曹蔣軍,吳宗輝,童廷婷,朱慶宗,趙二虎,崔紅娟
1 西南大學(xué) 家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室 生物技術(shù)學(xué)院,重慶 400716
2 西南大學(xué) 西南大學(xué)醫(yī)院,重慶 400716
3 西南大學(xué) 動物科技學(xué)院,重慶 400716
近年來酪氨酸激酶 (Protein tyrosine kinases,PTKs) 作為抗腫瘤藥物靶點(diǎn),以其為導(dǎo)向的藥物研發(fā)已逐步發(fā)展,具有廣闊的應(yīng)用前景。受體酪氨酸激酶 MET基因,全稱間質(zhì)表皮轉(zhuǎn)化因子(Mesenchymal to epithelial transition factor,MET),又稱細(xì)胞間質(zhì)表皮轉(zhuǎn)化因子 (Cellular-mesenchymal to epithelial transition factor,c-Met) 或者肝細(xì)胞生長因子受體 (Hepatocyte growth factor receptor,HGFR) 等,屬于PTKs家族的一員,位于人類第7條染色體 (7q21-q31) 區(qū)域,總長度超過120 kb,其中包含21個外顯子以及20個內(nèi)含子[1]。MET基因所編碼的蛋白通過水解形成α和β亞基,再通過二硫鍵的連接組成成熟的受體蛋白 MET。MET蛋白不僅對于組織損傷的修復(fù)以及再生有積極的促進(jìn)作用[2],其介導(dǎo)的信號通路還對腫瘤細(xì)胞的生存、增殖和轉(zhuǎn)移發(fā)揮著重要的作用[3]。本文將結(jié)合目前本實(shí)驗(yàn)室的研究,對MET的功能作用及其在治療腫瘤的臨床應(yīng)用等方面展開綜述。
受體酪氨酸激酶MET基因所編碼的蛋白MET大小約為170 kDa,經(jīng)糖基化修飾后約為190 kDa,最終通過剪切作用形成由二硫鍵連接的兩條多肽鏈,即α鏈 (50 kDa) 和β鏈 (140 kDa)[4]。MET蛋白從膜外到胞內(nèi)可劃分為SEMA結(jié)構(gòu)域(Semaphorin domain,SEMA)、PSI結(jié)構(gòu)域 (Plexinsemaphorin-integrin domain,PSI)、4個免疫球蛋白樣重復(fù)結(jié)構(gòu)域 (Immunoglobulin-plexins-transcription domain,IPT)、一個跨膜域 (Transmembrane region)、一個近膜域 (Juxtamembrane region,JM)、酪氨酸激酶結(jié)構(gòu)域 (Tyrosine kinase domain,TK) 和一個羧基末端的尾部區(qū)域 (Carboxyl terminal region,CT) (圖 1)[5-6]。
圖1 MET蛋白結(jié)構(gòu)示意圖 (改自Petrini等[6])Fig. 1 Structure of MET receptor (adapted from Petrini et al[6])
SEMA結(jié)構(gòu)域是配體結(jié)合的重要元素,具有高度的保守性,其所包含的七葉-β-螺旋槳性折疊結(jié)構(gòu)被認(rèn)為是配體結(jié)合的關(guān)鍵部件,特別是與配體肝細(xì)胞生長因子 HGF的結(jié)合起著關(guān)鍵作用[7]。肝細(xì)胞生長因子 (Hepatocyte growth factor,HGF),又名擴(kuò)散因子 (Scatter factor,SF),主要由間充質(zhì)細(xì)胞通過旁分泌的方式產(chǎn)生;HGF是目前已知的唯一高親和性的MET配體[8]。與SEMA結(jié)構(gòu)域相連的是PSI結(jié)構(gòu)域,之所以稱為PSI結(jié)構(gòu)域是因?yàn)槠浯嬖趨矤畹鞍?(Plexins)、腦信號蛋白 (Semaphorins)以及整合素 (Integrins) 的半胱氨酸富集結(jié)構(gòu)域[9];通常認(rèn)為PSI結(jié)構(gòu)域的存在使得配體能夠更好地與MET結(jié)合[10]。位于PSI結(jié)構(gòu)域下游的是包含4個免疫球蛋白重復(fù)結(jié)構(gòu)的 IPT結(jié)構(gòu)域,有研究發(fā)現(xiàn)SEMA結(jié)構(gòu)域并不是HGF結(jié)合MET的唯一位點(diǎn),IPT的第3和第4個重復(fù)結(jié)構(gòu)同樣能對HGF產(chǎn)生高度親和力[11]。MET的跨膜域和絕大多數(shù)酪氨酸激酶一樣為單一的 α螺旋[12]。位于胞質(zhì)內(nèi)氨基最末端的近膜域,在 JM 區(qū)域存在著 S985、Y1003兩個磷酸位點(diǎn),其中S985的磷酸化能夠負(fù)調(diào)控酪氨酸激酶的活性,而磷酸化的 Y1003能夠通過募集E3泛素連接酶c-Cbl,使得MET泛素化進(jìn)而與吞蛋白相互作用導(dǎo)致MET的降解。在這個降解過程中,位于JM區(qū)域的富含脯氨酸 (P)、谷氨酰胺(E)、絲氨酸 (S)、蘇氦酸 (T) 的 PEST序列可能是被泛素化的位點(diǎn)[13],且也有報道稱一個特定的蛋白質(zhì)酪氨酸磷酸酶 (PTP-S) 也結(jié)合于該位點(diǎn)[13]。位于JM區(qū)域更下游的區(qū)域是TK域,與胰島素生長因子Ⅰ受體以及免疫調(diào)節(jié)分子Tryo 3家族具有同源性。當(dāng)MET與HGF結(jié)合后,處于TK域激活循環(huán)的Y1234和Y1235酪氨酸殘基自發(fā)磷酸化,而處于碳末端區(qū)域的Y1349與Y1356殘基的磷酸化能夠形成一個多功能的結(jié)合位點(diǎn);這個位點(diǎn)能夠與細(xì)胞內(nèi)的適配器結(jié)合并通過適配器募集許多胞內(nèi)信號影響因子,從而誘導(dǎo)激酶的活性[14]。迄今為止,被發(fā)現(xiàn)包含于MET通路的銜接蛋白以及直接與激酶結(jié)合的底物包括生長因子受體結(jié)合蛋白2 (Growth factor receptor-bound protein 2,GRB2)、GRB2相關(guān)結(jié)合蛋白1 (GRB-2-associated binder 1,GAB1)、磷脂酰肌醇 3-激酶 (Phosphatidylinositol 3-kinase,PI3K)、磷酸脂酶 C-γ (Phospholipase C-γ,PLCγ)、銜接蛋白SHC和蛋白酪氨酸磷酸酶SRC、SHP2、SHIP1 及 STAT3 等[15]。
MET主要在肺、肝、腎、胰腺、前列腺以及支氣管等器官的上皮細(xì)胞中表達(dá),而HGF主要由間充質(zhì)細(xì)胞通過旁分泌的方式產(chǎn)生,其能引起MET的兩個酪氨酸殘基Y1234和Y1235的同源二聚作用和磷酸化,進(jìn)而形成一個串聯(lián)的SH2結(jié)構(gòu)域 (Src homology 2 domain) 識別體,再通過與GRB2、GAB1、SHC、PI3K、PLCγ、SRC、SHIP2以及STAT3等蛋白的作用參與下游通路的調(diào)節(jié)。目前的研究中,MET主要參與調(diào)節(jié)以及行使的生物學(xué)功能見圖 2,但在不同的組織和細(xì)胞中 MET所參與的信號調(diào)節(jié)通路也有所不同,且其調(diào)控其下游的信號通路的作用機(jī)制也有待明確。因此,我們將對MET的高度保守的核心區(qū)域所參與的信號通路進(jìn)行簡單綜述。
圖2 MET蛋白介導(dǎo)的信號通路示意圖 (改自Granito等[5])Fig. 2 MET activation signaling pathways (adapted from Granito et al[5])
整合素 (Integrin) 又稱為整合蛋白,是一種介導(dǎo)細(xì)胞和其外環(huán)境之間連接的跨膜受體,即能作為組成細(xì)胞外基質(zhì) (Cell-extracellular matrix,ECM)蛋白的受體,如纖連蛋白、玻連蛋白、層粘連蛋白以及膠原蛋白[6]。整合素與ECM組成蛋白的相互作用能夠?qū)?xì)胞與細(xì)胞之間、細(xì)胞與ECM之間的粘連起到關(guān)鍵的調(diào)節(jié)作用;其通過與蛋白的結(jié)合引起整合素的聚集,從而與細(xì)胞骨架聯(lián)系促使細(xì)胞與ECM的黏附作用[6,15-16]。有研究發(fā)現(xiàn)HGF同樣能夠引起整合蛋白的聚集,增加細(xì)胞的侵襲性[17]。此外,之前的研究發(fā)現(xiàn)整合素 α6β4可作為HGF/MET的粘附受體進(jìn)而調(diào)控細(xì)胞侵襲的能力;這說明整合素參與了由 HGF/MET所引起的促進(jìn)細(xì)胞侵襲的過程。研究者發(fā)現(xiàn)整合素蛋白α6β4可作為MET的粘附受體進(jìn)而調(diào)控細(xì)胞侵襲的能力,而整合素蛋白α5β1同樣可以通過MET對腫瘤血管的生成產(chǎn)生影響;這些證據(jù)說明整合素蛋白參與了由MET蛋白所引起的促進(jìn)細(xì)胞侵襲及血管生成的過程[18-19]。在轉(zhuǎn)基因 Met小鼠的動物模型試驗(yàn)中,Wang等發(fā)現(xiàn)在缺乏 HGF的情況下,整合素聚集引起的細(xì)胞黏附作用能夠激活 Met并維持其活性,進(jìn)而引起肝癌的產(chǎn)生[20]。目前已經(jīng)發(fā)現(xiàn)了很多在沒有配體的情況下能夠被激活的生長因子受體,其作用方式就是由整合素引起的細(xì)胞粘連所激活[21]。這進(jìn)一步證明了整合素可能單獨(dú)參與了激活MET蛋白的過程。
GRB2與GAB1都是參與MET調(diào)節(jié)下游通路重要的銜接蛋白;其中GAB1能直接與MET結(jié)合或通過GRB2間接地與MET結(jié)合被磷酸化;磷酸化的 GAB1可以產(chǎn)生與其下游信號因子所結(jié)合的位點(diǎn),進(jìn)而激活 PI3K/AKT通路,Ras、Rac1和MAPK級聯(lián)反應(yīng)等[6,22-23]。GAB1能與MET結(jié)合,是因?yàn)镚AB1含有13個氨基酸殘基構(gòu)成的MET偶聯(lián)序列 (MET-binding sequence,MBS),該序列位點(diǎn)能直接與MET碳末端的Y1349相互作用并被磷酸化[24]。GRB2與MET的相互作用不僅能夠聚集 GAB1,還對于 K-RAS的激活十分關(guān)鍵[25]。GAB1通過其碳末端的SH3結(jié)構(gòu)域 (Src homology 3 domain) 與GRB2相互作用,這種作用能夠穩(wěn)定GAB1與 MET之間的作用[26]。所以當(dāng) GRB2與MET分離時,GAB1與MET的作用將會受到影響。GAB1能夠?yàn)镸ET的激活提供許多底物,其中包括PLCγ、Shc、Shp2、GRB2以及PI3K;而PI3K、PLCγ或者Shp2與GAB1分離的時候也會影響到MET所介導(dǎo)的分支化形態(tài)發(fā)生[6]。在通過敲除Gabl基因純合子的胚胎實(shí)驗(yàn)中,研究者發(fā)現(xiàn)了類似敲除HGF/Met所導(dǎo)致的胎盤缺陷以及在肌肉組織中無遷徙前體細(xì)胞的缺陷[27]。由此可見,在銜接蛋白GAB1和GRB2的存在下,HGF/MET可產(chǎn)生多效應(yīng)刺激,進(jìn)而對細(xì)胞的周期進(jìn)程、上皮形態(tài)發(fā)生、血管內(nèi)皮細(xì)胞類型的分支化形態(tài)發(fā)生以及遷移能力產(chǎn)生影響[15,22,28]。
PI3K/AKT是由MET所調(diào)控的下游通路,其作用主要是促進(jìn)細(xì)胞生長增殖的能力[6]。PI3K的p85亞基不僅能直接與MET結(jié)合,還可通過GAB1間接與MET作用[29-30]。激活的PI3K-AKT通路可以誘導(dǎo)抗凋亡蛋白BCL2與 BCL-XL的表達(dá),從而維持和增強(qiáng)細(xì)胞生存的信號[31]。此外,PI3K也參與由HGF/MET誘導(dǎo)的細(xì)胞遷移過程[32]。不僅如此,PI3K/AKT還通過與SRC的結(jié)合影響了由HGF介導(dǎo)的NF-κB激活過程[33]。SRC是一種非受體酪氨酸激酶,在HGF/MET所參與的信號通路中起到主要的調(diào)節(jié)作用;此外,SRC還參與由HGF/MET誘導(dǎo)的腫瘤細(xì)胞的遷移能力[34]。整合素蛋白β1通過激活 MET-SRC-FAK鏈?zhǔn)椒磻?yīng)能夠誘導(dǎo)細(xì)胞的遷移和侵襲,促進(jìn)非貼壁細(xì)胞的生長,且SRC能夠?qū)ET的激活提供正向反饋[35]。Ras/MAPK通路也是目前研究比較透徹的MET下游信號通路,Ras/MAPK的激活需要SHC與GRB2通過Y1356與活化的MET相結(jié)合;激活的GTP結(jié)合蛋白Ras能夠誘導(dǎo)腫瘤的發(fā)生及轉(zhuǎn)移性的擴(kuò)散[25],同時MET也能通過MAPK的介導(dǎo)增強(qiáng)細(xì)胞生長、增殖和遷移的能力[36]。
HGF/MET能夠影響上皮形態(tài)發(fā)生和血管內(nèi)皮細(xì)胞類型的分支化形態(tài)發(fā)生及細(xì)胞的遷移侵襲能力;在細(xì)胞侵襲或分支形態(tài)發(fā)生時,細(xì)胞運(yùn)動的驅(qū)動力源自于細(xì)胞骨架肌動蛋白的動態(tài)變化,這個過程由Ras同源基因家族 (Ras homolog gene family,Rho) 中的細(xì)胞分裂周期蛋白 42 (Cell division control protein 42,CDC42)、Ras相關(guān)的 C3肉毒素底物1 (Ras-related C3 botulinum toxin substrate 1,Rac1) 以及Rho酶A (Rho member A,RhoA) 所控制;CDC42能夠促進(jìn)絲狀偽足以及微端絲的形成,而Rac1能夠誘導(dǎo)板狀偽足以及胞膜邊緣波動[6]。HGF能夠誘導(dǎo)CDC42、Rac1以及RhoA的激活完成上述的生理功能[37],但MET是如何激活Rho家族,其作用方式還需要進(jìn)一步研究。另外,細(xì)胞外基質(zhì)ECM中的不同成分也能夠調(diào)節(jié)HGF/MET所誘導(dǎo)的分支以及管腺增生,例如參與 ECM 的降解與重組的尿激酶型纖溶酶原激活物 (Urokinase plasminogen activator,uPA) 和基質(zhì)金屬蛋白酶家族 (Matrix metalloproteases,MMPs)。HGF/MET能夠增加uPA以及其受體的表達(dá),使其活性得到加強(qiáng)。另外,HGF也能夠誘導(dǎo)MMPs的表達(dá)[38];且MMPs是由HGF/MET誘導(dǎo)的乳腺上皮細(xì)胞分支形態(tài)發(fā)生的必需因子[39];本實(shí)驗(yàn)室的研究也證實(shí)MET的上調(diào)可以增加MMPs的表達(dá)量,進(jìn)而增強(qiáng)腫瘤細(xì)胞的侵襲能力 (數(shù)據(jù)未發(fā)表)。由此可知HGF/MET可以通過調(diào)控uPA與MMPs的活性來影響細(xì)胞的侵襲能力[39]??傊?,這些研究表明HGF/MET能夠通過下游靶基因或信號通路來調(diào)控細(xì)胞的分支形態(tài)發(fā)生以及侵襲遷移能力。
文中,AKT:蛋白激酶B;CDC42:細(xì)胞分裂周期蛋白42;EGFR:表皮生長因子受體;ERK:胞外調(diào)節(jié)蛋白激酶;FAK:局部粘著斑酪氨酸激酶;GRB2:生長因子受體結(jié)合蛋白2;GAB1:GRB2結(jié)合蛋白1;HER2:人表皮生長因子受體;HGF:肝細(xì)胞生長因子;mTOR:哺乳動物雷帕霉素靶蛋白;PI3K:磷脂酰肌醇-3激酶;Plexin B:從狀蛋白 B;RAF:絲/蘇氨酸蛋白激酶;RAS:GTP結(jié)合蛋白;SOS:鳥苷釋放蛋白;VEGFR:血管內(nèi)皮生長因子受體;α6β4 integrin:整合素 α6β4。
很多原發(fā)性腫瘤中MET基因都呈現(xiàn)基因擴(kuò)增或高表達(dá)的現(xiàn)象,包括肺癌、胃癌、結(jié)直腸癌、肝癌等。在肺癌中61%非小細(xì)胞肺癌 (Non-small cell lung cancer,NSCLC) 和 35%小細(xì)胞肺癌 (Small cell lung cancer,SCLC) 都有MET基因擴(kuò)增現(xiàn)象[40-41],且MET基因拷貝數(shù)高的NSCLC患者預(yù)后相對較差[42]。Zhang等的研究表明NSCLC組織的MET和HGF表達(dá)量顯著高于正常肺組織的,且與NSCLC的淋巴管生成和淋巴結(jié)轉(zhuǎn)移有關(guān)[43]。許多研究已經(jīng)證實(shí) MET的基因擴(kuò)增或高表達(dá)是NSCLC患者的不良預(yù)后因素之一[44]。在胃癌中MET也呈基因擴(kuò)增或高表達(dá)的現(xiàn)象,這種現(xiàn)象與胃癌侵襲、轉(zhuǎn)移和預(yù)后相關(guān),但與患者的性別、年齡、腫瘤的大小、位置及分化程度無關(guān)[45-48]。有研究表明胃癌組織中MET表達(dá)量顯著高于正常胃黏膜、慢性萎縮性胃炎和異常增生組織等;且在胃癌組織中,淋巴結(jié)轉(zhuǎn)移的MET表達(dá)量也顯著高于未轉(zhuǎn)移的[49]。Sotoudeh 等的研究也證實(shí)了上述結(jié)果,MET的高表達(dá)還與胃癌的淋巴結(jié)轉(zhuǎn)移和血管侵襲有關(guān)[50]。還有研究表明10%?20%的胃癌患者中存在著MET基因擴(kuò)增的現(xiàn)象[45];Peng等的研究顯示MET的基因擴(kuò)增也是胃癌患者預(yù)后不良因素之一,MET基因擴(kuò)增患者的總生存期和無病生存期顯著縮短[46]。此外,MET能否作為結(jié)直腸癌預(yù)后的指標(biāo)存在爭議,但多項(xiàng)研究顯示MET的高表達(dá)與患者的預(yù)后不良具有密切關(guān)系[51-52],但Qian等的研究發(fā)現(xiàn)MET表達(dá)量在結(jié)直腸癌原發(fā)灶和肝轉(zhuǎn)移灶無顯著性差異,因此MET不適合作為結(jié)直腸癌的預(yù)后標(biāo)志物[53-54]。此外,Cai等研究揭示MET表達(dá)水平與肝癌的術(shù)后復(fù)發(fā)、生存時間關(guān)系密切,且表達(dá)低的可獲得良好的手術(shù)效果,這提示 MET可作為肝癌術(shù)后預(yù)后指標(biāo)[55]。此外,MET基因擴(kuò)增是腫瘤細(xì)胞產(chǎn)生耐藥性的重要原因之一。MET擴(kuò)增導(dǎo)致MET受體表達(dá)量異常增加,酪氨酸激酶活性進(jìn)一步增強(qiáng),進(jìn)而會過度激活下游通路的信號轉(zhuǎn)導(dǎo),特別是PI3K/AKT信號通路,使細(xì)胞獲得耐藥能力[56-57]。
另外,在很多原發(fā)性癌癥中也發(fā)現(xiàn)了 MET突變,例如在遺傳性乳頭狀腎癌 (Heredit-ary papillary renal cell carcinoma,HPRC) 和頭頸部鱗狀細(xì)胞癌 (Squamous cell carcinoma of the head and neck,SCCHN) 中發(fā)現(xiàn)MET蛋白TK結(jié)構(gòu)域的突變,而在胃癌、乳腺癌及小細(xì)胞肺癌中則發(fā)現(xiàn) MET蛋白JM區(qū)域或SEMA結(jié)構(gòu)域的突變[58-60]。MET蛋白突變位點(diǎn)包括位于TK結(jié)構(gòu)域的D1228H/N、M1250T、L1195V和Y1230C等,JM區(qū)域的T1010I、P1009S、R988C和 SEMA結(jié)構(gòu)域的 N375S和E168D等[58,61-62]。TK結(jié)構(gòu)域的突變可影響MET的激酶活性,JM 區(qū)域的突變可影響配體結(jié)合的親和力,而SEMA結(jié)構(gòu)域的突變點(diǎn)可影響MET蛋白泛素化降解的作用[63]。有研究報道了283例肺癌患者 (141例東亞人、76例高加索人和66例非裔美國人) 的MET蛋白突變狀況的檢測分析,結(jié)果顯示所有的非同義突變均出現(xiàn)SEMA結(jié)構(gòu)域和JM區(qū)域,而TK結(jié)構(gòu)域未發(fā)現(xiàn)突變位點(diǎn)[64]。
正常生理?xiàng)l件下,HGF配體由間質(zhì)細(xì)胞分泌,MET受體由上皮細(xì)胞產(chǎn)生并存在于其細(xì)胞膜上,因此HGF和MET通過這種旁分泌機(jī)制調(diào)控機(jī)體正常組織的上皮-間質(zhì)轉(zhuǎn)化 (Epithelial-mesenchymal transition,EMT) 的作用,且這種旁分泌機(jī)制是受到機(jī)體嚴(yán)格調(diào)控的。有些腫瘤細(xì)胞會同時表達(dá)配體HGF和受體MET,由此可形成不受調(diào)控的閉合的自分泌環(huán),在這種調(diào)控機(jī)制下HGF/MET可持續(xù)地被激活,進(jìn)而過度活化包括PI3K/AKT、Ras/MAPK和STAT等信號轉(zhuǎn)導(dǎo)的各級聯(lián)途徑,最終促進(jìn)腫瘤細(xì)胞進(jìn)入無限增殖的惡性循環(huán),這可能是促進(jìn)腫瘤發(fā)生發(fā)展的原因之一[65-66]。另外,有些腫瘤細(xì)胞還可以通過分泌白介素等細(xì)胞因子,刺激相鄰的成纖維細(xì)胞分泌HGF配體,在它們之間也形成一個不受調(diào)控的閉合的環(huán)狀作用機(jī)制,進(jìn)而促進(jìn)腫瘤的發(fā)生發(fā)展[67]。
HGF/MET信號通路不僅參與腫瘤細(xì)胞的發(fā)生發(fā)展,還同時參與腫瘤微環(huán)境的營造。腫瘤微環(huán)境主要包括 ECM、血管、炎性細(xì)胞、巨噬細(xì)胞、樹突細(xì)胞以及成纖維細(xì)胞等[68-69]。
1)HGF/MET誘導(dǎo)腫瘤新生血管的生成
腫瘤發(fā)生發(fā)展離不開血管為其提供的充足營養(yǎng)物質(zhì),因此新生血管對腫瘤的發(fā)生發(fā)展起著重要作用。HGF/MET信號通路的激活不僅能通過PI3K/AKT信號通路和STAT3等促進(jìn)血管生成素、血管內(nèi)皮細(xì)胞生長因子 (Vascular endothelial growth factor,VEGF) 等血管生成因子的表達(dá);還可以通過 MAPK等信號通路抑制血小板反應(yīng)素-1(Thrombospondin-1,TSP-1) 的表達(dá),而TSP-1則是血管生成素的強(qiáng)抑制因子[56,68]。此外,在新血管形成或內(nèi)皮細(xì)胞正在轉(zhuǎn)移和增殖時,MET都呈高表達(dá)狀態(tài);而HGF可以直接刺激血管平滑肌細(xì)胞釋放VEGF-A誘導(dǎo)新血管的生成。HGF還可以通過Rac特定鳥嘌呤核苷酸交換因子Asef和多功能Rac效應(yīng)因子 IQ模序的 GTP酶活化蛋白 1 (IQ motif-containing GTPase-activating protein 1,IQGAP1) 來加強(qiáng)內(nèi)皮細(xì)胞的屏障功能[23,70]??傊琀GF/MET可與VEGF-A共同調(diào)控內(nèi)皮細(xì)胞的增殖和轉(zhuǎn)移,為血管的形成奠定基礎(chǔ)[23]。
2)HGF/MET參與細(xì)胞外基質(zhì)的降解
細(xì)胞外基質(zhì) (Extracellular matrix,ECM) 是細(xì)胞表面或細(xì)胞間的由多糖、蛋白等組成的網(wǎng)架結(jié)構(gòu)物質(zhì)。ECM是阻止腫瘤細(xì)胞轉(zhuǎn)移的重要屏障,腫瘤細(xì)胞的遷移和侵襲首先需要降解 ECM。降解ECM 的降解酶主要為基質(zhì)金屬蛋白酶 (Matrix metalloproteinases,MMPs) 和尿激酶型纖溶酶原激活因子 (Urokinase-type plasminogen activator,uPA)。而 HGF/MET的激活不僅可以提高 MMPs的表達(dá),還可以通過MAPK信號通路來上調(diào)uPA的表達(dá),進(jìn)而加速ECM的降解,最終導(dǎo)致為腫瘤細(xì)胞遷移和侵襲創(chuàng)造適宜的微環(huán)境[56,71]。
3)HGF/MET參與其他腫瘤微環(huán)境的營造
慢性炎癥在腫瘤的發(fā)生發(fā)展中發(fā)揮著重要的作用,在腫瘤的炎癥微環(huán)境存在著大量的炎性細(xì)胞,其可在腫瘤淋巴結(jié)轉(zhuǎn)移 (Tumor node metastasis,TNM) 分期較低的階段促進(jìn)腫瘤細(xì)胞的增殖和轉(zhuǎn)移[68]。與腫瘤相關(guān)的巨噬細(xì)胞在炎-癌轉(zhuǎn)化中具有關(guān)鍵作用,它能通過影響MET蛋白的表達(dá),進(jìn)而通過HGF/MET促進(jìn)腫瘤細(xì)胞的遷移能力[72]。樹突細(xì)胞是現(xiàn)今發(fā)現(xiàn)的機(jī)體內(nèi)功能最強(qiáng)的抗原遞呈細(xì)胞,可激活靜息的 T細(xì)胞,進(jìn)而誘發(fā)機(jī)體產(chǎn)生抗腫瘤免疫,而HGF/C-Met信號通路不僅能抑制其抗原呈遞功能,還可抑制樹突細(xì)胞對腫瘤組織的浸潤[73-74]。
HGF/MET信號通路無論在腫瘤原發(fā)性耐藥還是繼發(fā)性耐藥中都發(fā)揮了重要作用[75]。有研究報道發(fā)現(xiàn)在表皮生長因子受體酪氨酸激酶抑制劑(Epidermal growth factor receptor tyrosine kinase inhibitor,EGFR-TKI) 原發(fā)性耐藥的肺腺癌細(xì)胞中,HGF/MET信號通路過度活化,能通過GAB1蛋白激活PI3K/AKT信號通路,降低EGFR-TKI對其轉(zhuǎn)導(dǎo)信號級聯(lián)反應(yīng)的抑制,進(jìn)而產(chǎn)生耐藥性[75-76]。另外,Engelma等對吉非替尼產(chǎn)生獲得性耐藥的肺癌細(xì)胞系進(jìn)行干預(yù)后,發(fā)現(xiàn)MET擴(kuò)增可以通過表皮因子受體ERBB3蛋白的磷酸化激活其下游PI3K/AKT等信號通路,進(jìn)而避開EGFR-TKI作用的藥物靶點(diǎn),最終導(dǎo)致細(xì)胞對 EGFR-TKI產(chǎn)生繼發(fā)性耐藥[75]。
HGF/MET信號通路在多種腫瘤組織中出現(xiàn)異?;罨⑴c腫瘤細(xì)胞的生長、增殖和侵襲能力有著密切的關(guān)系。例如異?;罨?HGF/MET信號通路與肺癌發(fā)生、浸潤和轉(zhuǎn)移有著密切聯(lián)系[77];而在結(jié)直腸癌侵襲轉(zhuǎn)移過程中,HGF/MET參與調(diào)控的上皮間質(zhì)轉(zhuǎn)化 (Epithelial mesenchymal transition,EMT) 發(fā)揮了關(guān)鍵的作用[78]。因此,阻斷HGF/MET信號通路可有效抑制腫瘤的發(fā)生發(fā)展與轉(zhuǎn)移;目前針對HGF/MET的抑制劑主要有3類:生物拮抗劑、單克隆抗體以及小分子抑制劑。
作用于 HGF/MET通路的生物拮抗劑主要是HGF的變異體 NK1、NK2和 NK4等;其作用機(jī)制是和HGF配體競爭性地與MET結(jié)合,抑制由HGF所誘導(dǎo)的MET受體的酪氨酸磷酸化作用,從而降低 HGF/MET通路的活性[56,79]。NK2是天然的HGF蛋白變異體;而NK4人為設(shè)計(jì)的HGF的1個片段,目前已經(jīng)證實(shí)在多種臨床模型中都有完整的競爭性抑制 HGF/MET通路的能力[80-81]。有研究報道通過腺病毒介導(dǎo)的穩(wěn)定表達(dá)的 NK4對腫瘤細(xì)胞的增殖以及對肺癌和黑色素瘤的遷移能力有明顯的抑制作用[82];且在原位腫瘤移植的惡性胸膜間皮瘤動物模型中,NK4的表達(dá)顯著抑制腫瘤細(xì)胞生長增殖和侵襲遷移的能力[83]。以上的研究結(jié)果表明通過 NK4介導(dǎo)的基因治療對癌癥患者來說不失為一個行之有效的途徑;而這種通過設(shè)計(jì)HGF的剪切體抑制HGF/MET信號通路活性,從而達(dá)到抗腫瘤效果的方式值得進(jìn)一步思考和探索。
針對 HGF/MET信號通路的單克隆抗體多種多樣,其中作用于 HGF的抗體有 Rilotumumab(AMG 102)、TAK701 和 Ficlatuzumab (AV299) 等;作用于 MET的有 Onartuzumab、DN30和CE-355621等;其作用機(jī)制為通過抗體與抗原的作用,中和 HGF (或 MET) 的活性,進(jìn)而抑制其與MET (或HGF) 的結(jié)合,最終降低HGF/MET通路的活性。
AMG102是一種完全的人源單克隆抗體,其能夠與HGF的輕鏈結(jié)合,更易與雙鏈的成熟HGF相結(jié)合。目前AMG102被作為單一的治療方案在多種癌癥中進(jìn)行Ⅱ期臨床試驗(yàn)評估,包括結(jié)直腸癌和胃食管腺癌等 (表1)[84]。TAK701是一種人源的抗HGF中和抗體,其作用機(jī)理是通過TAK701能夠與HGF結(jié)合,從而阻斷HGF與MET的連接。TAK701能夠抑制細(xì)胞內(nèi)MET的磷酸化并且對很多依賴于 HGF自分泌的癌細(xì)胞有抗腫瘤的活性[85]。Ficlatuzumab (AV299) 是人源化抗HGF IgG1的單克隆抗體,其已經(jīng)在NSCLC患者中進(jìn)行了Ⅱ期臨床試驗(yàn)[56]。
表1 Met和HGF仰制劑在臨床中研究現(xiàn)狀(改自Bahrami et al [84])Table 1 Summarv of MET or HGF inhibitors in clinical development (adapted from bahrami et al [84])
續(xù)表1
續(xù)表1
續(xù)表1
Onartuzumab是一種人為設(shè)計(jì)的能與MET中和的單克隆抗體,目前處于臨床前研究階段,主要用于治療胃癌、實(shí)體瘤、移性結(jié)直腸癌和晚期肝癌等 (表1)[84,86-87]。DN30是 MET的單克隆抗體,其抑制MET及絲/蘇氨酸蛋白激酶的磷酸化,進(jìn)而抑制腫瘤的生長和增殖,目前還處于臨床前研究階段[81]。CE-355621單克隆抗體與MET的結(jié)合位點(diǎn)位于胞外區(qū),可以阻止MET與HGF的結(jié)合,進(jìn)而抑制MET的激活,主要應(yīng)用于神經(jīng)膠質(zhì)瘤等的治療,目前也處于臨床前研究階段[81]。
絕大多數(shù)小分子抑制劑都是以 MET受體為靶點(diǎn)的,其作用機(jī)制是通過與MET蛋白胞內(nèi)ATP結(jié)合位點(diǎn)競爭性地結(jié)合,進(jìn)而阻斷酪氨酸磷酸化,最終達(dá)到抑制MET激酶活性的作用;根據(jù)小分子抑制劑針對MET的選擇性,分為選擇性及非選擇性酪氨酸激酶抑制劑[81]。選擇性酪氨酸激酶抑制劑主要有Crizotinib、Cabozantinib (XL184)、JNJ-38877605、Golvatinib (E7050) 和 MK-2461等(表1)[84,88];非選擇性酪氨酸激酶抑制劑具有代表性的有 Tivatinib、JNJ-38877605和 PF-04217903等 (表1)[84]。
Crizotinib是目前唯一已上市的針對MET的小分子抑制劑。Crizotinib,中文名稱克里唑替尼,商品名為XalkoriTM,是美國輝瑞公司 (Pfizer) 研發(fā)的針對MET配體和間變性淋巴瘤激酶(Anaplastic lymphoma kinase,ALK) 的小分子抑制劑;該藥早在2011年8月獲得美國食品藥品管理局 (Food and Drug Administration,F(xiàn)DA) 的加速批準(zhǔn),2013年11月獲得正式批準(zhǔn),主要用于間變性淋巴瘤激酶陽性的轉(zhuǎn)移性非小細(xì)胞肺癌患者的治療[89-90]。有研究報道顯示在非小細(xì)胞肺癌細(xì)胞系SPC-A1中,Crizotinib可以通過降低 MET-RASMAPK和MET-PI3K-AKT等信號通路的活性,進(jìn)而誘導(dǎo)腫瘤細(xì)胞產(chǎn)生自噬,最終抑制腫瘤的生長增殖[91]。
在Crizotinib的Ⅰ期臨床試驗(yàn)中,給予119例間變性淋巴瘤激酶陽性的轉(zhuǎn)移性非小細(xì)胞肺癌患者每天兩次250 mg的劑量進(jìn)行療效評估,結(jié)果顯示其客觀響應(yīng)率 (Objective response rate,ORR) 為61%,疾病無停頓生計(jì)期 (Progression-free survival,PFS) 為 10個月,治療的中位反應(yīng)期 (Median response duration) 為48周[92-93]。在Ⅱ期臨床試驗(yàn)中,136例患者進(jìn)行了藥物安全性評估,109例進(jìn)行了患者報告結(jié)局評價 (Patient reported outcome,PRO),76例進(jìn)行了腫瘤反應(yīng)評估;中位年齡為52歲,94%患有胰腺癌,68%無抽煙史和 53%是女性。通過每日兩次口服250 mg的Crizotinib治療后,參與腫瘤反應(yīng)評估的76例患者中,63例腫瘤病灶縮小 (41例病灶縮小比例≥30%)[93-94]。在Crizotinib的Ⅲ期臨床試驗(yàn)中,347例患者被隨機(jī)分為Crizotinib組和標(biāo)準(zhǔn)化療藥物組 (培美曲塞或多西他賽),結(jié)果顯示其客觀響應(yīng)率為 65%;Crizotinib組的中位 PFS顯著高于標(biāo)準(zhǔn)化療藥物組,即7.7個月對3個月 (多西他賽,P<0.000 1)或4.2個月 (培美曲塞,P<0.001)[95]。
MET蛋白作為一種受體酪氨酸激酶,通常存在于上皮細(xì)胞中,被HGF等配體激活后,能夠參與調(diào)控細(xì)胞的增殖、凋亡、遷移侵襲和細(xì)胞形態(tài)等多種生物學(xué)功能。MET參與的信號轉(zhuǎn)導(dǎo)主要有Integrin、GRB2-GAB1、PI3K/AKT、Ras/MAPK和SRC/FAK等信號通路。隨著研究的深入,MET已被證實(shí)在多種惡性腫瘤中異常表達(dá)或基因擴(kuò)增,其與腫瘤細(xì)胞的生長增殖、遷移侵襲以及患者的預(yù)后都有密切的關(guān)系。近年來隨著對MET在腫瘤方面研究的深入和擴(kuò)展,其逐步成為抗腫瘤治療的重要靶點(diǎn);特別是針對HGF/MET靶向治療的抑制劑很多目前已經(jīng)進(jìn)入了臨床階段的研究,且其良好的抗腫瘤效果也得到了證實(shí)。盡管如此,對于其抑制劑的安全性、耐藥性及針對不同腫瘤的不同用法和用量等需還更加深入的研究。因此,進(jìn)一步探究MET在腫瘤發(fā)生發(fā)展中的功能機(jī)制,才有可能找到一類腫瘤抑制活性高、選擇性好和副作用小的抑制劑,為腫瘤治療提供新途徑和新方法。
[1]Yamashita JI,Ogawa M,Yamashita SI,et al.Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res,1994,54(7):1630–1633.
[2]Liu YH. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int,2006,69(2):213–217.
[3]Miekus K. The Met tyrosine kinase receptor as a therapeutic target and a potential cancer stem cell factor responsible for therapy resistance (Review). Oncol Rep,2016,37(2): 647–656.
[4]Matsumoto K,Umitsu M,de Silva DM,et al.Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci,2017,108(3):296–307.
[5]Granito A,Guidetti E,Gramantieri L. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma. J Hepatocell Carcinoma,2015,2: 29-38.
[6]Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. Ann Transl Med,2015,3(6): 82.
[7]Niemann HH,J?ger V,Butler PJG,et al. Structure of the human receptor tyrosine kinase met in complex with theListeriainvasion protein InlB. Cell,2007,130(2):235–246.
[8]Kim ES,Salgia R. MET pathway as a therapeutic target.J Thorac Oncol,2009,4(4): 444–447.
[9]Sattler M,Ma PC,Salgia R. Therapeutic targeting of the receptor tyrosine kinase Met. Cancer Treat Res,2004,119: 121–138.
[10]Kozlov G,Perreault A,Schrag JD,et al. Insights into function of PSI domains from structure of the Met receptor PSI domain. Biochem Biophys Res Commun,2004,321(1): 234–240.
[11]Basilico C,Arnesano A,Galluzzo M,et al. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of met. J Biol Chem,2008,283(30): 21267–21277.
[12]Ma PC,Maulik G,Christensen J,et al. c-Met: Structure,functions and potential for therapeutic inhibition. Cancer Metastasis Rev,2003,22(4): 309–325.
[13]Villa-Moruzzi E,Puntoni F,Bardelli A,et al. Protein tyrosine phosphatase PTP-S binds to the juxtamembrane region of the hepatocyte growth factor receptor Met.Biochem J,1998,336(1): 235–239.
[14]Comoglio PM,Boccaccio C. Scatter factors and invasive growth. Semin Cancer Biol,2001,11(2): 153–165.
[15]Zhang YW,Woude GFV. HGF/SF-Met signaling in the control of branching morphogenesis and invasion. J Cell Biochem,2003,88(2): 408–417.
[16]Giancotti FG,Ruoslahti E. Transduction-integrin signaling. Science,1999,285(5430): 1028–1032.
[17]Trusolino L,Cavassa S,Angelini P,et al. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J,2000,14(11): 1629–1640.
[18]Trusolino L,Bertotti A,Comoglio PM. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell,2001,107(5):643–654.
[19]Mitra AK,Sawada K,Tiwari P,et al.Ligand-independent activation of c-Met by fibronectin and α5β1-integrin regulates ovarian cancer invasion and metastasis. Oncogene,2011,30(13): 1566–1576.
[20]Wang R,Ferrell DL,Faouzi S,et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol,2001,153(5): 1023–1034.
[21]Schwartz MA,Ginsberg MH. Networks and crosstalk:integrin signalling spreads. Nat Cell Biol,2002,4(4):E65-E68.
[22]Smith MA,Licata T,Lakhani A,et al. MET-GRB2 signaling-associated complexes correlate with oncogenic MET signaling and sensitivity to MET kinase inhibitors.Clin Cancer Res,2017,doi: 10.1158/1078-0432.CCR-16-3006.
[23]Gallo S,Sala V,Gatti S,et al. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system.Clin Sci (Lond),2015,129(12): 1173–1193.
[24]Schaeper U,Gehring NH,Fuchs KP,et al. Coupling of Gab1 to c-Met,Grb2,and Shp2 mediates biological responses. J Cell Biol,2000,149(7): 1419–1432.
[25]Saucier C,Papavasiliou V,Palazzo A,et al. Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis.Oncogene,2002,21(12): 1800–1811.
[26]Furge KA,Zhang YW,Woude GFV. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene,2000,19(49): 5582–5589.
[27]Sachs M,Brohmann H,Zechner D,et al. Essential role of Gab1 for signaling by the c-Met receptorin vivo. J Cell Biol,2000,150(6): 1375–1384.
[28]Rosário M,Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol,2003,13(6): 328–335.
[29]Xiao GH,Jeffers M,Bellacosa A,et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA,2001,98(1): 247–252.
[30]Ko B,He T,Gadgeel S,et al. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann Transl Med,2017,5(1): 4.
[31]Liu YH. Hepatocyte growth factor in kidney fibrosis:therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol,2004,287(1): F7–F16.
[32]Usatyuk PV,Fu PF,Mohan V,et al. Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation,reactive oxygen species (ROS)generation,and motility of lung endothelial cells. J Biol Chem,2014,289(19): 13476–13491.
[33]Fan SJ,Gao M,Meng QH,et al. Role of NF-kappa B signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene,2005,24(10): 1749–1766.
[34]Gururajan M,Sievert M,Mink S,et al. SRC family kinase FYN promotes MET tyrosine kinase activation,epithelial to mesenchymal transition and metastasis in human prostate cancer. Cancer Res,2014,74(19): 3459.[35]Hui AY,Meens JA,Schick C,et al. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem,2009,107(6): 1168–1181.
[36]Lorenzon L,Ricca L,Pilozzi E,et al. Tumor regression grades,K-RASmutational profile and c-MET in colorectal liver metastases. Pathol Res Pract,2017,213(8): 1002–1009.
[37]Royal I,Lamarche-Vane N,Lamorte L,et al. Activation of cdc42,rac,PAK,and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell,2000,11(5): 1709–1725.
[38]Kermorgant S,Aparicio T,Dessirier V,et al. Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction.evidence for PI3 kinase and PKC involvement.Carcinogenesis,2001,22(7): 1035–1042.
[39]Simian M,Hirai Y,Navre M,et al. The interplay of matrix metalloproteinases,morphogens and growth factors is necessary for branching of mammary epithelial cells. Development,2001,128(16): 3117–3131.
[40]Ma PC,Jagadeeswaran R,Jagadeesh S,et al. Functional expression and mutations of c-met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res,2005,65(4):1479–1488.
[41]Xu XY,Chen P. Research progress on non-small-cell lung cancer drugs targeting Met. Drugs Clin,2016,31(4): 562–566 (in Chinese).徐曉燕,陳鵬. 作用于 Met靶點(diǎn)的非小細(xì)胞肺癌治療藥物研究進(jìn)展. 現(xiàn)代藥物與臨床,2016,31(4):562–566.
[42]Cappuzzo F,Marchetti A,Skokan M,et al. IncreasedMETgene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol,2009,27(10): 1667–1674.
[43]Zhang N,Xie FB,Gao W,et al. Expression of hepatocyte growth factor and c-Met in non-small-cell lung cancer and association with lymphangiogenesis.Mol Med Rep,2015,11(4): 2797–2804.
[44]Park S,Choi YL,Sung CO,et al. High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol,2012,27(2): 197–207.
[45]Fioroni I,Dell’Aquila E,Pantano F,et al. Role of c-mesenchymal-epithelial transition pathway in gastric cancer. Expert Opin Pharmacother,2015,16(8):1195–1207.
[46]Peng Z,Zhu Y,Wang QQ,et al. Prognostic significance of MET amplification and expression in gastric cancer: a systematic review with meta-analysis. PLoS ONE,2014,9(1): e84502.
[47]Zhu XR,Zheng LZ. Research progress of HGF/c-Met-related targeted therapy of gastric cancer. J Shanghai Jiaotong Univ: Med Sci,2016,36(1): 133–137(in Chinese).朱雪茹,鄭磊貞. HGF/c-Met與胃癌靶向治療的研究進(jìn)展. 上海交通大學(xué)學(xué)報: 醫(yī)學(xué)版,2016,36(1):133–137.
[48]Fuse N,Kuboki Y,Kuwata T,et al. Prognostic impact of HER2,EGFR,and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer,2016,19(1): 183–191.
[49]Zhao J,Zhang XX,Xin Y. Up-regulated expression of ezrin and c-Met proteins are related to the metastasis and prognosis of gastric carcinomas. Histol Histopathol,2011,26(9): 1111–1120.
[50]Sotoudeh K,Hashemi F,Madjd Z,et al. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays. Diagn Pathol,2012,7: 57.
[51]Garouniatis A,Zizi-Sermpetzoglou A,Rizos S,et al.FAK,CD44v6,c-Met and EGFR in colorectal cancer parameters: tumour progression,metastasis,patient survival and receptor crosstalk. Int J Colorectal Dis,2013,28(1): 9–18.
[52]Inno A,di Salvatore M,Cenci T,et al. Is there a role for IGF1R and c-MET pathways in resistance to cetuximab in metastatic colorectal cancer? Clin Colorectal Cancer,2011,10(4): 325–332.
[53]Qian LY,Li P,Li XR,et al. Multivariate analysis of molecular indicators for postoperative liver metastasis in colorectal cancer cases. Asian Pac J Cancer Prev,2012,13(8): 3967–3971.
[54]Song WT,Sun YL. Role of hepatocyte growth factor receptor c-met regulating epithelial-mesenchymal transition in metastasis of colorectal cancer. Cancer Res Prev Treat,2015,42(7): 737–739 (in Chinese).宋文韜,孫燕來. 肝細(xì)胞生長因子受體 c-met調(diào)控上皮間質(zhì)轉(zhuǎn)化在結(jié)直腸癌轉(zhuǎn)移中的研究進(jìn)展. 腫瘤防治研究,2015,42(7): 737–739.
[55]Cai YF,Su SY,Zhen ZJ. Relationship between c-met expression level and postoperative prognosis of hepatocellular carcinoma. Chin J Gen Surg,2013,22(12): 1580–1584 (in Chinese).蔡云峰,蘇樹英,甄作均. 肝癌組織c-met表達(dá)與肝癌術(shù)后預(yù)后的關(guān)系. 中國普通外科雜志,2013,22(12):1580–1584.
[56]Li YW,Liu HY,Chen J. Dysregulation of HGF/c-Met signal pathway and their targeting drugs in lung cancer.Chin J Lung Cancer,2014,(8): 625–634 (in Chinese).李永文,劉紅雨,陳軍. 肺癌細(xì)胞中 HGF/c-Met信號通路的異常調(diào)控及其靶向藥物研究進(jìn)展. 中國肺癌雜志,2014,(8): 625–634.
[57]Engelman JA,Zejnullahu K,Mitsudomi T,et al.METamplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science,2007,316(5827): 1039–1043.
[58]Lengyel E,Sawada K,Salgia R. Tyrosine kinase mutations in human cancer. Curr Mol Med,2007,7(1):77–84.
[59]賈穎,陳興國. HGF/c-Met信號途徑與腫瘤關(guān)系的研究進(jìn)展. 山東醫(yī)藥,2015,55(41): 101–104.
[60]Lee JH,Han SU,Cho H,et al. A novel germ line juxtamembrane Met mutation in human gastric cancer.Oncogene,2000,19(43): 4947–4953.
[61]de Aguirre I,Salvatierra A,Font A,et al. c-Met mutational analysis in the sema and juxtamembrane domains in small-cell-lung-cancer. Transl Oncogenomics,2006,1: 11–18.
[62]Giordano S,Maffe A,Williams TA,et al. Different point mutations in the met oncogene elicit distinct biological properties. FASEB J,2000,14(2): 399–406.
[63]Waqar SN,Cottrell CE,Morgensztern D.METmutation associated with responsiveness to crizotinib. J Thorac Oncol,2015,10(5): e29–e31.
[64]Krishnaswamy S,Kanteti R,Duke-Cohan JS,et al.Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res,2009,15(18):5714–5723.
[65]Yu W,Jiao N. Research Progress of HGF/c-Met Pathway and tumorigenesis. Chin J Misdiagn,2010,10(23):5565–5566.俞維,焦娜. HGF/c-Met信號通路與腫瘤的研究進(jìn)展.中國誤診學(xué)雜志,2010,10(23): 5565–5566.
[66]Spina A,de Pasquale V,Cerulo G,et al. HGF/c-MET axis in tumor microenvironment and metastasis formation. Biomedicines,2015,3(1): 71–88.
[67]Danilkovitch-Miagkova A,Zbar B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors.J Clin Invest,2002,109(7): 863–867.
[68]Ruco L,Scarpino S. The pathogenetic role of the HGF/c-Met system in papillary carcinoma of the thyroid. Biomedicines,2014,2(4): 263–274.
[69]Petrelli A,Valabrega G. Multitarget drugs: the present and the future of cancer therapy. Expert Opin Pharmacother,2009,10(4): 589–600.
[70]Murray DW,Didier S,Chan A,et al. Guanine nucleotide exchange factor Dock7 mediates HGF-induced glioblastoma cell invasion via rac activation. Br J Cancer,2014,110(5): 1307–1315.
[71]Khirwadkar Y,Hiscox SE,Jordan NJ,et al. HGF/SF promotes an aggressive phenotype in c-Met-overexpressing fulvestrant-resistant MCF-7 cells-Evidence for MMP-9 and PI3k involvement. Ann Oncol,2007,18(S4): 611–617.
[72]Zong ZY,Li X,Han ZL,et al. Effect of tumor associated macrophages on the expression of c-Met in hepatocellular carcinoma cells. J Shandong Univ: Health Sci,2016,54(3): 14–18 (in Chinese).宗兆運(yùn),李霞,韓振龍,等. 腫瘤相關(guān)巨噬細(xì)胞對肝癌細(xì)胞 c-Met分子表達(dá)的影響. 山東大學(xué)學(xué)報: 醫(yī)學(xué)版,2016,54(3): 14–18.
[73]Chen ZW,Peng S,Xu DG,et al. Immunosuppressive role of HGF/C-Met pathway in tongue squamous cell cancer to inhibit infiltration of CD1a+DC. Chin J Oral Maxillofac Surg,2015,13(4): 329–334 (in Chinese).陳仲偉,彭參,徐冬貴,等. 舌鱗癌微環(huán)境中HGF/C-Met信號通路對CD1a+DC的抑制作用. 中國口腔頜面外科雜志,2015,13(4): 329–334.
[74]Lin A,Schildknecht A,Nguyen LT,et al. Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett,2010,127(2): 77–84.
[75]Song SL,Bi MH. Research progress of HGF/MET signaling pathway in EGFR-TKI resistance in non-small cell lung cancer. Chin J Lung Cancer,2014,17(10):755–759 (in Chinese).宋世龍,畢明宏. HGF/MET信號通路在非小細(xì)胞肺癌EGFR-TKI耐藥性中的研究進(jìn)展. 中國肺癌雜志,2014,17(10): 755–759.
[76]Yano S,Wang W,Li Q,et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res,2008,68(22): 9479–9487.
[77]Zhen Q,Liu JF,Gao L,et al. MicroRNA-200a targets EGFR and c-Met to inhibit migration,invasion,and gefitinib resistance in non-small cell lung cancer.Cytogenet Genome Res,2015,146(1): 1–8.
[78]Suman S,Kurisetty V,Das TP,et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog,2014,53(Suppl): E151–E160.
[79]Niemann HH. Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochim Biophys Acta,2013,1834(10): 2195–2204.
[80]Mizuno S,Nakamura T. HGF-MET cascade,a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci,2013,14(1): 888–919.
[81]Yan JJ,Liu J,Zhang SG,et al. C-met tyrosine kinase inhibitors: research advances. J Int Pharm Res,2012,39(3): 184–191 (in Chinese).嚴(yán)家菊,劉靖,張首國,等. 以c-met為靶點(diǎn)的酪氨酸激酶抑制劑的研究進(jìn)展. 國際藥學(xué)研究雜志,2012,39(3): 184–191.
[82]Kishi Y,Kuba K,Nakamura T,et al. Systemic NK4 gene therapy inhibits tumor growth and metastasis of melanoma and lung carcinoma in syngeneic mouse tumor models. Cancer Sci,2009,100(7): 1351–1358.
[83]Suzuki Y,Sakai K,Ueki J,et al. Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. Int J Cancer,2010,127(8): 1948–1957.
[84]Bahrami A,Shahidsales S,Khazaei M,et al. C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol,2017,232(10): 2657–2673.
[85]Hori A,Kitahara O,Ito Y,et al. Monotherapeutic and combination antitumor activities of TAK-701,a humanized anti-hepatocyte growth factor neutralizing antibody,against multiple types of cancer. Cancer Res,2009,69(9): 18–22.
[86]Spigel DR,Ervin TJ,Ramlau R,et al. Final efficacy results from OAM4558g,a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol 2011,29(S1): 7505.
[87]Spigel DR,Edelman MJ,O’Byrne K,et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non-small-cell lung cancer: METLung. J Clin Oncol,2017,35(4): 412–420.
[88]Daud A,Kluger HM,Kurzrock R,et al. Phase II randomised discontinuation trial of the MET/VEGF receptor inhibitor cabozantinib in metastatic melanoma.Br J Cancer,2017,116(4): 432–440.
[89]Li LL,Ai XJ. Research progress of small molecule inhibitor based on c-met kinase. J Anhui Agric Sci,2016,44(13): 153–156 (in Chinese).李麗麗,艾曉杰. 基于 c-Met激酶的小分子抑制劑研究進(jìn)展. 安徽農(nóng)業(yè)科學(xué),2016,44(13): 153–156.
[90]Cui JJ,Tran-Dubé M,Shen H,et al. Structure based drug design of crizotinib (PF-02341066),a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem,2011,54(18):6342–6363.
[91]You LK,Shou JW,Deng DC,et al. Crizotinib induces autophagy through inhibition of the STAT3 pathway in multiple lung cancer cell lines. Oncotarget,2015,6(37):40268–40282.
[92]Article T,Camidge DR,Bang Y,et al. Progression-free survival (PFS) from a phase I study of crizotinib(PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol,2011,29(15):2501.
[93]Zhu HB,Xu XY,Wang L. Clinical research of crizotinib in advanced non-small cell lung cancer. Chin J Lung Cancer,2013,16(6): 321–324 (in Chinese).朱海波,徐小玉,王玲. 克里唑替尼治療晚期非小細(xì)胞肺癌的臨床研究進(jìn)展. 中國肺癌雜志,2013,16(6):321–324.
[94]Crinò L,Kim D,Riely GJ,et al. Initial phase II results with crizotinib in advancedALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005. J Clin Oncol,2011,29(suppl): 7514.
[95]Leprieur EG,Fallet V,Cadranel J,et al. Spotlight on crizotinib in the first-line treatment of ALK-positive advanced non-small-cell lung cancer: patients selection and perspectives. Lung Cancer (Auckl),2016,7: 83–89.