鮑恩財(cái),曹晏飛,鄒志榮,申婷婷,張 勇
(西北農(nóng)林科技大學(xué)園藝學(xué)院,農(nóng)業(yè)部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
日光溫室在中國(guó)設(shè)施園藝的發(fā)展過程中起到了重要的作用。從上世紀(jì)初即開始初期發(fā)展,實(shí)現(xiàn)了冬春季節(jié)北方栽培的突破,80年代進(jìn)入大規(guī)模發(fā)展階段,2015年日光溫室總面積為97.42萬hm2,全國(guó)占比從2010年的20 %提高到25.2%,目前技術(shù)日臻完善,其意義及優(yōu)越性進(jìn)一步顯現(xiàn)[1-4]。中國(guó) 2/3的日光溫室集中在北方寒區(qū),成為北方乃至全國(guó)“菜籃子工程”供應(yīng)的重要手段、農(nóng)民增收的重要途徑和農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整、農(nóng)業(yè)現(xiàn)代化和新農(nóng)村建設(shè)的重要內(nèi)容,其節(jié)能減排效果顯著,為提高城鄉(xiāng)居民的生活水平、穩(wěn)定社會(huì)做出了歷史性貢獻(xiàn)[5-6]。其優(yōu)越性也受到國(guó)外的高度關(guān)注,2017年4月12日,荷蘭的第 1座中國(guó)節(jié)能型日光溫室正式開放,該日光溫室位于瓦格寧根大學(xué)研究基地,結(jié)合應(yīng)用了荷蘭先進(jìn)的生產(chǎn)管理技術(shù)[7]。
日光溫室的研究?jī)?nèi)容主要集中于保溫蓄熱機(jī)理與實(shí)現(xiàn)方式[1],其中,節(jié)能日光溫室的蓄熱技術(shù)一直是國(guó)內(nèi)外學(xué)者研究日光溫室最重要、最集中的內(nèi)容之一。本文分析了日光溫室的研究現(xiàn)狀,綜述了國(guó)內(nèi)外關(guān)于節(jié)能日光溫室蓄熱技術(shù)的相關(guān)研究,進(jìn)行總結(jié)并展望其未來發(fā)展方向,以期為國(guó)內(nèi)開展節(jié)能日光溫室蓄熱技術(shù)研究提供參考。
節(jié)能日光溫室起源于中國(guó)遼南地區(qū),具有完全的自主知識(shí)產(chǎn)權(quán),但作為一種溫室形式,日光溫室并不屬中國(guó)獨(dú)有。從2 000多年前開始的世界范圍內(nèi)的溫室形式演變史來看,早期依墻而建的單屋面溫室就是目前日光溫室的雛形[1,8],國(guó)外學(xué)者對(duì)該類溫室的光熱環(huán)境、覆蓋材料開展了部分研究[9-11]。隨著歐美日等發(fā)達(dá)國(guó)家的經(jīng)濟(jì)發(fā)展,這種土地使用率較低的溫室類型逐漸被淘汰,并轉(zhuǎn)向全光型溫室[1]。近年來,中國(guó)節(jié)能日光溫室的發(fā)展迅速,其優(yōu)良的保溫蓄熱性能得到國(guó)外學(xué)者的高度關(guān)注和研究,印度學(xué)者Sethi等[12]總結(jié)溫室蓄熱性能時(shí),從節(jié)能角度考慮,借鑒了日光溫室的蓄熱原理,在溫室北面砌墻并采用厚重材料作為蓄熱體從而減少熱量損失;Nayak等[13]進(jìn)行光伏/光熱與溫室結(jié)合的試驗(yàn)時(shí),采用的溫室即為帶后墻的類似中國(guó)日光溫室的結(jié)構(gòu)形式。土耳其學(xué)者Ucar等[14]分析了建筑物外墻采用4種不同絕熱材料的效果,并認(rèn)為可以作為溫室外墻使用。伊朗學(xué)者 Mobtaker等[15]從能源需求的角度對(duì)當(dāng)?shù)?種溫室類型進(jìn)行了比較,分析計(jì)算了維持植物理想溫度所需的總能量并建立了數(shù)學(xué)模型,結(jié)果表明,東西走向、北側(cè)為磚墻的溫室中所需的額外能量最低,可節(jié)能31.7%。加拿大學(xué)者為降低冬季溫室加溫的能源消耗,早在2005年就引入了中國(guó)日光溫室建造于Manitoba地區(qū)(50° N,97° W),并測(cè)試該溫室在冬季的保溫情況,結(jié)果表明在當(dāng)?shù)刈罾涞?2月份,室外平均氣溫為–13.1 ℃,室內(nèi)夜間平均氣溫為2.4 ℃,后墻的日均蓄、放熱量分別為166、159 MJ,為維持室內(nèi)不低于10 ℃的氣溫,日均加溫時(shí)長(zhǎng)為19 h[16];Mahmood等[17]在日光溫室內(nèi)采用地下卵石床蓄熱,并將豬舍的廢氣通過凈化后通往室內(nèi)供應(yīng) CO2,以促進(jìn)植物生長(zhǎng);Ahamed等[18]建立了日光溫室的熱環(huán)境數(shù)學(xué)模型。日本學(xué)者畔柳武司[19]提出了日光溫室熱環(huán)境模型的研究。韓國(guó)學(xué)者 Kwon等[20]針對(duì)沿海地區(qū)風(fēng)載較大的問題,設(shè)計(jì)了類似日光溫室結(jié)構(gòu)形式的塑料大棚。中國(guó)學(xué)者總結(jié)了日光溫室的發(fā)展由來、建筑結(jié)構(gòu)形式、光熱環(huán)境與氣候適應(yīng)性、歷史性貢獻(xiàn)、存在問題及產(chǎn)業(yè)前景,認(rèn)為日光溫室作為具有典型中國(guó)特色、規(guī)模巨大的設(shè)施類型,一直是中國(guó)溫室園藝裝備升級(jí)的重點(diǎn)[6,21-22],并對(duì)日光溫室的覆蓋材料[23-25]、建筑結(jié)構(gòu)及材料[8,26-28]、設(shè)施與裝備[29-32]、保溫蓄熱性能[33-36]、環(huán)境監(jiān)測(cè)及控制系統(tǒng)[37-40]等進(jìn)行了詳細(xì)的研究。
節(jié)能日光溫室的蓄放熱示意圖如圖 1所示,可實(shí)現(xiàn)白天蓄熱、夜間放熱功能的結(jié)構(gòu)有土壤、墻體和骨架,但普通骨架結(jié)構(gòu)自身的儲(chǔ)熱量很小,一般忽略不計(jì)。節(jié)能日光溫室的蓄熱是通過結(jié)構(gòu)、材料、設(shè)備的單一或協(xié)同應(yīng)用來最大化利用太陽能為室內(nèi)提供熱能。蓄熱有被動(dòng)蓄熱和主動(dòng)蓄熱 2種形式,主動(dòng)蓄熱是以太陽能為能量來源,以機(jī)械動(dòng)力設(shè)備為手段,利用室內(nèi)土壤、墻體、骨架結(jié)構(gòu)以及相變材料為熱量吸收介質(zhì)的一種熱量蓄積方式;反之則為被動(dòng)蓄熱。主動(dòng)蓄熱與被動(dòng)蓄熱的能量均來源于太陽,利用途徑有 2種,一是最大化利用室內(nèi)截獲的太陽能或室內(nèi)富余熱量,一是利用室外的太陽能。
圖1 日光溫室蓄放熱示意圖Fig.1 Schematic diagram of heat storage-release in solar greenhouse
日光溫室的前屋面以平面為最佳,采光量最大,而且光照分布最均勻[41]。為了使日光溫室室內(nèi)獲得更多的能量,張真和[42]通過綜合分析農(nóng)業(yè)氣象學(xué)和光學(xué)的研究成果,確定了冬至日正午時(shí)太陽光線投射角度為50°時(shí)的采光屋面角度是合理的采光屋面角度。陳端生等[43]利用數(shù)學(xué)方法模擬溫室的采光屋面,得出了溫室的采光屋面最佳的坡度并不是一個(gè)定值,而應(yīng)該隨太陽高度角的變化進(jìn)行調(diào)整。
基于上述研究,張勇等[44-46]設(shè)計(jì)了一種可變采光傾角日光溫室實(shí)現(xiàn)主動(dòng)采光蓄熱(如圖2所示),并對(duì)其溫光性能進(jìn)行了研究,與固定采光傾角日光溫室相比,典型晴、陰天時(shí)可變采光傾角日光溫室內(nèi)的平均光照度分別提高29.00%、22.27%,平均溫度分別提高4.3、2.9 ℃;與傳統(tǒng)8、9 m跨的弧形采光屋面日光溫室分別進(jìn)行對(duì)比分析,在晴天和多云采光天氣條件下,傾轉(zhuǎn)屋面日光溫室室內(nèi)的整體采光率分別較傳統(tǒng)8、9 m跨固定采光面日光溫室提高41.75%、25.05%,對(duì)應(yīng)的室內(nèi)輻照度平均增加69.54、38.99 W/m2,故表現(xiàn)為室內(nèi)氣溫整體水平提高。張勇等[47]還從經(jīng)典光學(xué)理論出發(fā),結(jié)合理論計(jì)算和試驗(yàn)測(cè)試的方法,詳細(xì)分析了溫室采光面在小幅調(diào)整條件下自然光的透過率以及溫室采光面角度調(diào)整與室內(nèi)光照強(qiáng)度透過率的增加之間的定量關(guān)系。
圖2 主動(dòng)采光蓄熱日光溫室結(jié)構(gòu)[46]Fig.2 Structure of active lighting and heating storage type solar greenhouse
上述研究表明通過主動(dòng)地改變?nèi)展鉁厥仪拔菝鎯A角的形式可以提高采光面透光率,進(jìn)而提高室內(nèi)光輻射照度,解決了能量“多進(jìn)”的問題。但室內(nèi)墻體和土壤等蓄熱體仍然為被動(dòng)蓄熱,被動(dòng)蓄熱的墻體和土壤的蓄熱深度有限,未得到利用的室內(nèi)富余熱量仍會(huì)隨著冷風(fēng)滲透、地中傳熱、通風(fēng)等途徑被釋放至室外,未實(shí)現(xiàn)能量在室內(nèi)“多存”。因此,主動(dòng)采光蓄熱需要和其他室內(nèi)主動(dòng)蓄熱設(shè)備或材料聯(lián)合使用才能更好的發(fā)揮其效果。
2.2.1地下空氣循環(huán)蓄熱
地下空氣循環(huán)蓄熱在園藝設(shè)施的土壤中應(yīng)用較早,馬承偉[48-49]研究了塑料大棚的地-氣熱交換系統(tǒng),結(jié)果表明,該系統(tǒng)可有效地貯存太陽能并用于夜間加溫,能使塑料大棚在不加溫條件下在夜間維持 10 ℃左右的棚內(nèi)外氣溫差。孫忠富[50]的研究結(jié)果表明,地-氣熱交換系統(tǒng)可使塑料大棚白天降溫 2.5~6.5 ℃,夜間升溫 2.0~4.4 ℃。袁巧霞[51-52]設(shè)計(jì)了一種半被動(dòng)式塑料大棚地下熱交換系統(tǒng),試驗(yàn)表明,該系統(tǒng)可在夜間維持8~9 ℃的棚內(nèi)外氣溫差,同時(shí)棚內(nèi)地溫可提高10 ℃左右。Santamouris等[53]利用地下熱交換系統(tǒng)對(duì)1 000 m2的玻璃溫室進(jìn)行蓄熱,結(jié)果表明具有良好的白天降溫、夜間增溫的效果。吳德讓等[54-55]運(yùn)用傳熱學(xué)的基本理論,建立了日光溫室地下熱交換系統(tǒng)土壤溫度場(chǎng)的數(shù)學(xué)模型,同時(shí)通過試驗(yàn)研究了日光溫室采用地下熱交換系統(tǒng)在冬季生產(chǎn)喜溫蔬菜的可行性和實(shí)用性,結(jié)果顯示,300 m2的日光溫室采用地下熱交換系統(tǒng)的整個(gè)冬季放熱量為1.575×106kJ、節(jié)煤量達(dá)1 950 kg。孫周平等[56]在彩鋼板保溫裝配式節(jié)能日光溫室室內(nèi)地下 0.5 m位置設(shè)計(jì)安裝了空氣—地中熱交換系統(tǒng)進(jìn)行蓄熱,整個(gè)冬季的試驗(yàn)結(jié)果表明,該系統(tǒng)具有良好的蓄熱效果,與溫室水循環(huán)蓄熱系統(tǒng)結(jié)合可確保試驗(yàn)溫室內(nèi)熱環(huán)境滿足番茄生長(zhǎng)所需。
2.2.2墻體空氣循環(huán)蓄熱
張勇等[57-58]設(shè)計(jì)了一種能夠?qū)滋旄挥嗄芰窟M(jìn)行有效存儲(chǔ)的日光溫室空氣循環(huán)式主動(dòng)蓄熱后墻(如圖 2所示的后墻結(jié)構(gòu)),在墻體內(nèi)部分層安裝蓄熱風(fēng)道,墻體表面安裝有軸流風(fēng)機(jī),風(fēng)機(jī)將室內(nèi)熱空氣抽入后墻蓄熱風(fēng)道,經(jīng)過熱交換,熱量蓄積入墻體內(nèi)蓄熱體中,與傳統(tǒng)9 m跨的普通磚墻日光溫室進(jìn)行了對(duì)比分析表明,在晴天、多云天夜間保溫時(shí)段(16:00~次日 09:00),主動(dòng)蓄熱后墻日光溫室溫度較 9 m跨普通磚墻日光溫室分別提高1.8~2.8、1.6~4.2 ℃。鮑恩財(cái)?shù)萚59]改進(jìn)了原有的后墻空氣循環(huán)蓄熱系統(tǒng),將原有進(jìn)風(fēng)口和出風(fēng)口之間的距離由80 m縮短至40 m,并利用試驗(yàn)地(內(nèi)蒙古烏海地區(qū))豐富的沙土作為后墻蓄熱體的一部分,實(shí)測(cè)結(jié)果表明,典型晴天條件下,固化沙主動(dòng)蓄熱后墻日光溫室室內(nèi)日平均氣溫較固化沙被動(dòng)蓄熱后墻日光溫室和普通磚墻日光溫室分別高3.3、3.6 ℃,典型陰天的夜間氣溫分別高3.2、3.8 ℃;固化沙主動(dòng)蓄熱后墻溫室的墻體內(nèi)部恒定溫度區(qū)域處于740~1 000 mm之間,蓄熱體厚度超過740 mm,其中固化沙蓄熱厚度超過620 mm,蓄熱風(fēng)道上下表面各200 mm的高度范圍內(nèi)均屬于蓄熱體。王昭等[60]測(cè)試了基于太陽能光伏板提供電能的后墻主動(dòng)蓄熱日光溫室,與當(dāng)?shù)仄胀ㄈ展鉁厥覍?duì)比發(fā)現(xiàn),后墻主動(dòng)蓄熱日光溫室較普通日光溫室晴、陰天夜間平均溫度分別高2.1、0.9 ℃,試驗(yàn)溫室蓄熱體厚度為320~520 mm,番茄采收期產(chǎn)量提高17.8%。
王慶榮等[61]設(shè)計(jì)了一種中空墻體,該墻體可實(shí)現(xiàn)與室內(nèi)空氣的自然對(duì)流循環(huán)蓄熱,通過測(cè)試及 Fluent軟件模擬分析,發(fā)現(xiàn)墻體構(gòu)造所形成的循環(huán)氣流可以在一定程度上擾動(dòng)室內(nèi)空氣,進(jìn)而在溫室內(nèi)走道和作物栽培行間等位置形成氣流,其中溫室跨中栽培行間的下部平均氣流速度可達(dá)0.25 m/s,對(duì)日光溫室冬季封閉栽培條件下的氣流環(huán)境有一定的改善作用。任曉萌等[62]測(cè)試了該墻體的蓄放熱效果,在晴天白天,內(nèi)部中空層兩側(cè)墻體表面的溫度高于相鄰實(shí)心構(gòu)造部分,但比中空層空氣溫度的19.2 ℃分別低2.2、3.7 ℃,表明墻體深處處于蓄熱狀態(tài);清晨,中空層兩側(cè)表面溫度分別比其中空層空氣溫度的11.7 ℃高1.3、0.8 ℃,表明墻體內(nèi)部直至清晨仍處于放熱階段。
上述研究表明可以通過強(qiáng)迫對(duì)流或自然對(duì)流的方式將室內(nèi)富余熱量蓄積進(jìn)入較深層的土壤或墻體內(nèi)儲(chǔ)存起來,對(duì)室內(nèi)氣溫的提高具有一定的效果。強(qiáng)迫對(duì)流需要增加通風(fēng)管道、風(fēng)機(jī)等設(shè)備投入,且運(yùn)行過程消耗電能,因此,在安裝制作之前,需要計(jì)算土壤或墻體可蓄積的能量與電能消耗量,并確定是否具有節(jié)能性;自然對(duì)流依靠溫差形成氣流,故氣流速度較小,為最大化利用墻體的蓄放熱潛力,可通過增加變頻風(fēng)機(jī)繼續(xù)研究不同流速對(duì)蓄放熱量的影響,進(jìn)而分析得到最佳風(fēng)速及其控制策略。氣流運(yùn)動(dòng)對(duì)室內(nèi)溫度場(chǎng)、濕度場(chǎng)、氣體濃度場(chǎng)均會(huì)產(chǎn)生影響,今后在氣流運(yùn)動(dòng)均勻性方面需加強(qiáng)研究。
水的比熱容較大且易于流動(dòng),適于作為熱能的貯存和傳遞介質(zhì),國(guó)內(nèi)外學(xué)者均有將水作為蓄熱體為溫室供熱的研究報(bào)道[63-65]。Zaragoza等[66]介紹了熱水供暖在農(nóng)業(yè)建筑(包含溫室)上的應(yīng)用前景及趨勢(shì);Sethi等[67]采用地下水(24 ℃)對(duì)溫室開展冬季供暖及夏季降溫試驗(yàn)研究,發(fā)現(xiàn)冬季可提高室內(nèi)氣溫 7~9 ℃;Attar等[68-69]使用太陽能熱水加溫系統(tǒng)對(duì)溫室加熱,將毛細(xì)熱交換管布置在地下作物根部附近,并使用TRNSYS軟件模擬了毛細(xì)熱交換管的適宜長(zhǎng)度和水流速度。
2.3.1水幕簾蓄放熱系統(tǒng)
張義等[70]設(shè)計(jì)了一種水幕簾蓄放熱系統(tǒng),該系統(tǒng)以日光溫室墻體結(jié)構(gòu)為依托,以水為介質(zhì)進(jìn)行熱量的蓄積與釋放,白天利用水循環(huán)通過水幕簾吸收太陽能,同時(shí)將能量?jī)?chǔ)存在水池中,夜晚利用水循環(huán)通過水幕簾釋放熱量,該水幕簾蓄放熱系統(tǒng)可使溫室內(nèi)夜間氣溫提高5.4℃以上,作物根際溫度提高1.6 ℃以上。Fang等[71-74]利用不同材質(zhì)和顏色的封裝膜改進(jìn)了該水幕簾蓄放熱系統(tǒng),如圖 3所示。測(cè)試結(jié)果表明,晴、陰天時(shí)采用雙黑膜封裝的蓄放熱裝置能將溫室夜間平均氣溫分別提高4.6、4.5 ℃,與電加熱方式相比該系統(tǒng)的節(jié)能率超過51.1%;采用金屬膜封裝的蓄放熱裝置集熱效率達(dá)到了83%,對(duì)太陽輻射的吸收率為0.81,優(yōu)于雙黑膜封裝的蓄放熱裝置。孫維拓等[75-78]進(jìn)一步拓展了水幕簾蓄放熱系統(tǒng)的應(yīng)用,或?qū)⑵渑c熱泵結(jié)合使用提高蓄放熱性能,或應(yīng)用于大跨度日光溫室中。
圖3 水幕簾系統(tǒng)示意圖[73]Fig.3 Schematic diagram of water curtain system
2.3.2管道水循環(huán)蓄熱
一些學(xué)者將太陽能熱水系統(tǒng)引入日光溫室中,如方慧等[79]以溫室淺層土壤為蓄熱體,白天將后墻集熱器獲得的熱量收集并儲(chǔ)存到溫室淺層土壤中,夜間通過土壤的自然放熱將熱量釋放到溫室中,與對(duì)照相比夜間平均氣溫差為4.0 ℃;王雙喜等[80-81]在日光溫室的后墻頂部安裝太陽能熱水器,熱水管道埋置于室內(nèi)土壤中;余學(xué)江[82]將加熱盤管在靠近地面位置進(jìn)行迂回鋪設(shè);于威等[83-84]利用 ANSYS軟件分析了日光溫室地中埋熱水管對(duì)土壤加溫效果的影響,結(jié)果表明,水溫對(duì)地表溫度影響顯著,管道內(nèi)水流速≥0.10 m/s時(shí)地表溫度變化不大,在長(zhǎng)期平穩(wěn)條件下,埋管深度、管徑對(duì)地表溫度影響不大,而管間距對(duì)土壤溫度分布影響顯著,篩選出適宜管間距200 mm、管徑25 mm。
佟雪姣等[85-86]采用聚乙烯(polyethylene,PE)軟管為輸水管道,以聚碳酸酯(polycarbonate,PC)板為集/散熱裝置,研究日光溫室太陽能水循環(huán)系統(tǒng)冬季的蓄熱增溫效果,對(duì)PC板的不同顏色、厚度、黑膜添加方式及水的不同流量開展了研究,試驗(yàn)結(jié)果表明,同等條件下褐色、8 mm厚的PC板的蓄熱量最多,透明陽光板內(nèi)外側(cè)均添加黑膜后蓄熱量增加20%,當(dāng)流量為4.4~4.5 L/h時(shí),8 mm的透明陽光板蓄熱效果最好;冬季晴天,日光溫室內(nèi)光照條件好,水循環(huán)系統(tǒng)日蓄熱量為 159.8 MJ,可將溫室內(nèi)夜間溫度提高3~5 ℃,集熱效率為54.5%,蓄熱增溫效果明顯。馬承偉等[87]研究了日光溫室鋼管屋架管網(wǎng)水循環(huán)集放熱系統(tǒng)(圖4),理論計(jì)算表明,在屋架間距為1 m,上、下弦桿件均為外徑33.5 mm的圓管時(shí),系統(tǒng)的太陽能截獲率可達(dá)7%~8%;測(cè)試結(jié)果表明,與對(duì)照日光溫室相比,平均提高夜間室內(nèi)最低氣溫2.4 ℃,容積為8.6 m3的蓄熱水體白晝?nèi)掌骄顭釡厣?.7 ℃,平均蓄熱量為149 MJ,夜間水體日平均放熱溫降2.5 ℃,平均放熱量為78.9 MJ。
圖4 鋼管屋架管網(wǎng)水循環(huán)集放熱系統(tǒng)[87]Fig.4 Water circulation system of steel pipe network formed by roof truss for heat collection and release
水循環(huán)蓄熱的效果較為明顯,水流的均勻性較好,但缺點(diǎn)也較為明顯,即對(duì)循環(huán)管道的密閉性和抗腐蝕性要求較為嚴(yán)格,且施工過程增加了水池、管道、水泵等設(shè)備,故施工工藝要求較高。在原有后墻南側(cè)安裝水循環(huán)蓄熱的集/放熱裝置會(huì)削減后墻的蓄放熱效果,應(yīng)分析水循環(huán)蓄熱與原有墻體蓄熱之間的“競(jìng)爭(zhēng)”關(guān)系并量化,在維持室內(nèi)作物生產(chǎn)適宜熱環(huán)境的基礎(chǔ)上,可適當(dāng)降低后墻蓄熱結(jié)構(gòu)部分的厚度或減少水循環(huán)蓄熱的投入以達(dá)到最佳投入。
相變材料在日光溫室中具有白天“削峰”、夜間“填谷”的作用,國(guó)內(nèi)外學(xué)者主要從相變材料的篩選制備[88-97]、封裝[89-90,93-98]、與溫室的結(jié)合方式[92,98-101]等方面進(jìn)行了大量研究。主要篩選的材料有石蠟[89,93]、芒硝 基[89]、 Na2SO4·10H2O[90,93-94]、 CaCl2·6H2O[91-92]、Na2HPO4·12H2O[95,97]、脂肪酸類[96]等。采用的封裝方式有共混浸泡[93]、砌塊封裝[93]、稻殼吸附[94,98]、石墨吸附[96]等,制備成微膠囊[89]、板材[90,93,95-97]、砌塊[93-94,98]。與溫室的結(jié)合方式主要是將封裝之后的相變材料放置在溫室的北墻[92,99],或利用板材或砌塊直接砌筑在日光溫室后墻內(nèi)側(cè)[98,100-101]。
近年來,也有學(xué)者[91,102-104]將相變材料與太陽能集熱器結(jié)合應(yīng)用于溫室中,并取得了一定的效果,如 Benli等[91]利用相變材料與太陽能平板集熱器為溫室供熱,測(cè)試發(fā)現(xiàn)該系統(tǒng)為試驗(yàn)溫室提供了每日熱能需求量的 18~23%,閆彥濤[104]分析得到太陽能相變蓄熱器單位面積放熱量為4.05 MJ/m2;凌浩恕等[105-107]將多曲面槽式空氣集熱器結(jié)合相變材料應(yīng)用于帶豎向風(fēng)道的日光溫室后墻 (圖 5),研究發(fā)現(xiàn),當(dāng)墻體內(nèi)豎向空氣通道間距為400 mm、空氣通道內(nèi)空氣速度為0.26 m/s、空氣流動(dòng)方向?yàn)樯线M(jìn)下出時(shí),相變蓄熱墻體換熱效率為66.2%,主動(dòng)蓄熱量約為9.43 MJ/m3。
圖5 帶豎向空氣通道的太陽能相變蓄熱墻體體系[105]Fig.5 Phase change material wall with vertical air channels integrating solar concentrators
相變材料種類繁多,但真正被研究者系統(tǒng)研究過的種類卻屈指可數(shù),且需要契合日光溫室冬季室內(nèi)溫度環(huán)境;相變材料在使用過程中體積變化率大,對(duì)封裝密閉性的要求較高,目前的封裝方式都有不同程度的泄露問題,有一定的環(huán)境污染風(fēng)險(xiǎn)。因此,需要進(jìn)一步篩選適宜日光溫室使用的材料種類及混合配比,并在封裝技術(shù)上加強(qiáng)研究。
卵石是良好的顯熱儲(chǔ)能材料,國(guó)外一般在溫室中部的地下土壤中埋置卵石床,?ztürk等[108]利用卵石床結(jié)合太陽能空氣集熱器為120 m2的塑料大棚供熱,卵石床面積為6 m×2 m,深0.6 m,研究發(fā)現(xiàn)卵石床的平均日蓄熱量為1 242 W,夜間放熱量為601.3 W,可提供室內(nèi)總需熱量的18.9%;Kürklü等[109]以2座面積均為15 m2的塑料大棚為試驗(yàn)對(duì)象,其中1座埋置有卵石床,PVC管道穿過卵石床,采用流量1 100 m3/h的風(fēng)機(jī)強(qiáng)制將室內(nèi)空氣通過管道流經(jīng)卵石床,測(cè)試發(fā)現(xiàn)試驗(yàn)溫室夜間氣溫比對(duì)照溫室提高約10 ℃,卵石蓄熱系統(tǒng)的能量吸收及釋放效率均超過 80%。國(guó)內(nèi)將卵石作為日光溫室蓄熱材料有 2種形式,一種是直接作為墻體材料;一種是作為蓄熱床。張潔等[110]以鉛絲網(wǎng)籠裝填卵石作為墻體主要材料,認(rèn)為卵石之間的縫隙可以加強(qiáng)熱空氣的流動(dòng),從而增強(qiáng)墻體的蓄熱性能,與普通磚墻日光溫室相比,卵石墻體溫室內(nèi)平均氣溫在典型晴天高4.0 ℃。Chen等[111]將卵石床鋪在室內(nèi)土壤表面,研究發(fā)現(xiàn)卵石孔隙率一定時(shí),應(yīng)適當(dāng)增大卵石床的粒徑,當(dāng)卵石粒徑大于一定值時(shí),適當(dāng)增加卵石床孔隙率可以增強(qiáng)卵石床與溫室氣流,以及卵石床內(nèi)部的對(duì)流換熱。張峰等[112]測(cè)試發(fā)現(xiàn)卵石床地下蓄熱系統(tǒng)的蓄熱功率約為 94 W/m2,大于地下埋管蓄熱系統(tǒng)(蓄熱功率約為76 W/m2),該日光溫室的夜間最低溫度比無蓄熱裝置的對(duì)照溫室提高了5~8 ℃。
卵石的傳熱速率較快,卵石之間的孔隙也有利于對(duì)流傳熱,但在冬季夜間卵石放熱過快會(huì)導(dǎo)致前半夜室內(nèi)氣溫較高、后半夜室內(nèi)氣溫偏低。因此,需要研究如何減緩卵石所蓄積熱量的釋放,或?qū)⒙咽罘e熱量傳導(dǎo)至其他材料中儲(chǔ)存起來。
熱泵根據(jù)所利用熱源的不同主要分為水源熱泵、空氣源熱泵和土壤源熱泵 3類。國(guó)外學(xué)者將熱泵應(yīng)用到溫室中較早,Marsh等[113]采用生命周期成本分析法(life cycle costing,LCC)分析了利用熱泵將礦井中的恒溫空氣作為空氣源對(duì)溫室進(jìn)行加溫的可行性;Bot等[114]分析了利用熱泵夏季儲(chǔ)熱為冬季供熱的溫室節(jié)能模式,預(yù)計(jì)節(jié)能率超過 60%;Ozgener等[115]測(cè)試得到土壤源熱泵為溫室供熱的性能系數(shù)(coefficient of performance,COP)為 2.13(多云天)~2.84(晴天);Yang等[116-117]利用空氣源熱泵對(duì)溫室進(jìn)行冬季加溫、夏季降溫,均取得了良好的節(jié)能效果。
進(jìn)入21世紀(jì),國(guó)內(nèi)學(xué)者開始探索熱泵在日光溫室上的應(yīng)用,柴立龍等[118-119]采用地下水作為熱源的熱泵系統(tǒng)對(duì)北京地區(qū)日光溫室進(jìn)行了供暖試驗(yàn)研究,結(jié)果表明,整個(gè)供暖期(2007-10-15~2008-03-10)熱泵的 COP為3.83,與燃煤熱水采暖相比,可節(jié)約42%的能源消耗。孫維拓等[75,120]設(shè)計(jì)了一套日光溫室水循環(huán)主動(dòng)蓄放熱與熱泵聯(lián)合加溫系統(tǒng)(如圖 6所示),主動(dòng)蓄放熱系統(tǒng)為熱泵機(jī)組提供熱源,與對(duì)照溫室相比,試驗(yàn)溫室夜間氣溫高出 5.26~6.64 ℃,系統(tǒng)集熱效率達(dá)到了 72.32%~83.62%,總體 COP值達(dá) 5.59,而單純使用熱泵制熱的COP為4.38~5.17。孫維拓等[121]還設(shè)計(jì)了一套日光溫室空氣余熱熱泵加溫系統(tǒng),白天適時(shí)運(yùn)行系統(tǒng),將日光溫室內(nèi)富余空氣熱能泵取并儲(chǔ)存于蓄熱水池中;夜間室內(nèi)氣溫較低時(shí),首先開啟風(fēng)機(jī)和水泵,當(dāng)蓄熱水池水溫降至一定溫度,逆向運(yùn)行熱泵系統(tǒng)強(qiáng)制放熱;與對(duì)照溫室相比,試驗(yàn)溫室白天平均氣溫降低 3.7~5.2 ℃,相對(duì)濕度降低12.3%~16.5%;夜間平均氣溫高出2.8~4.4 ℃,相對(duì)濕度降低8.0%~11.5%。孫先鵬等[122-123]采用太陽能聯(lián)合空氣源熱泵供熱系統(tǒng)為日光溫室供熱,在西安地區(qū)-6~10 ℃冬季氣溫條件下開展了試驗(yàn)研究,結(jié)果表明,在試驗(yàn)天氣條件下,熱泵單獨(dú)供熱時(shí)系統(tǒng)的 COP在2.09~2.45之間,太陽能聯(lián)合空氣源熱泵供熱時(shí)系統(tǒng)的COP在3.45~5.56之間,具有顯著的節(jié)能減排效果。
圖6 溫室主動(dòng)蓄放熱-熱泵聯(lián)合加溫系統(tǒng)原理圖[120]Fig.6 Principle diagram of active heat storage-release associated with heat pump heating system in greenhouse
熱泵系統(tǒng)具有節(jié)能環(huán)保、供熱穩(wěn)定的優(yōu)點(diǎn),但設(shè)備投資較高、運(yùn)行耗電量較大,在日光溫室中的應(yīng)用研究還處于初級(jí)階段,其系統(tǒng)參數(shù)配置、加工工藝等還有待優(yōu)化。在使用熱泵蓄熱時(shí),對(duì)日光溫室的蓄熱性能要求降低,因此可適當(dāng)減少溫室蓄熱墻體結(jié)構(gòu)的投入,同時(shí)在運(yùn)行時(shí)間上與峰谷電價(jià)相結(jié)合,可降低部分運(yùn)行成本。
為了提高蓄熱技術(shù)的應(yīng)用效果,部分學(xué)者將 2項(xiàng)或以上蓄熱方式結(jié)合應(yīng)用到日光溫室中,如Benli[124]將地源熱泵與相變材料蓄熱技術(shù)結(jié)合應(yīng)用于溫室采暖;孫周平等[56]在大跨度日光溫室中將空氣—地中熱交換系統(tǒng)與水循環(huán)蓄熱系統(tǒng)結(jié)合使用可代替?zhèn)鹘y(tǒng)土墻的蓄熱能力,經(jīng)過整個(gè)冬季的測(cè)試發(fā)現(xiàn),該聯(lián)合系統(tǒng)可以確保日光溫室冬季的熱環(huán)境滿足作物所需;凌浩恕等[105-107]將相變材料、帶空氣通道的后墻與太陽能空氣集熱器結(jié)合構(gòu)建帶豎向空氣通道的太陽能相變蓄熱墻體體系;Kürklü等[109]將卵石蓄熱與地下空氣循環(huán)蓄熱結(jié)合應(yīng)用;孫維拓等[120]將水循環(huán)主動(dòng)蓄放熱系統(tǒng)與熱泵機(jī)組聯(lián)合使用,測(cè)試發(fā)現(xiàn),聯(lián)合系統(tǒng)的效果大于單一使用熱泵的效果,也遠(yuǎn)高于傳統(tǒng)太陽能熱水系統(tǒng)以及地源熱泵,節(jié)能效果顯著;高文波等[125]將主動(dòng)采光與墻體空氣循環(huán)主動(dòng)蓄熱結(jié)合,典型晴天、多云天主動(dòng)采光蓄熱型日光溫室室內(nèi)平均光照度分別提高了21.28%、11.73%,平均氣溫分別提高了5.6、2.1 ℃。
除此之外,部分學(xué)者還就溫室蓄熱相關(guān)技術(shù)做了前言探索性研究,如Liu等[126]開發(fā)了一種新型的由乙烯—四氟乙烯(ETFE)膜和相變材料RT28組成的溫室薄膜,對(duì)該薄膜的光學(xué)性能進(jìn)行了試驗(yàn)研究,結(jié)果表明,相變材料在液態(tài)下,薄膜的透射率高于固態(tài),此外,透光率與相變材料的溫度有關(guān)。Anifantis等[127]結(jié)合光伏制氫技術(shù)與地源熱泵技術(shù)為溫室供暖,白天通過光伏板電解產(chǎn)生H2,然后將其儲(chǔ)存在壓力罐中,夜間H2通過燃料電池轉(zhuǎn)化為電力,為地源熱泵供電,從而為溫室供暖。
上述研究表明,從目前聯(lián)合方式蓄熱的發(fā)展現(xiàn)狀來看,國(guó)內(nèi)較國(guó)外的技術(shù)更加成熟和豐富,盡管國(guó)外的前沿性研究較多,但仍處于初期階段。要實(shí)現(xiàn)蓄熱技術(shù)在日光溫室上的推廣應(yīng)用,除技術(shù)先進(jìn)、符合科技發(fā)展趨勢(shì)外,也要滿足市場(chǎng)現(xiàn)狀。因此,應(yīng)加強(qiáng)對(duì)蓄熱技術(shù)的技術(shù)經(jīng)濟(jì)性指標(biāo)分析。
本文總結(jié)了目前節(jié)能日光溫室蓄熱技術(shù)的主要形式,包括主動(dòng)采光蓄熱、空氣循環(huán)蓄熱、水循環(huán)蓄熱、相變材料蓄熱、卵石蓄熱、熱泵蓄熱、聯(lián)合方式蓄熱,均為結(jié)構(gòu)、材料、設(shè)備 3個(gè)方面的單一或協(xié)同應(yīng)用,如主動(dòng)采光蓄熱通過溫室前屋面結(jié)構(gòu)的角度轉(zhuǎn)變實(shí)現(xiàn)光能的主動(dòng)利用,但蓄熱體未變;空氣循環(huán)蓄熱通過空氣循環(huán)將室內(nèi)多余熱量存儲(chǔ)進(jìn)入地下土壤或墻體內(nèi);水循環(huán)蓄熱是通過設(shè)備將水循環(huán)蓄熱,以水為主要蓄熱體;相變材料蓄熱與卵石蓄熱嚴(yán)格意義來說包括主動(dòng)蓄熱和被動(dòng)蓄熱 2種形式,如與太陽能集熱器結(jié)合應(yīng)用的相變材料蓄熱屬于主動(dòng)蓄熱,而單純的利用材料改變來蓄熱集熱是被動(dòng)的熱量蓄積;熱泵蓄熱通過消耗電能提取空氣、水或土壤中的低溫?zé)嵩吹臒崮軐⑵滢D(zhuǎn)移到室內(nèi);聯(lián)合方式蓄熱通過以上2種或以上蓄熱技術(shù)結(jié)合應(yīng)用。
國(guó)外對(duì)現(xiàn)代日光溫室的研究較少,中國(guó)在日光溫室節(jié)能設(shè)計(jì)基礎(chǔ)理論及應(yīng)用上始終處于領(lǐng)先地位[128]。日光溫室蓄熱技術(shù)亦屬于節(jié)能設(shè)計(jì)之一,國(guó)內(nèi)學(xué)者對(duì)此做了大量的研究與改進(jìn)。這些技術(shù)對(duì)改善室內(nèi)環(huán)境均具有一定的效果,但也存在一些缺點(diǎn)與不足之處,因此研發(fā)應(yīng)用蓄熱技術(shù)為日光溫室供熱時(shí)需要重點(diǎn)考慮以下問題:1)主動(dòng)采光蓄熱具有明顯提高室內(nèi)光溫環(huán)境的效果,但是沒有良好的蓄熱系統(tǒng),熱量得不到存儲(chǔ),白天過多的熱量易對(duì)作物形成熱害,只能隨著通風(fēng)被排出去造成熱量浪費(fèi);2)強(qiáng)迫對(duì)流式空氣循環(huán)蓄熱主要是將傳熱風(fēng)道埋置于日光溫室的墻體或土壤中,建成后整個(gè)系統(tǒng)只有風(fēng)機(jī)消耗電能,對(duì)溫室增溫具有一定的效果,在安裝制作之前,需要計(jì)算墻體或土壤可蓄積的能量與電能消耗量,并確定是否具有節(jié)能性。自然對(duì)流式空氣循環(huán)蓄熱依靠溫差形成氣流,故氣流速度較??;3)水循環(huán)蓄熱和相變材料蓄熱都是因其熱容較大,可盡量多的將熱量存儲(chǔ)起來,但是水和相變材料的封裝均需要良好的封閉性,否則容易泄露;4)卵石的傳熱速率較快,往往前半夜放熱量較多,導(dǎo)致溫室內(nèi)后半夜的溫度較低;5)熱泵蓄熱的COP一般都在2以上,避免了環(huán)境污染、節(jié)能效果顯著,但該系統(tǒng)結(jié)構(gòu)復(fù)雜,初始投資較高,系統(tǒng)性能的可靠性、穩(wěn)定性有待于進(jìn)一步驗(yàn)證[129];6)通過結(jié)合2項(xiàng)或以上蓄熱方式聯(lián)合應(yīng)用于日光溫室中,效果具有累加效應(yīng),但成本更高。
基于以上節(jié)能日光溫室蓄熱技術(shù)存在的問題,當(dāng)前研究的重點(diǎn)是:1)將主動(dòng)采光技術(shù)與其他蓄熱技術(shù)結(jié)合應(yīng)用,形成主動(dòng)采光—蓄熱聯(lián)合技術(shù),實(shí)現(xiàn)溫室內(nèi)太陽能的“多進(jìn)多存”;2)除管道連接處的密閉性外,強(qiáng)迫對(duì)流式空氣循環(huán)蓄熱應(yīng)考慮風(fēng)機(jī)的風(fēng)速、流量與管道的直徑、材質(zhì)、長(zhǎng)度等條件耦合,不同地區(qū)還應(yīng)結(jié)合土壤的蓄熱系數(shù)來合理布置管道,在墻體中埋置時(shí)還應(yīng)考慮適當(dāng)?shù)姆謱蛹笆┕すに嚨暮?jiǎn)易化。自然對(duì)流式空氣循環(huán)蓄熱可與強(qiáng)迫對(duì)流相結(jié)合,研究適宜的風(fēng)速指標(biāo)及氣流運(yùn)動(dòng)的調(diào)控以實(shí)現(xiàn)最大化蓄熱;3)水在蓄放熱的過程中需要流動(dòng),而相變材料在蓄放熱的過程中會(huì)部分發(fā)生相變,因此,水循環(huán)蓄熱和相變材料蓄熱的循環(huán)管道、封裝材料應(yīng)做到密閉、抗腐蝕;4)卵石的傳熱較快,可增加熱阻簾人為地延緩放熱時(shí)間,也可與其他儲(chǔ)熱介質(zhì)結(jié)合應(yīng)用,如作為墻體的吸熱層,或在其孔隙內(nèi)填充儲(chǔ)熱材料;5)熱泵蓄熱結(jié)合其他蓄熱方式應(yīng)用較單一應(yīng)用的效果會(huì)有所提高,冬季供暖中具有良好的應(yīng)用前景,如何進(jìn)一步合理利用、合理配置溫室地源熱泵系統(tǒng),完善相關(guān)技術(shù),降低其建設(shè)費(fèi)用、運(yùn)行能耗和費(fèi)用,也是今后應(yīng)著重研究解決的問題;6)從蓄熱的2種熱量利用途徑來看,因日光溫室原本就具有土壤和墻體蓄熱的優(yōu)勢(shì),在利用室內(nèi)截獲的太陽能進(jìn)行主動(dòng)蓄熱時(shí)應(yīng)避免主動(dòng)蓄熱系統(tǒng)與室內(nèi)原有蓄熱體之間形成太陽能的“爭(zhēng)奪”。在利用室外太陽能轉(zhuǎn)化為室內(nèi)所需熱能的同時(shí)應(yīng)盡量減少太陽能多級(jí)轉(zhuǎn)化過程中的損耗;7)部分蓄熱技術(shù)在日光溫室應(yīng)用的傳機(jī)理尚不明確,有待進(jìn)一步研究,如墻體空氣循環(huán)蓄熱過程中傳熱的動(dòng)力學(xué)原理,再如卵石墻體對(duì)室內(nèi)的傳熱機(jī)理。計(jì)算流體力學(xué)(computational fluid dynamics,CFD)擁有各種數(shù)值算法,有助于研究流體流動(dòng)、傳熱等,可借助CFD模擬與試驗(yàn)結(jié)合的方式開展蓄熱技術(shù)的傳熱機(jī)理研究。
節(jié)能日光溫室經(jīng)過近 1個(gè)世紀(jì)的發(fā)展,蓄熱技術(shù)日臻完善、節(jié)能減排效果顯著,為中國(guó)設(shè)施園藝的發(fā)展做出了歷史性貢獻(xiàn)。本文概述了有關(guān)日光溫室的研究現(xiàn)狀,總結(jié)了當(dāng)前節(jié)能日光溫室蓄熱技術(shù)的主要形式并綜述了國(guó)內(nèi)外相關(guān)研究進(jìn)展,分析主要技術(shù)問題及研究重點(diǎn)。展望未來節(jié)能日光溫室蓄熱技術(shù)的發(fā)展方向與研究?jī)?nèi)容主要包括:
1)利用蓄熱技術(shù)對(duì)傳統(tǒng)日光溫室進(jìn)行節(jié)能化改造。隨著設(shè)施園藝的快速發(fā)展,目前有部分傳統(tǒng)日光溫室因?yàn)楸匦顭嵝阅懿蛔恪h(huán)境調(diào)控能力差、勞動(dòng)強(qiáng)度高等原因處于閑置或半閑置狀態(tài),造成土地資源的浪費(fèi)。同時(shí),隨著人口增長(zhǎng)與土地資源有限的矛盾不斷突出,亟需對(duì)這部分日光溫室從結(jié)構(gòu)上進(jìn)行升級(jí)改造,從而滿足日益增長(zhǎng)的園藝產(chǎn)品供應(yīng)需求。節(jié)能日光溫室蓄熱技術(shù)成為傳統(tǒng)日光溫室更新?lián)Q代的重點(diǎn)內(nèi)容,通過蓄熱技術(shù)可將日光溫室的土壤、墻體甚至是骨架結(jié)構(gòu)的蓄熱潛力發(fā)揮出來。
2)蓄熱技術(shù)隨著節(jié)能日光溫室新結(jié)構(gòu)的發(fā)展而繼續(xù)完善。墻體(特別是后墻)是節(jié)能日光溫室與其他園藝設(shè)施的最大區(qū)別所在,也是傳統(tǒng)日光溫室節(jié)能化改造的重點(diǎn)對(duì)象。當(dāng)前,設(shè)施園藝朝著大型化、機(jī)械化、智能化方向發(fā)展,日光溫室也不例外,從提高土地利用率的角度出發(fā),出現(xiàn)了墻體被部分或全部替代的日光溫室類型,墻體的減少意味著日光溫室內(nèi)蓄熱體的減少,這就更需要通過蓄熱技術(shù)為室內(nèi)提供更多的熱能來彌補(bǔ)墻體減少的損失。因此,蓄熱技術(shù)在現(xiàn)代節(jié)能日光溫室的發(fā)展中將會(huì)起到越來越重要的作用。
3)運(yùn)用跨學(xué)科、多方法集成的手段深入研究蓄熱技術(shù)。當(dāng)前主要從日光溫室的結(jié)構(gòu)或材料的改變來開展蓄熱技術(shù)的效果研究,研究對(duì)象主要是室內(nèi)溫濕環(huán)境,而對(duì)室內(nèi)氣流場(chǎng)、空氣成分濃度場(chǎng)的分析較少,且對(duì)應(yīng)蓄熱技術(shù)的蓄放熱機(jī)理缺乏深入研究。因此,應(yīng)加強(qiáng)跨學(xué)科綜合研究,從滿足作物生長(zhǎng)發(fā)育過程需求的角度出發(fā),運(yùn)用理論分析、軟件模擬、試驗(yàn)測(cè)試的集成方法來分析溫室內(nèi)綜合環(huán)境,從而對(duì)現(xiàn)有蓄熱技術(shù)進(jìn)行優(yōu)化,以進(jìn)一步提高蓄熱性能、改善室內(nèi)環(huán)境、降低勞動(dòng)強(qiáng)度,這也對(duì)新型節(jié)能日光溫室的推廣應(yīng)用具有重要作用。
4)節(jié)能日光溫室蓄熱技術(shù)市場(chǎng)化應(yīng)用前景廣闊。中國(guó)幅員遼闊,在華北、東北、西北、青藏高寒區(qū)、環(huán)渤海及黃淮海地區(qū)的日光溫室面積巨大,蓄熱技術(shù)的市場(chǎng)化前景廣闊。蓄熱技術(shù)應(yīng)在滿足預(yù)期效果的前提下盡可能降低應(yīng)用投入,隨著軟硬件技術(shù)的不斷發(fā)展,可選用價(jià)格較低、性能較高的構(gòu)件及材料來完善蓄熱技術(shù)。并對(duì)技術(shù)成熟、參數(shù)齊備的蓄熱技術(shù)形成標(biāo)準(zhǔn)規(guī)范的施工工藝,加強(qiáng)市場(chǎng)化推廣應(yīng)用。
[參考文獻(xiàn)]
[1] 陳青云. 日光溫室的實(shí)踐與理論[J]. 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版),2008,26(5): 343-350.Chen Qingyun. Progress of practice and theory in sunlight greenhouse[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2008, 26(5): 343-350. (in Chinese with English abstract)
[2] 喻景權(quán). “十一五”我國(guó)設(shè)施蔬菜生產(chǎn)和科技進(jìn)展及其展望[J]. 中國(guó)蔬菜,2011(2): 11-23.Yu Jingquan. Progress in protected vegetable production and research during‘The Eleventh Five-year Plan’in China[J]. China Vegetables, 2011(2): 11-23. (in Chinese with English abstract)
[3] 張真和. 農(nóng)用塑料技術(shù)在設(shè)施園藝產(chǎn)業(yè)中的應(yīng)用與發(fā)展[J]. 中國(guó)蔬菜,2015(7): 1-5.Zhang Zhenhe. Application and development of agricultural plastic technology in horticultural industry[J]. China Vegetables, 2015(7): 1-5. (in Chinese with English abstract)
[4] 汪懋華. 物聯(lián)網(wǎng)技術(shù)支撐蔬菜日光溫室轉(zhuǎn)型創(chuàng)新發(fā)展的探索[R]. 沈陽:全國(guó)日光溫室發(fā)展學(xué)術(shù)論壇,2015.
[5] 方虹. 國(guó)內(nèi)外日光溫室技術(shù)裝備的研究與應(yīng)用分析[J].農(nóng)業(yè)科技與裝備,2014(5): 40-41.Fang Hong. Analysis of research and application of solar greenhouse technology and equipment at home and abroad[J]. Agricultural Science & Technology and Equipment, 2014(5): 40-41. (in Chinese with English abstract)
[6] 李天來. 我國(guó)日光溫室產(chǎn)業(yè)發(fā)展現(xiàn)狀與前景[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2005, 36(2): 131-138.Li Tianlai. Current situation and prospects of green house industry development in China[J]. Journal of Shenyang Agricultural, 2005, 36(2): 131-138. (in Chinese with English abstract)
[7] 全球果蔬網(wǎng). 中國(guó)式日光溫室在荷蘭開放[DB/OL]. http://www. freshplaza. cn/article/6549#,2017-04-13.
[8] Tong G, Christopher D M, Li T, et al. Passive solar energy utilization: A review of cross-section building parameter selection for Chinese solar greenhouses[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 540-548.
[9] Miguel A F, Silva A M, Rosa R. Solar irradiation inside a single-span greenhouse with shading screens[J]. Journal of Agricultural Engineering Research, 1994, 59(1): 61-72.
[10] Pieters J G, Deltour J M. Performances of greenhouses with the presence of condensation on cladding materials[J].Journal of Agricultural Engineering Research, 1997, 68(2):125-137.
[11] Pieters J G, Deltour J M. Modelling solar energy input in greenhouses[J]. Solar Energy, 1999, 67(1): 119-130.
[12] Sethi V P, Sharma S K. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications[J]. Solar Energy, 2008, 82(9): 832-859.
[13] Nayak S, Tiwari G N. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse[J].Energy and Buildings, 2008, 40(11): 2015-2021.
[14] Ucar A, Balo F. Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls[J]. Renewable Energy, 2010, 35(1):88-94.
[15] Mobtaker H G, Ajabshirchi Y, Ranjbar S F, et al. Solar energy conservation in greenhouse: Thermal analysis and experimental validation[J]. Renewable Energy, 2016, 96:509-519.
[16] Beshada E, Zhang Q, Boris R. Winter performance of a solar energy greenhouse in southern Manitoba[J]. Canadian Biosystems Engineering, 2006, 48(5): 1-8.
[17] Mahmood K, Mann D D, Zhang Q, et al. A perpetual harvest greenhouse system: Integrating barn, biofilter, and greenhouse[J]. Agricultural Engineering International:CIGR Journal, 2009, 6:1-24.
[18] Ahamed M S, Guo H, Tanino K K. Modeling of heating requirement in Chinese solar greenhouse[C]//2016 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2016, (1): 2-14.
[19] 畔柳武司. 日光溫室の熱環(huán)境形成機(jī)構(gòu)に関する基礎(chǔ)的研究[D]. 日本茨城: 筑波大學(xué),2003.
[20] Kwon K, Kim D, Kim R, et al. Evaluation of wind pressure coefficients of single-span greenhouses built on reclaimed coastal land using a large-sized wind tunnel[J]. Biosystems Engineering, 2016, 141: 58-81.
[21] 陳端生. 中國(guó)節(jié)能型日光溫室建筑與環(huán)境研究進(jìn)展[J].農(nóng)業(yè)工程學(xué)報(bào),1994,10(1):123-129.Chen Duansheng. Advance of the research on the architecture and environment of the Chinese energe-saving sunlight greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),1994, 10(1): 123-129. (in Chinese with English abstract)
[22] 魏曉明,周長(zhǎng)吉,曹楠,等. 中國(guó)日光溫室結(jié)構(gòu)及性能的演變[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2012,28(4): 855-860.Wei Xiaoming, Zhou Changji, Cao Nan, et al. Evolution of structure and performance of Chinese solar greenhouse[J].Jiangsu Journal of Agricultural Sciences, 2012, 28(4): 855-860. (in Chinese with English abstract)
[23] 丁敏,施旭棟,李密密,等.薄膜承載力及其對(duì)日光溫室結(jié)構(gòu)穩(wěn)定性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):194-202.Ding Min, Shi Xudong, Li Mimi, et al. Load-bearing capacity of films and its effect on structure stability of Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 194-202. (in Chinese with English abstract)
[24] 劉晨霞,馬承偉,王平智,等. 日光溫室保溫被傳熱的理論解析及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):170-176.Liu Chenxia, Ma Chengwei, Wang Pingzhi, et al.Theoretical analysis and experimental verification of heat transfer through thick covering materials of solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(2): 170-176. (in Chinese with English abstract)
[25] 劉晨霞,馬承偉,王平智,等. 日光溫室保溫被保溫性能影響因素的分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):186-193.Liu Chenxia, Ma Chengwei, Wang Pingzhi, et al. Analysis on affecting factors of heat preservation properties for thermal insulation covers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 186-193. (in Chinese with English abstract)
[26] 白義奎,李天來,張文基. 日光溫室地基溫度場(chǎng)數(shù)學(xué)模型及試驗(yàn)分析[J]. 北方園藝,2010(13): 49-53.Bai Yikui, Li Tianlai, Zhang Wenji. Experimental analysis and mathematical model on temperature field of the solar greenhouse's foundation[J]. Northern Horticulture,2010(13): 49-53. (in Chinese with English abstract)
[27] 宋丹, 王宏麗, 李凱,等. 日光溫室鋼架組合墻體結(jié)構(gòu)研究[J]. 北方園藝, 2013(3): 52-55.Song Dan, Wang Hongli, Li Kai, et al. Mechanical analysis of the steel-frame wall of solar greenhouse[J]. Northern Horticulture, 2013(3): 52-55. (in Chinese with English abstract)
[28] 楊小龍. 磚苯復(fù)合墻體日光溫室熱環(huán)境測(cè)試與模擬[D].楊凌:西北農(nóng)林科技大學(xué),2014.Yang Xiaolong. Thermal Environment Testing and Simulation of Chinese Solar Greenhouse with Brick-Polystyrene Board Compound Wall[D]. Yangling:Northwest A & F University, 2014. (in Chinese with English abstract)
[29] 張國(guó)祥,傅澤田,李鑫星,等. 改進(jìn)型日光溫室后置固定式卷簾裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12): 299-308.Zhang Guoxiang, Fu Zetian, Li Xinxing, et al. Design and experiment of rear fixed type rolling shutter device in solar greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 299-308. (in Chinese with English abstract)
[30] 王春野. 日光溫室除濕技術(shù)的試驗(yàn)研究[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2016.Wang Chunye. The Experimental Study on Dehumidifying of Solar Greenhouse[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese with English abstract)
[31] Zhou B, Zhang Y, Yang Q, et al. Dehumidification in a Chinese solar greenhouse using dry outdoor air heated by an active heat storage-release system[J]. Applied Engineering in Agriculture. 2016,32(4): 447-456.
[32] 馬文娟,塔娜,五十六,等. 冷風(fēng)擋簾對(duì)日光溫室內(nèi)氣溫影響的數(shù)值模擬及其結(jié)構(gòu)優(yōu)化[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(5): 108-117.Ma Wenjuan, Ta Na, Wu Shiliu, et al. Numerical simulation and verification for the effect of keep-off shade on temperature field in solar greenhouse[J]. Journal of China Agricultural University, 2017,22(5): 108-117. (in Chinese with English abstract)
[33] 劉在民. 節(jié)能日光溫室溫光性能優(yōu)化及其應(yīng)用效果研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2007.Liu Zaimin. The Performance Optimization on the Temperature and Light of the Greenhouse and the Research on Its Application Effectiveness[D]. Harbin: Northeast Agricultural University, 2007. (in Chinese with English abstract)
[34] 張亞紅,包長(zhǎng)征,曹云娥. 寧夏兩種結(jié)構(gòu)日光溫室墻體與地面?zhèn)鳠崽匦苑治鯷J]. 農(nóng)業(yè)現(xiàn)代化研究,2011,32(4):509-512.Zhang Yahong, Bao Changzheng, Cao Yune. Analysis on measurement of heat absorption and release of wall and ground in two different solar greenhouses[J]. Research of Agricultural Modernization, 2001, 32(4): 509-512. (in Chinese with English abstract)
[35] 封美琦. 寧夏銀川地區(qū)日光溫室土質(zhì)后墻環(huán)境變化特征研究[D]. 銀川:寧夏大學(xué),2013.Feng Meiqi. The Research on Environment Variation Characteristics of Solar Greenhouses’ Soil Back Wall in Ningxia Yinchuan[D]. Yinchuan: Ningxia University, 2013.(in Chinese with English abstract)
[36] 安巧霞,孫三民,陳浩,等. 北疆地區(qū)冬季半地下式日光溫室模擬設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2017,39(7): 66-70.An Qiaoxia, Sun Sanmin, Chen Hao, et al. Sunken solar greenhouse simulation design in the winter in north of Xinjiang[J]. Journal of Agricultural Mechanization Research. 2017,39(7): 66-70. (in Chinese with English abstract)
[37] 徐凡,馬承偉. 溫室環(huán)境分析中冬季室外氣溫日變化及數(shù)學(xué)表達(dá)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):203-209.Xu Fan, Ma Chengwei. Daily change and math-expression method of outside temperature in winter for greenhouse environmental analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 203-209. (in Chinese with English abstract)
[38] 袁洪波. 日光溫室封閉式栽培系統(tǒng)關(guān)鍵技術(shù)研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué), 2015.Yuan Hongbo. Study on Key Technologies for Closed Cultivation Systems in Solar Greenhouses[D]. Beijing:China Agricultural University, 2015. (in Chinese with English abstract)
[39] Yu H, Chen Y, Hassan S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO[J]. Computers and Electronics in Agriculture, 2016, 122: 94-102.
[40] Li M, Chen S, Liu F, et al. A risk management system for meteorological disasters of solar greenhouse vegetables[J].Precision Agriculture, 2017, 18(6): 997-1010.
[41] 劉建,周長(zhǎng)吉. 日光溫室結(jié)構(gòu)優(yōu)化的研究進(jìn)展與發(fā)展方向[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,28(3):264-268.Liu Jian, Zhou Changji. The present and development of sunlight greenhousestructureoptimization[J]. Journal of Inner Mongolia Agriculture University (Nature Science Edition), 2007, 28(3): 264-268. (in Chinese with English abstract)
[42] 張真和. 高效節(jié)能型日光溫室的開發(fā)進(jìn)展及問題討論[J].中國(guó)蔬菜,1992(5): 1-10.Zhang Zhenhe. Development and discussion of energy efficient solar greenhouse[J]. China Vegetables, 1992(5): 1-10. (in Chinese with English abstract)
[43] 陳端生,鄭海山,張建國(guó),等. 日光溫室氣象環(huán)境綜合研究(三):幾種弧型采光屋面溫室內(nèi)直射光量的比較研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1992,8(4):78-82.Chen Duansheng, Zheng Haishan, Zhang Jianguo, et al. A comprehensive research on the meteorological environment in sun-light greenhouse ()Ⅲ: A comparative research on the total amount of direct radiation in the greenhouse with different arc lighting surfaces[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1992, 8(4): 78-82. (in Chinese with English abstract)
[44] 張勇,鄒志榮. 一種可變傾角采光面的日光溫室:101116408[P]. 2008-02-06.
[45] 張勇,鄒志榮. 高效可變采光傾角日光溫室的結(jié)構(gòu)及其性能研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(11): 113-118,124.Zhang Yong, Zou Zhirong. Structure and properties of solar-greenhouse with variable incidence angle[J]. Journal of Northwest A&F University(Natural Science Edition),2013, 41(11): 113-118, 124. (in Chinese with English abstract)
[46] 張勇,鄒志榮,李建明. 傾轉(zhuǎn)屋面日光溫室的采光及蓄熱性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):129-137.Zhang Yong, Zou Zhirong, LI Jianming. Performance experiment on lighting and thermal storage in tilting roof solar-greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(1): 129-137. (in Chinese with English abstract)
[47] 張勇,鄒志榮. 日光溫室主動(dòng)采光機(jī)理與透光率優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):178-186.Zhang Yong, Zou Zhirong. Optimization experiment of light transmittance and active lighting mechanism of solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(11): 178-186. (in Chinese with English abstract)
[48] 馬承偉. 塑料大棚地下熱交換系統(tǒng)的試驗(yàn)研究[J]. 北京農(nóng)業(yè)機(jī)械化學(xué)院學(xué)報(bào),1984,4:69-78.Ma Chengwei. Experimental study on underground heat exchange system in plastic greenhouse [J]. Journal of Beijing Institute of Agricultural Mechanization Technology,1984, 4: 69-78. (in Chinese with English abstract)
[49] 馬承偉. 塑料大棚地下熱交換系統(tǒng)的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1985,1(1):54-65.Ma Chengwei. Studys on the vinyl-house house heating by the underground heat exchange system [J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 1985, 1(1): 54-65(in Chinese with English abstract)
[50] 孫忠富. 地—?dú)鉄峤粨Q塑料大棚中熱量平衡的研究[J].農(nóng)業(yè)工程學(xué)報(bào),1989,5(2):35-46.Sun Zhongfu. Studies on the heat balance of polyvinyl chloride (PVC) greenhouse with an earth-air heat exchanger[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1989,5(2): 35-46. (in Chinese with English abstract)
[51] 袁巧霞. 塑料大棚太陽能地下熱交換系統(tǒng)的增溫效應(yīng)[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),1995,14(3):297-302.Yuan Qiaoxia. Plastic greenhouse solar underground heat exchange system warming effect[J]. Journal of Huazhong Agriculture University, 1995, 14(3): 297-302. (in Chinese with English abstract)
[52] 袁巧霞. 塑料大棚地下熱交換系統(tǒng)的應(yīng)用問題探討[J].湖北農(nóng)業(yè)科學(xué),1997(1):38-40.Yuan Qiaoxia. Application of underground heat exchange system in plastic greenhouse [J]. Hubei Agricultural Sciences, 1997(1): 38-40. (in Chinese with English abstract)
[53] Santamouris M, Mihalakakou G, Balaras C A, et al. Energy conservation in greenhouses with buried pipes[J]. Energy,1996, 21(5): 353-360.
[54] 吳德讓,李元哲,于竹. 日光溫室地下熱交換系統(tǒng)的理論研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1994,10(1):137-143.Wu Derang, Li Yuanzhe, Yu Zhu. Theory research on earth tube heat exchangers in a sun-light greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1994, 10(1): 137-143. (in Chinese with English abstract)
[55] 吳德讓,李元哲,于竹. 日光溫室地下熱交換系統(tǒng)的實(shí)驗(yàn)和優(yōu)化設(shè)計(jì)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1994,10(1):144-149.Wu Derang, Li Yuanzhe, Yu Zhu. Optimal design and test research of earth tube heat exchangers in a sun-light greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1994,10(1): 144-149. (in Chinese with English abstract)
[56] 孫周平,黃文永,李天來,等. 彩鋼板保溫裝配式節(jié)能日光溫室的溫光性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):159-167.Sun Zhouping, Huang Wenyong, Li Tianlai, et al. Light and temperature performance of energy-saving solar greenhouse assembled with color plate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 159-167. (in Chinese with English abstract)
[57] 張勇,鄒志榮. 一種蓄熱后墻的日光溫室:102630526[P].2012-08-15.
[58] 張勇,高文波,鄒志榮. 主動(dòng)蓄熱后墻日光溫室傳熱CFD模擬及性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5): 203-211.Zhang Yong, Gao Wenbo, Zou Zhirong. Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 203- 211. (in Chinese with English abstract)
[59] 鮑恩財(cái),朱超,曹晏飛,等. 固化沙蓄熱后墻日光溫室熱工性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(9): 187-194.Bao Encai, Zhu Chao, Cao Yanfei, et al. Thermal performance test of solidified sand heat storage wall in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 187-194. (in Chinese with English abstract)
[60] 王昭, 陳振東, 鄒志榮, 等. 青海型主動(dòng)蓄熱日光溫室應(yīng)用性能分析[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 22(8): 116-123.Wang Zhao, Chen Zhendong, Zou Zhirong, et al.Application performance analysis on active heating storage greenhouse of Qinghai style[J]. Journal of China Agricultural University, 2017, 22(8): 116-123. (in Chinese with English abstract)
[61] 王慶榮,程杰宇,崔文慧,等. 日光溫室對(duì)流循環(huán)蓄熱墻體構(gòu)造對(duì)室內(nèi)氣流場(chǎng)的影響[J]. 新疆農(nóng)業(yè)科學(xué),2016,53(7): 1319-1328.Wang Qingrong, Cheng Jieyu, Cui Wenhui, et al. Impact on indoor air distribution with the convective circulation thermal storage wall of Chinese solar greenhouse[J].Xinjiang Agricultural Sciences, 2016, 53(7): 1319-1328.(in Chinese with English abstract)
[62] 任曉萌,程杰宇,夏楠,等. 日光溫室自然對(duì)流蓄熱中空墻體蓄放熱效果研究[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(2): 115-122.Ren Xiaomeng, Cheng Jieyu, Xia Nan, et al. Study on the effect of natural convective hollow wall on thermal storage/release in solar greenhouse[J]. Journal of China Agricultural University,2017,22(2): 115-122. (in Chinese with English abstract)
[63] Boulard T, Razafinjohany E, BaillE A. Heat and water vapour transfer in a greenhouse with an underground heat storage system part I. Experimental results[J]. Agricultural and Forest Meteorology, 1989, 45(3-4): 175-184.
[64] Boulard T, Razafinjohany E, Baille A. Heat and water vapour transfer in a greenhouse with an underground heat storage system part II. Model[J]. Agricultural and Forest Meteorology, 1989, 45(3/4): 185-194.
[65] 劉圣勇,張杰,張百良,等. 太陽能蓄熱系統(tǒng)提高溫室地溫的試驗(yàn)研究[J]. 太陽能學(xué)報(bào),2003, (4): 461-465.Liu Shengyong, Zhang Jie, Zhang Bailiang, et al.Experimental study of solar thermal storage for increasing the earth temperature of greenhouse[J]. Acta Energiae Solaris Sinica, 2003, (4): 461-465. (in Chinese with English abstract)
[66] Zaragoza G, Buchholz M, Jochum P, et al. Watergy project:Towards a rational use of water in greenhouse agriculture and sustainable architecture[J]. Desalination, 2007, 211(1/3):296-303.
[67] Sethi V P, Sharma S K. Experimental and economic study of a greenhouse thermal control system using aquifer water[J]. Energy Conversion and Management, 2007, 48(1):306-319.
[68] Attar I, Naili N, Khalifa N, et al. Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger[J]. Energy Conversion and Management, 2013, 70: 163-173.
[69] Attar I, Farhat A. Efficiency evaluation of a solar water heating system applied to the greenhouse climate[J]. Solar Energy, 2015, 119: 212-224.
[70] 張義,楊其長(zhǎng),方慧. 日光溫室水幕簾蓄放熱系統(tǒng)增溫效應(yīng)試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(4):188-193.Zhang Yi, Yang Qichang, Fang Hui. Research on warming effect of water curtain system in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(4): 188-193. (in Chinese with English abstract)
[71] Fang H, Yang Q, Zhang Y, et al. Performance of a solar heat collection and release system for improving night temperature in a Chinese solar greenhouse[J]. Applied Engineering in Agriculture, 2015, 31(2): 283-289.
[72] 李文,楊其長(zhǎng),張義,等. 日光溫室主動(dòng)蓄放熱系統(tǒng)應(yīng)用效果研究[J]. 中國(guó)農(nóng)業(yè)氣象,2013,34(5): 557-562.Li Wen, Yang Qichang, Zhang Yi, et al. Application effects of active heat storage and release system in a Chinese solar greenhouse[J]. Chinese Journal of Agrometeorology, 2013,34(5): 557-562. (in Chinese with English abstract)
[73] 梁浩,方慧,楊其長(zhǎng),等. 日光溫室后墻蓄放熱簾增溫效果的性能測(cè)試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12): 187-193.Liang Hao, Fang Hui, Yang Qichang, et al. Performance testing on warming effect of heat storage-release curtain of back wall in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(12): 187-193. (in Chinese with English abstract)
[74] 方慧,張義,楊其長(zhǎng),等. 日光溫室金屬膜集放熱裝置增溫效果的性能測(cè)試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):177-182.Fang Hui, Zhang Yi, Yang Qichang, et al. Performance testing on warming effect of heat storage-release metal film in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 177-182. (in Chinese with English abstract)
[75] 孫維拓,楊其長(zhǎng),方慧,等. 主動(dòng)蓄放熱-熱泵聯(lián)合加溫系統(tǒng)在日光溫室的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):168-177.Sun Weituo, Yang Qichang, Fang Hui, et al. Application of heating system with active heat storage-release and heat pump in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 168-177. (in Chinese with English abstract)
[76] 周升,張義,程瑞鋒,等. 大跨度主動(dòng)蓄能型溫室溫濕環(huán)境監(jiān)測(cè)及節(jié)能保溫性能評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6): 218-225.Zhou Sheng, Zhang Yi, Cheng Ruifeng, et al. Evaluation on heat preservation effects in micro environment of large scale greenhouse with active heat storage system[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 218-225. (in Chinese with English abstract)
[77] Zhou S,Zhang Y,Yang Q C,et al. Performance of active heat storage-release unit assisted with a heat pump in a new type of Chinese solar greenhouse[J]. Applied Engineering in Agriculture,2016,32(5): 641-650.
[78] Lu W, Zhang Y, Fang H, et al. Modelling and experimental verification of the thermal performance of an active solar heat storage-release system in a Chinese solar greenhouse[J]. Biosystems Engineering, 2017, 160: 12-24.
[79] 方慧,楊其長(zhǎng),梁浩,等. 日光溫室淺層土壤水媒蓄放熱增溫效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5): 258-263.Fang Hui, Yang Qichang, Liang Hao, et al. Experiment of temperature rising effect by heat release and storage with shallow water in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 258-263. (in Chinese with English abstract)
[80] 王雙喜,馬春生,張靜,等. 節(jié)能溫室太陽能土壤蓄熱加溫系統(tǒng)的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2003, 19(5): 197-203.Wang Shuangxi, Ma Chunsheng, Zhang Jing, et al.Substrate heating system with solar energy for greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003,19(5): 197-203. (in Chinese with English abstract)
[81] 王順生,馬承偉,柴力龍,等. 日光溫室內(nèi)置式太陽能集熱調(diào)溫裝置試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2007, 30(2): 130-133.Wang Shunsheng, Ma Chengwei, Chai Lilong, et al.Equipment in sunlight greenhouse for collecting heat and adjusting temperature[J]. Journal of Agricultural Mechanization Research. 2007, 30(2): 130-133. (in Chinese with English abstract)
[82] 余學(xué)江. 嚴(yán)寒地區(qū)日光溫室主動(dòng)太陽能供暖系統(tǒng)研究[D]大慶:東北石油大學(xué),2011.Yu Xuejiang. Research on the Active Solar Heating System of Greenhouse in Intense Cold Area[D]. Daqing: Northeast Petroleum University, 2011. (in Chinese with English abstract)
[83] 于威,王鐵良,劉文合,等. 日光溫室地中熱水管加溫對(duì)土壤溫度的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 45(3):321-325.Yu Wei, Wang Tieliang, Liu Wenhe, et al. Soil temperature in solar greenhouse with buried hot water pipes[J].Journal of Shenyang Agricultural University, 2014, 45(3): 321-325. (in Chinese with English abstract)
[84] 楊英英. 生態(tài)溫室墻掛式太陽能輔助加溫系統(tǒng)研究[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2016.Yang Yingying. Study on Wall Hung Solar Assisted Heating System of Ecological Greenhouse[D]. Shenyang:Shenyang Agricultural University, 2016. (in Chinese with English abstract)
[85] 佟雪姣,孫周平,李天來,等. 日光溫室太陽能水循環(huán)系統(tǒng)冬季與夏季試驗(yàn)效果[J]. 太陽能學(xué)報(bào), 2016, 37(9):2306-2313.Tong Xuejiao, Sun Zhouping, Li Tianlai, et al.Experimental effects of solar energy water-cycling system for solar greenhouse in winter and summer[J]. Acta Energiae Solaris Sinica, 2016, 37(9): 2306-2313. (in Chinese with English abstract)
[86] 佟雪姣, 孫周平, 李天來, 等. 溫室太陽能水循環(huán)集熱裝置的蓄熱性能研究[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2016, 47(1):92-96.Tong Xuejiao, Sun Zhouping, Li Tianlai, et al. Heating performance of heating device of the solar energy water-cycling system in greenhouse[J]. Journal of Shenyang Agricultural University. 2016, 47(1): 92-96. (in Chinese with English abstract)
[87] 馬承偉,姜宜琛,程杰宇,等. 日光溫室鋼管屋架管網(wǎng)水循環(huán)集放熱系統(tǒng)的性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(21):209-216.Ma Chengwei, Jiang Yichen, Cheng Jieyu, et al. Analysis and experiment of performance on water circulation system of steel pipe network formed by roof truss for heat collection and release in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 209-216. (in Chinese with English abstract)
[88] 王宇欣, 劉爽, 王平智, 等. 溫室蓄熱微膠囊相變材料制備篩選與性能表征[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016, 47(9): 348-358.Wang Yuxin, Liu Shuang, Wang Pingzhi, et al. Preparation and characterization of microencapsulated phase change materials for greenhouse application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9):348- 358. (in Chinese with English abstract)
[89] 蔣自鵬, 鐵生年. 芒硝基相變材料性能及其在簡(jiǎn)易溫室中升溫效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(20): 209-216.Jiang Zipeng, Tie Shengnian. Property and heat storage performances of Glauber's salt-based phase change materials for solar greenhouse in Qinghai-Tibet plateau[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 209-216. (in Chinese with English abstract)
[90] 韓麗蓉. 相變蓄熱材料十水硫酸鈉的改性及應(yīng)用研究[D].楊凌:西北農(nóng)林科技大學(xué), 2014.Han Lirong. Modification and Application of Sodium Sulfate Decahydrate as Phase Change Thermal Storage Material[D]. Yangling: Northwest A&F University, 2014.(in Chinese with English abstract)
[91] Benli H, Durmu? A. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating[J]. Solar Energy, 2009, 83(12): 2109-2119.
[92] Berroug F, Lakhal E K, Elomari M, et al. Thermal performance of a greenhouse with a phase change material north wall[J]. Energy and Buildings, 2011, 43(11): 3027-3035.
[93] 張立明. 溫室墻體復(fù)合相變材料的制備與蓄熱機(jī)理研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2008.Zhang Liming. The Preparation of Greenhouse Wall Composite PCM Materials and Research on Heat Storage Principle[D]. Yangling: Northwest A&F University, 2008.(in Chinese with English abstract)
[94] 孫心心. 日光溫室新型保溫墻體材料的制備及應(yīng)用效果的研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2010.Sun Xinxin. Study on the Preparation of New Thermal Insulation Greenhouse Wall Materials and Effect of Application[D]. Yangling: Northwest A&F University,2010. (in Chinese with English abstract)
[95] 許紅軍. 日光溫室相變蓄熱墻板制備及性能研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2013.Xu Hongjun. Preparation and Study on the Greenhouse Thermal Storage Wallboard with PCM[D]. Yangling:Northwest A&F University, 2013. (in Chinese with English abstract)
[96] 張慶. 脂肪酸復(fù)合相變材料的制備及其在日光溫室中的應(yīng)用[D]. 楊凌:西北農(nóng)林科技大學(xué), 2015.Zhang Qing. Preparation of Fatty Acid Composite Phase Change Material and Its Application in Solar Greenhouse[D]. Yangling: Northwest A&F University,2013. (in Chinese with English abstract)
[97] 楊小龍, 王宏麗, 許紅軍, 等. 磷酸氫二鈉相變墻板在溫室中的應(yīng)用效果[J]. 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版),2014, 32(4): 88-94.Yang Xiaolong, Wang Hongli, Xu Hongjun, et al.Performance of phase change thermal storage wallboard of disodium hydrogen phosphate dodecahydrate in solar greenhouses[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2014, 32(4): 88-94. (in Chinese with English abstract)
[98] 王宏麗,李曉野,鄒志榮. 相變蓄熱砌塊墻體在日光溫室中的應(yīng)用效果[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(5): 253-257.Wang Hongli, Li Xiaoye, Zou Zhirong. Application of brick wall with phase change rice husk in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 253-257. (in Chinese with English abstract)
[99] Boulard T, Razafinjohany E, Baille A, et al. Performance of a greenhouse heating system with a phase change material[J]. Agricultural and Forest Meteorology, 1990,52(3-4): 303-318.
[100] 管勇,陳超,李琢,等. 相變蓄熱墻體對(duì)日光溫室熱環(huán)境的改善[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(10): 194-201.Guan Yong, Chen Chao, Li Zhuo, et al. Improving thermal environment in solar greenhouse with phase-change thermal storage wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(10): 194-201. (in Chinese with English abstract)
[101] 管勇,陳超,凌浩恕,等. 日光溫室三重結(jié)構(gòu)相變蓄熱墻體傳熱特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(21): 166-173.Guan Yong, Chen Chao, Ling Haoshu, et al. Analysis of heat transfer properties of three-layer wall with phase-change heat storage in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 166-173. (in Chinese with English abstract)
[102]?ztürk H H. Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating[J]. Energy Conversion and Management, 2005, 46(9): 1523-1542.
[103] 李曉野. 溫室太陽能空氣集熱—相變蓄熱裝置設(shè)計(jì)及性能研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2012.Li Xiaoye. Design and Study on the Solar Air Heating System with Phase Change Materials Energy Storage in Greenhouse[D]. Yangling: Northwest A&F University,2012. (in Chinese with English abstract)
[104] 閆彥濤. 溫室平板太陽能相變蓄熱系統(tǒng)的設(shè)計(jì)及應(yīng)用研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.Yan Yantao. Design and Application of Greenhouse Solar Panel Phase Change Thermal Storage System[D]. Yangling:Northwest A&F University, 2016. (in Chinese with English abstract)
[105] 凌浩恕,陳超,陳紫光,等. 日光溫室?guī)жQ向空氣通道的太陽能相變蓄熱墻體體系[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3): 336-343.Ling Haosu, Chen Chao, Chen Ziguang, et al. Performance of phase change material wall with vertical air channels integrating solar concentrators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3):336 -343. (in Chinese with English abstract)
[106] 陳紫光. 基于相變蓄熱墻體的太陽能空氣集熱器傳熱性能研究[D]. 北京:北京工業(yè)大學(xué),2014.Chen Ziguang. Heat Transfer Performance of Solar Air Collector Based on Phase Change Thermal Storage Wall[D].Beijing: Beijing Industry University, 2014. (in Chinese with English abstract)
[107] 陳超,張明星,鄭宏飛,等. 日光溫室用雙集熱管多曲面槽式空氣集熱器性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):245-252.Chen Chao, Zhang Mingxing, Zheng Hongfei, et al.Thermal performance experiment for multiple clamber trough solar air collector with dual collector tubes for solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(15): 245-252. (in Chinese with English abstract)
[108]?ztürk H H, Ba??etin?elik A. Energy and exergy efficiency of a packed-bed heat storage unit for greenhouse heating[J].Biosystems Engineering, 2003, 86(2): 231-245.
[109] Kürklü A, Bilgin S, ?zkan B. A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse[J]. Renewable Energy, 2003, 28(5): 683-697.
[110] 張潔,鄒志榮,張勇,等. 新型礫石蓄熱墻體日光溫室性能初探[J]. 北方園藝,2016(2): 46-50.Zhang Jie, Zou Zhirong, Zhang Yong, et al. Performance of heating storage gravel wall solar greenhouse[J]. Northern Horticulture, 2016(2): 46-50. (in Chinese with English abstract)
[111] Chen W, Liu W. Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage[J]. Solar Energy, 2004, 76(5):623-633.
[112] 張峰,張林華,劉文波,等. 帶地下卵石床蓄熱裝置的日光溫室增溫實(shí)驗(yàn)研究[J]. 可再生能源,2009,27(6): 7-9.Zhang Feng, Zhang Linhua, Liu Wenbo, et al. Experimental study on temperature increasing in solar greenhouse with underground pebble bed thermal storage[J]. Renewable Energy, 2009, 27(6): 7-9. (in Chinese with English abstract)
[113] Marsh L S, Singh S. Economics of greenhouse heating with a mine air-assisted heat pump[J]. Transactions of the ASAE,1994, 37(6): 1959-1963.
[114] Bot G P A, Braak N J van de, Challa H, et al. The solar greenhouse: State of the art in energy saving and sustainable energy supply[J]. Acta Horticulturae, 2005,691(2): 501-508.
[115] Ozgener O, Hepbasli A. Experimental investigation of the performance of a solar-assisted ground-source heat pump system for greenhouse heating[J]. International Journal of Energy Research, 2005, 29(3): 217-231.
[116] Yang S H, Rhee J Y. Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating[J]. Applied Energy, 2013, 105: 244-251.
[117] Attar I, Naili n, Khalifa N, et al. Experimental study of an air conditioning system to control a greenhouse microclimate[J]. Energy Conversion and Management,2014, 79: 543-553.
[118] 柴立龍,馬承偉,張義,等. 北京地區(qū)溫室地源熱泵供暖能耗及經(jīng)濟(jì)性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):249-254.Chai Lilong, Ma Chengwei, Zhang Yi, et al. Energy consumption and economic analysis of ground source heat pump used in greenhouse in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 249-254. (in Chinese with English abstract)
[119] Chai L, Ma C, Ni J Q. Performance evaluation of ground source heat pump system for greenhouse heating in northern China[J]. Biosystems Engineering, 2012, 111(1): 107-117.
[120] 孫維拓,張義,楊其長(zhǎng),等. 溫室主動(dòng)蓄放熱-熱泵聯(lián)合加溫系統(tǒng)熱力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):179-188.Sun Weituo, Zhang Yi, Yang Qichang, et al.Thermodynamic analysis of active heat storage-release associated with heat pump heating system in greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 179-188 (in Chinese with English abstract)
[121] 孫維拓,郭文忠,徐凡,等. 日光溫室空氣余熱熱泵加溫系統(tǒng)應(yīng)用效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):235-243.Sun Weituo, Guo Wenzhong, Xu Fan, et al. Application effect of surplus air heat pump heating system in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(17): 235-243 (in Chinese with English abstract)
[122] 孫先鵬,鄒志榮,趙康,等. 太陽能蓄熱聯(lián)合空氣源熱泵的溫室加熱試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):215-221.Sun Xianpeng, Zou Zhirong, Zhao Kang, et al. Experiment on heating effect in greenhouse by solar combined with air-source heat pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015, 31(22): 215-221. (in Chinese with English abstract)
[123] 孫先鵬,郭康權(quán),鄒志榮,等. 太陽能聯(lián)合空氣源熱泵系統(tǒng)溫室供熱實(shí)驗(yàn)研究[J]. 太陽能學(xué)報(bào),2016,37(3): 658-665.Sun Xianpeng, Guo Kangquan, Zou Zhirong, et al. System investigation of a solar combined with air-source heat pump system for greenhouse heating[J]. Acta Energiae Solaris Sinica, 2016, 37(3): 658-665. (in Chinese with English abstract)
[124] Benli H. Energetic performance analysis of a groundsource heat pump system with latent heat storage for a greenhouse heating[J]. Energy Conversion and Management, 2011, 52(1): 581-589.
[125] 高文波,張勇,鄒志榮,等. 主動(dòng)采光蓄熱型日光溫室性能初探[J]. 農(nóng)機(jī)化研究,2015, 37(7): 181-186.Gao Wenbo, Zhang Yong, Zou Zhirong, et al. Preliminary study on performance in an active lighting and heating storage type solar greenhouse[J]. Journal of Agricultural Mechanization Research, 2015, 37(7): 181-186. (in Chinese with English abstract)
[126] Liu X, Gao H, Sun Y, et al. Thermal and optical analysis of a passive heat recovery and storage system for greenhouse skin[J]. Procedia Engineering, 2016, 155: 472-478.
[127] Anifantis A S, Colantoni A, Pascuzzi S. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating[J].Renewable Energy, 2017, 103: 115-127.
[128] 白義奎,周東升,曹剛,等. 北方寒區(qū)節(jié)能日光溫室建筑設(shè)計(jì)理論與方法研究[J]. 新疆農(nóng)業(yè)科學(xué),2014,51(6):990-998.Bai Yikui, Zhou Dongsheng, Cao Gang, et al. Research on solar greenhouse architectural design theory and method during winter time in northern cold regions of China[J].Xinjiang Agricultural Sciences, 2014, 51(6): 990-998. (in Chinese with English abstract)
[129] 郭長(zhǎng)城,石惠嫻,朱洪光,等. 太陽能-地源熱泵聯(lián)合供能系統(tǒng)研究現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(14): 356-362.Guo Changcheng, Shi Huixian, Zhu Hongguang, et al.Review of solar-assisted ground source heat pump system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011,27(14): 356-362. (in Chinese with English abstract)