)律分析[17-21],如Lunetta等[22]采用MODIS數(shù)據(jù)對勞倫森大湖流域的2005?2007年玉米、大豆與小麥輪作進(jìn)行分析,結(jié)果2005?2006年的玉米、大豆面積相對平衡,2006?2007年玉米面積增長21%,大豆、小麥面積分別下降9%和21%。而在農(nóng)作物類型遙感識別研究方面,與耕地輪作遙感監(jiān)測研究緊密相關(guān)的是變化檢測方法及相關(guān)的分類技術(shù)研究[23-33]。如Sun等[34]、Li等[35]、Shapla等[36]使用Landsat或MODIS衛(wèi)星數(shù)據(jù),對不同區(qū)域水稻種植面積的變化情況進(jìn)行監(jiān)測,分別取得了86.91%(Sun等)、95%(Li等)的總體精度和0.82(Shapla等)的Kappa系數(shù);王學(xué)等[37]使用2001?2011年MODIS時序數(shù)據(jù),發(fā)現(xiàn)華北平原2001?2011年間冬小麥種植面積持續(xù)擴(kuò)大,且呈現(xiàn)南增北減格局,為華北平原調(diào)整農(nóng)業(yè)種植結(jié)構(gòu)提供了借鑒。
上述研究主要依托于已有的衛(wèi)星影像展開的,或在衛(wèi)星發(fā)射之后對衛(wèi)星的應(yīng)用性能進(jìn)行評估[38-39],而針對當(dāng)前具體業(yè)務(wù)需求及今后發(fā)展方向,有針對性提出行業(yè)衛(wèi)星主要應(yīng)用指標(biāo)的研究還很少,且主要集中在氣象、測繪等衛(wèi)星應(yīng)用領(lǐng)域[40],如黃富祥等[41]則針對現(xiàn)有氣象衛(wèi)星應(yīng)用需求分析的不足,以定量指標(biāo)的形式,設(shè)計并進(jìn)行了中國氣象衛(wèi)星的應(yīng)用需求調(diào)查;唐新明等[42]介紹和總結(jié)國際和國內(nèi)測繪衛(wèi)星現(xiàn)狀的基礎(chǔ)上,根據(jù)中國的發(fā)展需求提出了中國未來測繪衛(wèi)星及技術(shù)的發(fā)展方向,提出了提高分辨率、加強(qiáng)測繪衛(wèi)星應(yīng)用研究、鼓勵市場化等建議。
農(nóng)業(yè)種植結(jié)構(gòu)調(diào)整是推進(jìn)農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革的重要內(nèi)容之一,尤其是“糧豆輪作”工作遙感監(jiān)測工程,為農(nóng)業(yè)政策制定、補(bǔ)貼發(fā)放、效果評估提供精確參考,已經(jīng)成為中國當(dāng)前農(nóng)業(yè)遙感的重要應(yīng)用方向[43]。由于“糧豆輪作”監(jiān)測結(jié)果直接關(guān)系到農(nóng)民的切身利益以及國家惠農(nóng)補(bǔ)貼的精準(zhǔn)發(fā)放,已經(jīng)超越傳統(tǒng)農(nóng)業(yè)遙感監(jiān)測對于遙感數(shù)據(jù)源分辨率、精度等指標(biāo)要求較低的現(xiàn)狀(如應(yīng)用較多的MODIS 250 m、Landsat 30 m、GF-1 16 m分辨率),應(yīng)用亞米級遙感衛(wèi)星進(jìn)行農(nóng)業(yè)監(jiān)測已成為農(nóng)業(yè)應(yīng)用領(lǐng)域迫切需求[22]。該文在中國“鐮刀彎”地區(qū)內(nèi),以玉米-大豆輪作這一比較廣泛的農(nóng)作物輪作方式為研究對象,從遙感數(shù)據(jù)空間、時間分辨率、光譜3個方面入手,具體分析了玉米-大豆輪作遙感監(jiān)測數(shù)據(jù)指標(biāo)需求,并為今后中國農(nóng)業(yè)行業(yè)衛(wèi)星的需求調(diào)研提供參考。
“鐮刀彎”地區(qū)具體包括河北、山西、內(nèi)蒙古、遼寧、吉林、黑龍江、廣西、貴州、云南、陜西、甘肅、寧夏、新疆這13個省區(qū)[44],該地區(qū)位于生態(tài)薄弱區(qū),主要以種植玉米為主,但因其不處于玉米種植優(yōu)勢區(qū),產(chǎn)量較低,因此將這一區(qū)域劃為調(diào)整玉米結(jié)構(gòu)的重點地區(qū),以其他優(yōu)勢作物如大豆等進(jìn)行替代性種植,并利用遙感技術(shù)對輪作面積進(jìn)行精確核查。
當(dāng)前糧豆輪作遙感核查業(yè)務(wù)由4個步驟組成,即作物地塊邊界獲取、作物類型識別、精度驗證、匯總統(tǒng)計,圖1給出了玉米-大豆輪作遙感監(jiān)測的具體流程。以下對糧豆輪作遙感監(jiān)測主要技術(shù)流程作細(xì)致分析,并在此基礎(chǔ)上分析輪作遙感核查業(yè)務(wù)對衛(wèi)星影像指標(biāo)的需求情況。
圖1 農(nóng)作物輪作遙感核查技術(shù)流程
利用高分辨率遙感影像確定地塊邊界,為輪作核查提供準(zhǔn)確地塊矢量。在實際工作中,都是以田埂作為地塊識別邊界,采用目視修正方法進(jìn)行識別。具體的技術(shù)流程包括資料準(zhǔn)備、遙感影像初判、實地核查3個步驟。
資料準(zhǔn)備的主要內(nèi)容是收集監(jiān)測區(qū)域農(nóng)戶地塊的具體產(chǎn)權(quán)信息以及地塊的粗略位置、大小等。遙感影像初判指的是基于高分辨率影像,目視判讀繪制地塊范圍。由于衛(wèi)星影像難以精確識別細(xì)小田埂,因此主要使用無人機(jī)航拍等方式獲取精確的地塊邊界[45],其空間分辨率通常在0.1 m以上。實地核查則使用RTK(real-time kinematic,實時動態(tài))載波相位差分技術(shù)對地塊的邊界進(jìn)行準(zhǔn)確測量并對遙感提取結(jié)果進(jìn)行精度驗證[45]。
地塊邊界獲取是作物輪作監(jiān)測的基礎(chǔ),必須有高分辨率、高定位精度的遙感影像作為基礎(chǔ),由于航拍方式覆蓋范圍小、成本高、耗時長,使用高分辨率衛(wèi)星影像作為替代已成為“糧豆輪作”工程遙感監(jiān)測的迫切需求。
在獲取精確的作物種植地塊數(shù)據(jù)的基礎(chǔ)上,使用多源多時相衛(wèi)星影像數(shù)據(jù)結(jié)合地面實地勘察的方式確定地塊內(nèi)作物類別。主要的技術(shù)流程包括遙感影像數(shù)據(jù)篩選及處理、時序遙感影像作物識別、識別結(jié)果與作物地塊套合、地面補(bǔ)充調(diào)查及驗證等內(nèi)容。
作物識別的常用數(shù)據(jù)源以中高分辨率的衛(wèi)星影像為主,包括GF、Rapideye、Landsat、 Sentinel等數(shù)據(jù),一般需獲取包括作物生長的早期、中期和晚期3個時期的多時相遙感數(shù)據(jù)。識別的常用方法是根據(jù)作物物候特征,判斷不同作物在遙感影像上的時序光譜特征,選取典型地類樣本,并使用監(jiān)督、非監(jiān)督等方法進(jìn)行分類。
在此基礎(chǔ)上,套合精確的地塊矢量,確定地塊作物類型,并逐地塊進(jìn)行驗證和修改,并對無法識別地塊進(jìn)行實地調(diào)查。最后,依據(jù)相鄰年份作物精確的識別結(jié)果,確定糧豆輪作的具體范圍、面積以及地塊權(quán)屬,從而為補(bǔ)貼發(fā)放提供依據(jù)。
當(dāng)前,作物類型遙感識別的主要問題在于數(shù)據(jù)源的缺乏:一方面高分辨率衛(wèi)星數(shù)據(jù)的時效性難以保障,重訪周期過長,覆蓋范圍較小,無法獲取充足晴空數(shù)據(jù),如GF-2的最高分辨率達(dá)到0.8 m,但回歸周期卻長達(dá)69 d;另一方面,中分辨率如GF-1/WFV雖然具有較高的重訪周期(標(biāo)稱4 d),但其較低的分辨率、較少的波段設(shè)置(僅有可見光和近紅外4個波段)使其難以有效識別破碎地塊作物類型。獲取具有高重訪周期、多波段設(shè)置、高空間分辨率的衛(wèi)星影像,對于農(nóng)作物輪作遙感核查工作至關(guān)重要,而高空間分辨率與高重訪周期的矛盾,可通過建立多衛(wèi)星星座的方式進(jìn)行部分解決。
農(nóng)作物輪作遙感監(jiān)測精度驗證包括地塊面積量算精度和地塊作物類型識別精度,使用地面調(diào)查方式逐地塊展開,原則要求精度是100%;此外,若監(jiān)測結(jié)果顯示輪作任務(wù)未達(dá)預(yù)定要求,則需要進(jìn)行二次調(diào)查核實。在輪作遙感監(jiān)測工作全面展開后,使用抽樣調(diào)查取代全覆蓋調(diào)查,并使用無人機(jī)調(diào)查的方式對地面調(diào)查方法進(jìn)行補(bǔ)充,提高效率。
在實際工作中,根據(jù)中國《數(shù)字航空攝影測量空中三角測量規(guī)范》(GBT 23236—2009),只要遙感數(shù)據(jù)分辨率大于0.3 m,平面位置中誤差不大于3.5 m,面積監(jiān)測的實際精度能達(dá)到99.5%以上,比農(nóng)戶傳統(tǒng)的估算更為準(zhǔn)確,也能夠為農(nóng)戶所認(rèn)可[46]。
根據(jù)農(nóng)作物輪作遙感核查技術(shù)的實際需求,對衛(wèi)星載荷指標(biāo)按照空間分辨率、光譜分辨率、時間分辨率等3個方面進(jìn)行探討??臻g分辨率與地塊面積量算精度、最小地塊識別尺度緊密相關(guān),光譜分辨率與不同作物識別能力緊密相關(guān),時間分辨率與影像周期性獲取能力密切相關(guān)。玉米-大豆輪作是糧豆輪作的主要方式,“鐮刀彎”地區(qū)是糧豆輪作的重點區(qū)域,且基本從西到東,從北到南橫跨中國大部分區(qū)域,因此,該文就中國陸地范圍內(nèi)玉米-大豆輪作方式開展監(jiān)測,對遙感衛(wèi)星數(shù)據(jù)的需求作簡要論述。
空間分辨率關(guān)系到量算精度和最小地塊識別2個方面。前面已經(jīng)提到,量算精度要求的是0.3 m空間分辨率,這里分析一下最小識別地塊的要求。中國農(nóng)作物地塊破碎度程度較大,并且在東北、華北、西北、華東、華中、華南以及西南等地區(qū)破碎度程度也不盡一致,但如果以最小地塊衡量則能簡化這一問題。在中國,田埂寬度一般為0.3 m左右[47-48],也是輪作監(jiān)測中需要識別的最小寬度,此外中國東北地區(qū)有部分農(nóng)戶習(xí)慣于單壟條播[49],其最小寬度也在0.3 m左右,這就對糧豆輪作衛(wèi)星遙感數(shù)據(jù)源的分辨率指標(biāo)進(jìn)行了限制。圖2給出了無人機(jī)影像對0.3 m寬田埂識別效果,可以看出,在0.1 m分辨率下,地面實際寬度0.3 m的線狀田埂能夠清晰識別;0.2 m空間分辨率下,結(jié)合地面調(diào)查 經(jīng)驗,也可以定性為田??;在0.3 m分辨率下,從影像上已較難區(qū)分出田埂,僅能對田埂兩側(cè)的作物進(jìn)行劃分。
圖2 不同空間分辨率無人機(jī)影像對0.3 m寬度田埂識別能力的比較
而根據(jù)王利民等[50]研究,當(dāng)影像分辨率由2 m變?yōu)?50 m時,作物面積識別的總體精度逐步由98.6%降低到70.1%,面積誤差絕對值比例由5.5%擴(kuò)大到110.6%;破碎度越高的地區(qū),分辨率提高對于作物面積提取精度的提升作用越明顯;同等分辨率下,破碎度越高的地區(qū)面積識別精度越低??梢?,提高影像分辨率對于提高作物識別的精度具有重要的作用,尤其在地類破碎區(qū)域。
就衛(wèi)星研制能力角度來看,優(yōu)于0.3 m空間分辨率民用遙感影像目前還不多見。暫時不考慮傳感器材料與技術(shù)限制因素,僅以以往不同空間分辨率衛(wèi)星出現(xiàn)的時間周期,估計優(yōu)于0.3 m空間分辨率數(shù)據(jù)未來能夠普遍獲取的時間。30、15 m空間分辨率的Landsat-TM數(shù)據(jù)分別出現(xiàn)在1982年、1999年;20、10、2.5、1.5 m空間分辨率的SPOT數(shù)據(jù)分別出現(xiàn)在1986年、1986年、2002年、2012年;5 m空間分辨率的Rapideye數(shù)據(jù)出現(xiàn)在2008年;0.5、0.3 m空間分辨率的Worldview數(shù)據(jù)出現(xiàn)在2007年、2014年,也是當(dāng)前分辨率最高的商業(yè)衛(wèi)星;另據(jù)報道,美國KH-12衛(wèi)星的分辨率已達(dá)0.1 m[51]。而在國內(nèi)衛(wèi)星中,資源一號衛(wèi)星分辨率20 m,發(fā)射于1999年,比SPOT同分辨率衛(wèi)星晚13 a;資源三號衛(wèi)星分辨率2.1 m,發(fā)射于2012年,比同分辨率的SPOT衛(wèi)星晚10 a;而隨著2018年1月9日高景一號03/04星發(fā)射升空,形成最高分辨率0.5 m的衛(wèi)星星座,相比Worldview同分辨率衛(wèi)星晚9 a??梢钥闯觯瑖鴥?nèi)衛(wèi)星與國際衛(wèi)星最高分辨率的差距不斷縮小,若按9 a一個臺階推測,則估計2023年左右能達(dá)到2014年發(fā)射的Worldview3衛(wèi)星0.3 m分辨率水平,并在2032年左右達(dá)到0.1 m分辨率。
通過上述分析,可以認(rèn)為0.3 m空間分辨率的遙感影像能夠滿足農(nóng)作物輪作遙感監(jiān)測中以窄小田埂分界的地塊的識別,但是難以滿足條播地塊識別的需要;而0.1 m空間分辨率衛(wèi)星遙感影像能夠完全滿足農(nóng)作物輪作遙感監(jiān)測的影像分辨率需求;同時預(yù)計在2023年、2032年左右能夠獲取0.3 m和0.1 m空間分辨率的數(shù)據(jù)。
雖然高光譜數(shù)據(jù)包含更豐富的波譜信息,但是由于傳感器制作技術(shù)、獲取能力和成本、處理技術(shù)等的限制,可以預(yù)見多光譜數(shù)據(jù)仍然是農(nóng)作物輪作識別唯一的選擇。用于農(nóng)作物遙感識別多光譜波段范圍除可見光-近紅外(0.450 ~0.890m)、短波紅外(1.560 ~2.300m)兩大類外,海岸藍(lán)(0.433 ~0.453m)、黃邊(0.585~0.625m)、紅邊(0.690 ~0.730m)等范圍譜段在一些傳感器中也開始出現(xiàn)[52],應(yīng)用較為成熟的主要是紅邊譜段[53-54]。下文分別選取覆蓋黑龍江省北安市東勝鄉(xiāng)的2014年7月27日Rapideye和2014年8月7日Landsat-8 OLI衛(wèi)星影像,從可見光-近紅外、紅邊、短波紅外3個譜段出發(fā),討論農(nóng)作物輪作監(jiān)測對遙感數(shù)據(jù)光譜譜段設(shè)置需求。在這一時間段內(nèi),玉米處于抽雄-乳熟期,大豆處于結(jié)痂期,作物生長旺盛,有利于遙感識別。識別方法使用最大似然分類算法,精度驗證數(shù)據(jù)則使用Rapideye影像目視解譯結(jié)合地面調(diào)查精修正成果。
圖3a、3b、3c分別是Rapideye影像5(近紅)-4(紅邊)-3(紅)波段、OLI影像5(近紅)-4(紅)-3(綠)波段、OLI影像6(短波)-5(近紅)-4(紅)波段的RGB假彩色合成效果。表1則給出了可見光-近紅、可見光-近紅-紅邊、可見光-近紅-短波譜段玉米、大豆分類的精度。除玉米、大豆外,研究區(qū)其他地類主要包括城鎮(zhèn)、水體及林地、河灘草地,其中林地NDVI值均較其他地類高,而河灘草地NDVI則較低,均易與玉米和大豆進(jìn)行區(qū)分。
表1 紅邊及短波紅外波段對玉米和大豆分類精度的影響
由圖3可見,僅有可見光-近紅外波段的影像,玉米、大豆都呈紅色基調(diào),只是玉米暗紅色,大豆亮紅色。有紅邊的影像,玉米、大豆呈現(xiàn)不同的色調(diào),玉米呈紅色、大豆呈黃色。有短波紅外的影像,玉米、大豆呈現(xiàn)黃色調(diào),玉米呈棕紅色,大豆呈杏黃色,較僅有可見光-近紅外波段的紅色調(diào)影像更容易區(qū)分,效果與紅邊類似。由表1可見,就紅邊波段而言,無紅邊和有紅邊2種情況下,總體精度分別為73.1%和80.5%,提高了7.4個百分點,玉米和大豆的用戶精度分別提高了16.6和3.7個百分點,制圖精度分別提高了11.0和11.6個百分點;就短波波段而言,無短波和有短波2種情況下,總體精度分別為65.7%和74.7%,提高了9.0個百分點,玉米和大豆的用戶精度分別提高了2.8和17.4個百分點,制圖精度分別提高了10.3和6.4個百分點。
綜上分析可以明確,以藍(lán)、綠、紅、近紅波段為基礎(chǔ),增加紅邊、短波紅外譜段,形成包括藍(lán)、綠、紅、紅邊、近紅、短波紅外譜段的多光譜譜段,將能夠有效提高玉米、大豆的識別能力,也就提高了農(nóng)作物輪作遙感監(jiān)測能力。其中,具體譜段設(shè)置可以參考現(xiàn)有GF、Rapideye及OLI傳感器的設(shè)置,藍(lán)、綠、紅、近紅波段為0.45~0.52m、0.52~0.59m、0.63~0.69m和0.77~ 0.89m,紅邊譜段為0.690~0.730m,短波譜段為1.560~ 1.660m和2.100~2.300m。
圖3 北安Rapideye和OLI數(shù)據(jù)不同波段假彩色合成效果比較
從圖4可見,晴空概率最低的地區(qū)為四川和貴州地區(qū),約為30%,其中貴州地區(qū)屬于“鐮刀彎”地區(qū)中的西南石漠化區(qū),假設(shè)以此區(qū)域作為監(jiān)測區(qū)域,以生育期較短的大豆作為監(jiān)測作物,以此計算符合農(nóng)作物輪作監(jiān)測需求的衛(wèi)星重訪周期。大豆的生育期一般在90~110 d左右,其種植后第一個月為生長早期,第二個月為生長中期,第三個月為生長晚期。根據(jù)式(2)可以計算出,若需要保證每個生育期均有85%的概率至少有一景晴空影像,則衛(wèi)星的重訪周期應(yīng)在6 d以內(nèi);而若能達(dá)到3 d的重訪周期,則能保證90%以上的概率獲取3個生育期連續(xù)的時間序列光譜曲線。
圖4 中國區(qū)域平均晴空分布概率
耕地輪作是用地養(yǎng)地相結(jié)合的一種生物學(xué)措施,合理的輪作休耕有助于抑制雜草及病蟲害,改善植物養(yǎng)分的供給,防止土壤流失,降低水資源的污染,農(nóng)作物輪作休耕制度已經(jīng)成為中國農(nóng)業(yè)可持續(xù)發(fā)展的國策。利用高空間分辨率衛(wèi)星影像,實現(xiàn)對輪作休耕地塊空間位置、面積準(zhǔn)確監(jiān)測,避免傳統(tǒng)統(tǒng)計上報中人為因素的干擾,為農(nóng)戶補(bǔ)貼精準(zhǔn)發(fā)放提供科學(xué)客觀的依據(jù)。該文從分辨率、重訪周期、光譜譜段3方面出發(fā),為滿足糧豆輪作監(jiān)測需求的衛(wèi)星載荷設(shè)計提供具體依據(jù),以指導(dǎo)未來農(nóng)業(yè)衛(wèi)星的設(shè)計與規(guī)劃。
根據(jù)需求分析結(jié)果,該文提出高、中、低3種農(nóng)業(yè)衛(wèi)星指標(biāo)需求模式。第一種是高指標(biāo)模式,即0.1 m空間分辨率,藍(lán)、綠、紅、紅邊、近紅和短波譜段設(shè)置,重訪周期3 d。該模式可在不使用其他遙感數(shù)據(jù)源輔助下,滿足全國極端多云多雨區(qū)玉米-大豆輪作的遙感監(jiān)測需求。第二種是中等指標(biāo)模式,0.3 m空間分辨率,藍(lán)、綠、紅、紅邊、近紅和短波譜段設(shè)置,6 d的重訪周期。該模式需要在其他0.1 m遙感數(shù)據(jù)或地面實測數(shù)據(jù)輔助下獲取條播等地塊信息,在極端云雨天氣下亦有較高的概率獲取晴空影像。第三種是低指標(biāo)模式,0.3 m空間分辨率,基本波段(藍(lán)、綠、紅、近紅)+紅邊或者基本波段+短波選擇其一的譜段設(shè)置方式,6 d重訪周期。該模式與中等模式相比,通過降低譜段數(shù)量降低衛(wèi)星研制成本,但由于減少紅邊或短波波段,可能會造成其他地物與玉米、大豆混淆,影響識別精度。
此外,該文提出的光學(xué)衛(wèi)星指標(biāo)的需求分析,是僅就糧豆輪作遙感監(jiān)測需求提出的。在衛(wèi)星載荷實際設(shè)計時,還需要考慮衛(wèi)星載荷設(shè)計制造能力及成本耗費,并兼顧其他農(nóng)業(yè)工程項目的監(jiān)測需求,提出一個相對通用的衛(wèi)星設(shè)計指標(biāo),為農(nóng)業(yè)遙感衛(wèi)星體系建設(shè)奠定基礎(chǔ)。
1)為滿足農(nóng)作物輪作遙感核查業(yè)務(wù)需求,農(nóng)業(yè)遙感衛(wèi)星的空間分辨率需要達(dá)到0.1 m;在當(dāng)前技術(shù)條件無法滿足的條件下,空間分辨率可設(shè)置為0.3 m,并在地面無人機(jī)航拍數(shù)據(jù)或地面GPS設(shè)備輔助采集地塊田埂邊界或條播作物地塊。根據(jù)國內(nèi)外衛(wèi)星影像分辨率發(fā)展特點,粗略估計最晚至2023年可獲取0.3 m分辨率國產(chǎn)衛(wèi)星影像,2032年獲取0.1 m分辨率國產(chǎn)衛(wèi)星影像。
2)為滿足農(nóng)作物輪作遙感核查業(yè)務(wù)需求,農(nóng)業(yè)遙感衛(wèi)星的重訪周期應(yīng)能達(dá)到3 d左右;由于高時間分辨率與高空間分辨率之間的矛盾,在技術(shù)條件不足情況下,可以將重訪周期設(shè)置為6 d左右,基本可以滿足絕大部分農(nóng)作物輪作遙感核查區(qū)域的監(jiān)測遙感數(shù)據(jù)需求。此外,可以采用多衛(wèi)星組網(wǎng)形成衛(wèi)星星座的方式,進(jìn)一步提高衛(wèi)星的重訪周期。
3)為滿足農(nóng)作物輪作遙感核查業(yè)務(wù)需求,農(nóng)業(yè)遙感衛(wèi)星的譜段在覆蓋基本波段(藍(lán)、綠、紅、近紅,范圍0.450~0.890m)外,應(yīng)當(dāng)盡量包含紅邊(0.690~0.730m)及短波紅外波段(1.560~1.660m和2.100~2.300m),或至少包含兩者之一。
[1] 《土壤觀察》編輯部.各國輪作休耕制度有何借鑒[J].國土資源,2017(1):58-59.
[2] 楊慶媛,信桂新,江娟麗,等.歐美及東亞地區(qū)耕地輪作休耕制度實踐:對比與啟示[J].中國土地科學(xué),2017,31(4):71-79. Yang Qingyuan, Xin Guixin, Jiang Juanli, et al. The comparison and implications of crop rotation and fallow in the Western countries and East Asia[J]. China Land Sciences, 2017, 31(4): 71-79. (in Chinese with English abstract)
[3] 丁淘沙.基于遙感技術(shù)對河南省永城市農(nóng)作物三種輪作方式經(jīng)濟(jì)適宜性評價研究[J].福建電腦,2017(5):93-94,172.
[4] 李鋒瑞,高崇岳.隴東黃土高原若干輪作復(fù)種模式的生態(tài)效能比較研究[J].草業(yè)學(xué)報,1994,3(1):48-55. Li Fengrui, Gao Chongyue. A comparison of comprehensive Eco-efficiencies between some rotation and multiple cropping patterns and continuous winter wheat cropping in the loess plateau of Eastern Gansu[J]. Acta Prataculturae Sinica, 1994, 3(1): 48-55. (in Chinese with English abstract)
[5] 胡志橋,田宵鴻,張久東,等.石羊河流域節(jié)水高產(chǎn)高效輪作模式研究[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2011,19(3):561-567. Hu Zhiqiao, Tian Xiaohong, Zhang Jiudong, et al. High efficiency production and water-saving crop rotation systems in Shiyang River Area[J]. Chinese Journal of Eco-Agriculture, May 2011, 19(3): 561?567. (in Chinese with English abstract)
[6] 李明.半干旱地區(qū)不同輪作方式的綜合評價[D].太谷:山西農(nóng)業(yè)大學(xué),2015. Li Ming. Comprehensive Evaluation of Different Crop Rotation Way in Semi Arid Area[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese with English abstract)
[7] 李秀娟,趙庚星,李濤,等.山東青州市耕地利用方式對土壤養(yǎng)分狀況影響研究[J].地域研究與開發(fā),2005,24(3):107-111. Li Xiujuan, Zhao Gengxing, Li Tao, et al. Effects of different arable land use on soil nutrients in Qingzhou county of Shandong province[J]. Areal Research and Development, 2005, 24(3): 107-111. (in Chinese with English abstract)
[8] 陳先茂,彭春瑞,關(guān)賢交,等.紅壤旱地不同輪作模式的效益及其對土壤質(zhì)量的影響[J].江西農(nóng)業(yè)學(xué)報,2009,21(6):75-77. Chen Xianmao, Peng Chunrui, Guan Xianjiao, et al. Benefit of different crop rotation modes and their effects on quality of red-yellow dry soil[J]. Acta Agriculture Jiangxi, 2009, 21(6): 75-77. (in Chinese with English abstract)
[9] 宋麗萍,羅珠珠,李玲玲,等.隴中黃土高原半干旱區(qū)苜?!魑镙喿鲗ν寥牢锢硇再|(zhì)的影響[J].草業(yè)學(xué)報,2015,24(7):12-20. Song Liping, Luo Zhuzhu, Li Lingling, et al. Effect of Lucerne-crop rotations on soil physical properties in the semi-arid loess plateau of central Gansu[J]. Acta PrataculturaeSinica, 2015, 24(7): 12-20. (in Chinese with English abstract)
[10] 陳書濤,黃耀,鄭循華,等.輪作制度對農(nóng)田氧化亞氮排放的影響及驅(qū)動因子[J].中國農(nóng)業(yè)科學(xué),2005,38(10):2053-2060. Chen Shutao, Huang Yao, Zheng Xunhua, et al. Nitrous oxide emission from cropland and its driving factors under different crop rotations[J]. Scientia Agricultura Sinica, 2005, 38(10): 2053-2060. (in Chinese with English abstract)
[11] 蔡艷,郝明德.輪作模式與周期對黃土高原旱地小麥產(chǎn)量、養(yǎng)分吸收和土壤肥力的影響[J].植物營養(yǎng)與肥料學(xué)報,2015,21(4):864-872. Cai Yan, Hao Mingde. Effects of rotation model and period on wheat yield,nutrient uptake and soil fertility in the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 864-872. (in Chinese with English abstract)
[12] 李正國,楊鵬,周清波,等.基于時序植被指數(shù)的華北地區(qū)作物物候期/種植制度的時空格局特征[J].生態(tài)學(xué)報,2009,29(11):6216-6226. Li Zhengguo, Yang Peng, Zhou Qingbo, et al. Research on spatio-temporal pattern of crop phenological characteristics and cropping system in North China based on NDVI time series data[J]. Acta EcologicaSinica, 2009, 29(11): 6216-6226. (in Chinese with English abstract)
[13] 閆慧敏,黃河清,肖向明,等.鄱陽湖農(nóng)業(yè)區(qū)多熟種植時空格局特征遙感分析[J].生態(tài)學(xué)報,2008,28(9):4517-4523. Yan Huimin, Huang Heqing, Xiao Xiangming, et al. Spatio —temporal distribution of multiple cropping systems in the Poyang Lake region[J]. Acta EcologicaSinica, 2008, 28(9): 4517-4523. (in Chinese with English abstract)
[14] 顧曉鶴,潘瑜春,王堃,等.耕地輪作模式遙感監(jiān)測[J].中國土地科學(xué),2011,25(12):68-74. Gu Xiaohe, Pan Yuchun, Wang Kun, et al. Monitoring the pattern of crop rotation through remote sensing[J]. China Land Science, 2011, 25(12): 68-74. (in Chinese with English abstract)
[15] Wardlow B D, Egbert S L, Kastens J H. Analysis of time-series MODIS 250m vegetation index data for crop classification in the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2007, 108(3): 290-310
[16] Jia Kun, Wu Bingfang, Li Qiangzi. Crop classification using HJ satellite multispectral data in the North China plain[J]. Journal of Applied Remote Sensing, 2013, 7: 1-12.
[17] 呂婷婷,劉闖.中國珠江三角洲與東南亞四大三角洲多熟種植制度的時空格局研究[J].資源科學(xué),2009,31(10):1662-1669. Lv Tingting, Liu Chuang. Spatio-temporal distributions of multiple cropping systems in the Pearl River Delta of China and four deltas in Southeast Asia[J]. Resources Science, 2009, 31(10): 1662-1669. (in Chinese with English abstract)
[18] 彭光雄,胡德勇,陳鋒銳,等.基于空間信息的烤煙種植適宜性評價與輪作規(guī)劃[J].地理研究,2010,29(5):873-882. Peng Guangxiong, Hu Deyong, Chen Fengrui, et al. Evaluation of flue-cured tobacco planting suitability and crop rotation planning based on spatial information[J]. Geographical Research, 2010, 29(5): 873-882. (in Chinese with English abstract)
[19] Stern Alan J, Doraiswamy P C, Hunt E R. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product[J]. Journal of Applied Remote Sensing, 2012, 6(1): 1-16.
[20] Claire Boryan, Zhengwei Yang, Rick Mueller, et al. Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program[J]. Geocarto International, 2011, 26(5): 341-358.
[21] 劉佳,王利民,滕飛,等.玉米大豆輪作遙感監(jiān)測技術(shù)研究[J].中國農(nóng)學(xué)通報,2017,33(8):144-153. Liu Jia, Wang Limin, Teng Fei, et al. Corn-soybean crop rotation remote sensing monitoring technologies[J]. Chinese Agricultural Science Bulletin, 2017, 33(8): 144-153. (in Chinese with English abstract)
[22] Lunetta R S, Shao Y, Ediriwickrema J, et al. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data.[J]. International Journal of Applied Earth Observation & Geoinformation, 2010, 12(2): 81-88.
[23] Celik T, Ma Kaikuang. Unsupervised change detection for satellite images using Dual-Tree complex wavelet transform[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(3): 1199-1210.
[24] 鐘家強(qiáng).基于多時相遙感圖像的變化檢測[D].長沙:國防科學(xué)技術(shù)大學(xué),2005. Zhong Jiaqiang. Change Detection Based on Multitemporal Remote Sensing Image[D]. Changsha: National University of Defense Technology, 2005. (in Chinese with English abstract)
[25] 張振龍,曾志遠(yuǎn),李碩,等.遙感變化檢測方法研究綜述[J].遙感信息,2005(5):64-66,59. Zhang Zhenlong, Zeng Zhiyuan, Li Shuo, et al. A summary of change detection methods of remote sensing image[J]. Remote Sensing Information, 2005(5): 64-66, 59. (in Chinese with English abstract)
[26] 班松濤.縣域農(nóng)作物類型遙感識別與提取—以扶風(fēng)縣為例[D].楊凌:西北農(nóng)林科技大學(xué),2014. Ban Songtao. Recognition and Extraction of Agricultural Crops on County Scale Using Remote Sensing Technology: A Case Study of Fufeng County[D]. Yangling: Northwest A&F University, 2014.(in Chinese with English abstract)
[27] 陶青山,黃飛,雷帆,等.湖南省中稻種植面積遙感監(jiān)測方法研究[J].安徽農(nóng)業(yè)科學(xué),2016(4):309-313. Tao Qingshan, Huang Fei, Lei Fan, et al. The Remote-sensing monitoring methods of rice planting area in Hunan province[J]. Journal of Anhui Agri. Sci., 2016,44(4): 309-313. (in Chinese with English abstract)
[28] 黃維,黃進(jìn)良,王立輝,等.多時相遙感影像檢測平樂縣晚稻種植面積變化[J].農(nóng)業(yè)工程學(xué)報,2014,30(21):174-183. Huang Wei, Huang Jinliang, Wang Lihui, et al. Detection of late rice’s planting area change in Pingle County based on multi-temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 174-183. (in Chinese with English abstract)
[29] 王凱.基于多源衛(wèi)星遙感的湖化省作物耕作面積提取及其動態(tài)監(jiān)測[D].荊州:長江大學(xué),2013. Wang Kai. Based on Multi-source Satellite Remote Sensing Extraction of Crop Cultivation Area in Hubei Province and Its Dynamic Monitoring[D]. Jingzhou: Yangtze University, 2013. (in Chinese with English abstract)
[30] 王曉昕,范燕敏,武紅旗.基于GF-1影像的玉米識別方法研究[J].山東農(nóng)業(yè)科學(xué),2017,49(6):139-142. Wang Xiaoxin, Fan Yanmin, Wu Hongqi. Maize recognition methods based on GF-1 images[J]. Shandong Agricultural Sciences, 2017, 49(6): 139-142. (in Chinese with English abstract)
[31] 胡君德,薩楚拉,谷俊杰,等.基于TM數(shù)據(jù)的玉米種植面積變化研究——以科爾沁左翼中旗為例[J].陰山學(xué)刊,2017,31(2):75-80. Hu Junde, Sa Chula, Gu Junjie, et al. Study on the change of corn acreage based on TM data: Taking Horqin Left Middle Banner as an example[J]. Yinshan Academic Journal, 2017, 31(2): 75-80. (in Chinese with English abstract)
[32] 黃健熙,侯矞焯,蘇偉,等.基于GF-1 WFV數(shù)據(jù)的玉米與大豆種植面積提取方法[J].農(nóng)業(yè)工程學(xué)報,2017,33(7):164-170. Huang Jianxi, Hou Yuzhuo, Su Wei, et al. Mapping corn and soybean cropped area with GF-1 WFV data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 164-170. (in Chinese with English abstract)
[33] 劉貞強(qiáng),簡俊凡.利用改進(jìn)決策樹分類法提取邯鄲市夏玉米信息的研究[J].鄉(xiāng)村科技,2017(10):95-96.
[34] Sun P, Xie D, Zhang J, et al. Tempora-spatial-probabilistic model based for mapping paddy rice using multi-temporal Landsat images[C]//Geoscience and Remote Sensing Symposium. IEEE, 2014: 2086-2089.
[35] Li Zhipeng, Long Yuqiao, Tang Pengqin, et al. Spatio-temporal changes in rice area at the northern limits of the rice cropping system in China from 1984 to 2013[J]. Journal of Integrative Agriculture, 2017, 16(2): 360-367.
[36] Shapla T, Park J, Hongo C, et al. Change detection of rice cultivation in Bangladesh based on the phenological analysis of MODIS data[J]. Advances in Remote Sensing, 2015, 4(4): 319-329.
[37] 王學(xué),李秀彬,談明洪,等.華北平原2001-2011年冬小麥播種面積變化遙感監(jiān)測[J].農(nóng)業(yè)工程學(xué)報,2015,31(8):190-199. Wang Xue, Li Xiubin, Tan Minghong, et al. Remote sensing monitoring of changes in winter wheat area in North China Plain from 2001 to 2011[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 190-199. (in Chinese with English abstract)
[38] 魏香琴.面向應(yīng)用的國產(chǎn)光學(xué)衛(wèi)星數(shù)據(jù)應(yīng)用性能評價研究[D].北京:中國科學(xué)院大學(xué)(中國科學(xué)院遙感與數(shù)字地球研究所),2017. Wei Xiangqin. Research on Application-oriented Assessment of Chinese Optical Satellite Data Application Performance[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth), 2017. (in Chinese with English abstract)
[39] 李傳榮,賈媛媛,胡堅,等.HJ-1光學(xué)衛(wèi)星遙感應(yīng)用前景分析[J].國土資源遙感,2008,20(3):1-3. Li Chuanrong, Jia Yuanyuan, Hu Jian, et al. An analysis of the prospects of HJ-1 optical satellites in remote sensing application[J]. Remote Sensing for Land & Resources, 2008, 20(3):1-3.(in Chinese with English abstract)
[40] 楊軍,張文建,趙立成,等.中國氣象衛(wèi)星發(fā)展規(guī)劃[C]// 農(nóng)業(yè)生態(tài)與衛(wèi)星遙感應(yīng)用技術(shù)學(xué)術(shù)交流會論文摘要集.北京:氣象出版社,2006.
[41] 黃富祥,董超華,張文建.中國氣象衛(wèi)星應(yīng)用需求數(shù)據(jù)庫初探[J].氣象科技,2006,34(5):624-627. Huang Fuxiang, Dong Chaohua, Zhang Wenjian. Meteorological satellite user requirement database of China[J]. Meteorological Science and Technology, 2006, 34(5): 624-627. (in Chinese with English abstract)
[42] 唐新明,謝俊峰,張過.測繪衛(wèi)星技術(shù)總體發(fā)展和現(xiàn)狀[J].航天返回與遙感,2012,33(3):17-24. Tang Xinming, Xie Junfeng, Zhang Guo. Development and status of mapping satellite technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(3): 17-24.(in Chinese with English abstract)
[43] 宋茜.基于GF-1/WFV和面向?qū)ο蟮霓r(nóng)作物種植結(jié)構(gòu)提取方法研究[D].北京:中國農(nóng)業(yè)科學(xué)院,2016. Song Qian. Object-based Image Analysis with Machine Learning Algorithms for Cropping Pattern Mapping Using GF-1/WFV Imagery[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese with English abstract)
[44] 毛留喜,趙俊芳,徐玲玲,等.我國“鐮刀彎”地區(qū)春玉米種植的氣候適宜性與調(diào)整建議[J].應(yīng)用生態(tài)學(xué)報,2016,27(12):3935-3943. Mao Liuxi, Zhao Junfang, Xu Lingling, et al. Climatic suitability of spring maize planted in the “sickle bend” area of China and regulation suggestion[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3935-3943. (in Chinese with English abstract)
[45] 王利民,劉佳,楊玲波,等.基于無人機(jī)影像的農(nóng)情遙感監(jiān)測應(yīng)用[J].農(nóng)業(yè)工程學(xué)報,2013(18):136-145. Wang Limin, Liu Jia, Yang Lingbo, et al. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). 2013(18): 136-145.(in Chinese with English abstract)
[46] 劉佳,王利民,滕飛,等.Google Earth影像輔助的農(nóng)作物面積地面樣方調(diào)查[J].農(nóng)業(yè)工程學(xué)報,2015,31(24):149-154. Liu Jia, Wang Limin, Teng Fei, et al. Crop area ground sample survey using Google Earth image-aided[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 149-154. (in Chinese with English abstract)
[47] 張明杰.基于航空影像的平坦區(qū)田埂界線識別與提取研究[D].北京:中國礦業(yè)大學(xué),2015. Zhang Mingjie. Study of Plain Farmland Ridge Boundary Recognition and Extraction Based on Aerial Image[D]. Beijing: China University of Mining and Technology, 2015. (in Chinese with English abstract)
[48] 姜子紹,馬強(qiáng),宇萬太,等.田埂寬度與種豆對稻田速效磷側(cè)滲流失的影響[J].土壤通報,2016,47(3):688-694. Jiang Zishao, Ma Qiang, Yu Wantai, et al. Effects of paddy bund width and soybean planting on loss of olsen P with lateral seepage[J]. Chinese Journal of Soil Science, 2016, 47(3): 688-694.(in Chinese with English abstract)
[49] 邱強(qiáng),李東波,石一鳴,等.大豆高產(chǎn)種植方式的研究[J].吉林農(nóng)業(yè)科學(xué),2006,31(4):8-10. Qiu Qiang, Li Dongbo, Shi Yiming, et al. Study on planting modes for high yield of soybean[J]. Journal of Jilin Argricultural Sciences, 2006, 31(4): 8-10.(in Chinese with English abstract)
[50] 王利民,劉佳,高建孟,等.冬小麥面積遙感識別精度與空間分辨率的關(guān)系[J].農(nóng)業(yè)工程學(xué)報,2016,32(23):152-160. Wang Limin, Liu Jia, Gao Jianmeng, et al. Relationship between accuracy of winter wheat area remote sensing identification and spatial resolution[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(23): 152-160. (in Chinese with English abstract)
[51] 徐俊,姚行中,喬哲. 美國KH-12照相偵察衛(wèi)星及其情報處理體系研究[J].中國水運:理論版,2008,6(1):214-215.
[52] Li J, Roy D P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring[J]. Remote Sensing, 2017, 9(9): 1-17.
[53] Mohd Shafri H Z, Mohd Salleh M A, Ghiyamat A. Hyperspectral remote sensing of vegetation using red edge position techniques[J]. American Journal of Applied Sciences, 2006, 3(3): 1864-1871.
[54] Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status.[J]. International Journal of Remote Sensing, 1994, 15(7): 1459-1470.
[55] 陳志軍.我國月晴空指數(shù)模型探討[J].南京氣象學(xué)院學(xué)報,2005,28(5):649-655. Chen Zhijun. Exporing the monthly clearness index models in China[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(5): 649-655. (in Chinese with English abstract)
[56] 劉大龍,劉加平,楊柳.以晴空指數(shù)為主要依據(jù)的太陽輻射分區(qū)[J].建筑科學(xué),2007,23(6):9-11. Liu Dalong, Liu Jiaping, Yang Liu. Clearness index based solar radiation distribution[J]. Building Science, 2007, 23(6): 9-11. (in Chinese with English abstract)
Requirement of revisiting period, spatial resolution and spectrum of satellite for grain-soybean rotations monitoring
Liu Jia, Wang Limin※, Yang Fugang, Yang Lingbo, Ji Fuhua
(100081,)
Examination on effect of cereal-soybean rotation is a major business content of agriculture remote sensing monitoring, and the remote sensing data indices are also required for optical satellite development. To meet the requirement on remote sensing monitoring of cereal-soybean rotation, and specially to meet the requirements on the minimal monitoring land parcel, crop types and timeliness, the paper particularly analyzed 3 indices of optical remote sensing satellites: spatial, spectral, and temporal resolutions, and thus provided a theoretical basis for the load design of remote sensing satellites. In setting of spatial resolution, a bulk of arable land was taken as the minimum resolution unit. Based on UAV (unmanned aerial vehicle) images with the resolution of 0.1 m, the paper analyzed the effect of reducing resolution on the visual observation identification capacity on the bulk of arable land by gradually reducing the spatial resolution. In optional spectrum setting, by taking corn and soybean as the major crops of cereal and bean, based on Rapideye images with the spatial resolution of 5 m, and Landsat-OLI images with the spatial resolution of 30 m, the study analyzed the identification capacity on corn and soybean under the combinations of 4 basic wavebands (blue, green, red, and near infrared) and red edge, as well as the combinations of basic wavebands and short wave. In satellite revisiting period setting, the calculation was based on the highest cloud cover frequency of Sichuan Basin of 70%, and the shorter soybean growth period of 90 d. By dividing crop growth stage into 3 periods, i.e. early, middle, and late periods, taking one month as a growth period, the study took 3 clear sky images for each month as the indices to analyze the requirement on the minimum revisiting period of the satellite. The result shows that, to meet the demand of remote sensing examination of crop rotation nationwide, the ideal spatial resolution of remote sensing data shall be better than 0.3 m. By taking spectral setting of basic wavebands (blue, green, red and near infrared) + red edge, or basic wavebands (blue, green, red, and near infrared) + short waveband, the revisiting period has reached 1 time every 3 days. By meeting the above conditions, we can make effective identification on the bulk of arable land with the width of 0.3 m, which is common in China, so as to achieve the target of land identification. It can also achieve the object of identifying the major crop rotation types through effective identification of corns and soybeans in middle growth period by making use of the difference of the spectrum characteristics of red edge and short wave of different crops. High revisiting frequency is used to ensure the acquisition of clear sky images with the 3 periods of acquisition capacity, which not only ensures the acquisition of the images of sensitive periods, but also ensures the acquisition of the image of early periods and later periods. And it can improve the efficiency and accuracy of crop type identification, and thus improve the efficiency of automatic operation on the targets of cereal-bean rotation. The requirement analysis on optical satellite indices in this paper is proposed only for the remote sensing monitoring of cereal-soybean rotation programs. As to whether implement this index or not during the actual design of satellite loads, the satellite load capacity, costs, and the supplement capability of other remote sensing data should be considered, as well as the monitoring demands of other agriculture programs. Proposing a relatively universal satellite design index can lay a foundation for the development of the agriculture remote sensing satellite system.
crops; remote sensing; rotation; verification; China; high resolution; satellite image
劉 佳,王利民,楊福剛,楊玲波,季富華.糧豆輪作遙感監(jiān)測對衛(wèi)星時空及譜段指標(biāo)的需求分析[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(7):165-172. doi:10.11975/j.issn.1002-6819.2018.07.021 http://www.tcsae.org
Liu Jia, Wang Limin, Yang Fugang, Yang Lingbo, Ji Fuhua. Requirement of revisiting period, spatial resolution and spectrum of satellite for grain-soybean rotations monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 165-172. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.021 http://www.tcsae.org
2017-11-08
2018-03-08
國家重點研發(fā)計劃“糧食作物生長監(jiān)測診斷與精確栽培技術(shù)”課題“作物生長與生產(chǎn)力衛(wèi)星遙感監(jiān)測預(yù)測”(2016YFD0300603)
劉 佳,湖南人,研究員,主要從事農(nóng)業(yè)遙感監(jiān)測業(yè)務(wù)運行研究。Email:liujia06@caas.cn
王利民,內(nèi)蒙古寧城人,博士,主要從事農(nóng)業(yè)遙感監(jiān)測業(yè)務(wù)運行研究。Email:wanglimin01@caas.cn
10.11975/j.issn.1002-6819.2018.07.021
S127;S252+.9
A
1002-6819(2018)-07-0165-08