馬雪城 李國芬 趙康
摘 要:為得到荷位、軸載、大氣溫度以及計算方法各因素對鋼橋面鋪裝車轍的影響,本文以上層高彈改性瀝青混合料(35 mm)+下層澆筑式瀝青混合料(40 mm)復合鋪裝結構為研究對象,并建立鋼橋面鋪裝模型,通過單軸貫入試驗獲取材料的蠕變參數(shù),利用ABAQUS計算鋼橋面鋪裝車轍。分析表明:車轍主要發(fā)生在下層的澆筑式瀝青混合料;橫向荷位變化對車轍的影響遠大于縱向荷位;車轍值總體與溫度呈正相關性,與季節(jié)的溫度變化相一致;連續(xù)變溫下鋪裝車轍的計算方法比恒溫下的要準確,車轍深度隨著接地壓力的增加而不斷增大。研究結論對鋼橋面鋪裝設計和車轍預估有一定的意義。
關鍵詞:車轍;蠕變試驗;鋼橋面鋪裝;有限元
中圖分類號:U443.33 文獻標識碼:A 文章編號:1006-8023(2018)05-0077-06
Abstract: In order to get the influence of load location, axle load, atmospheric temperature and calculation method on rutting of steel bridge deck pavement. The composite pavement structure of high elastic modified asphalt mixture (35mm) and under layer pouring asphalt mixture (40mm) as research object in this paper, and a steel bridge deck pavement model was established, through a single axis penetration test to obtain the material creep Variable parameters, using ABAQUS to calculate the steel deck pavement. The analysis shows that rutting mainly occurs in the under layer of asphalt mixture; the effect of lateral load change on the rutting is much greater than that of the longitudinal load; the rutting value is positively correlated with temperature, which is consistent with seasonal temperature change; the calculation method of the pavement at the continuous temperature change is more accurate than at the constant temperature, and the depth of the rut increases with the increase of the ground pressure. The research conclusion is of significance for the design and rutting prediction of steel bridge deck pavement.
Keywords: Rutting; creep test; steel bridge deck pavement; finite element
0 引言
目前我國多數(shù)大跨徑鋼橋面鋪裝出現(xiàn)了不同程度的破壞,其中車轍病害日益嚴重,大大降低了鋼橋面鋪裝的使用性能[1-2],因而需要對車轍進行深入研究分析。課題組對比分析了基于澆筑式瀝青混合料的復合鋪裝結構高溫性能[3],并基于修正Burgers模型進行了車轍預估分析[4-6]。湯文[7]采用多參數(shù)得到車轍預估模型,楊軍、錢振東[8-10]等采用Bailey-Norton模型,龍堯[11]采用Burgers模型,Al-Qadi I L[12]采用廣義的Maxwell模型對混凝土材料參數(shù)進行獲取并進行車轍預估,但是未對連續(xù)變溫下的鋪裝進行準確考慮,本文以南京長江四橋的鋪裝為分析對象,通過ABAQUS建立局部箱梁模型,通過不同的荷位、溫度等因素對車轍的影響分析。
1 鋼橋面鋪裝分析模型
1.1 有限元模型參數(shù)
本文采取的計算模型具體參數(shù)參照南京長江四橋,見表1。鋪裝為兩層結構,上層高彈改性瀝青混合料(35 mm)+下層澆筑式瀝青混合料(40 mm),有限元模型如圖1所示。
1.2 材料參數(shù)
混合料的蠕變模型采用Bailey-Norton[13-14]模型,其表達式為:
式中:為應變速率;σ為應力;t 為荷載累計作用時間;A、m、n為系數(shù),主要與溫度和應力大小有關。
為了使獲得的參數(shù)更接近鋼橋面鋪裝的真實受力狀態(tài),實驗制作300 mm×300 mm×50 mm的標準車轍板試件,分別為高彈改性瀝青混合料試件和澆筑式瀝青混合料試件,共有4種溫度水平,分別為30、40、50、60℃,每種溫度水平共用3組試件,對混合料的蠕變參數(shù)分別擬合,擬合結果見表2。
1.3 荷載參數(shù)
根據(jù)李凌林[15-18]等研究,輪胎接地壓力與輪胎的內(nèi)壓處于不平衡的關系,參照經(jīng)驗公式計算不同軸載作用下的接地壓力,公式如下:
p=0.290×pt+0.0042×P+0.1448。 (2)
式中:p為輪胎接地壓力,MPa;Pt為輪胎充氣壓力,MPa;P為軸載,kN。
[2]楊若沖,程剛.鋼橋面鋪裝車轍破壞機理及成因分析[J].公路,2004(3):52-55.
YANG R C, CHENG G. Mechanism of rutting breakage and analysis of formation causes on steel bridge flooring[J]. Highway, 2004(3):52-55.
[3]侍冬前,李國芬,王宏暢,等.復合澆注式瀝青混凝土高溫性能分析[J].公路工程,2014,39(5):75-77.
SHI D R, LI G F, WANG H C, et al. Study on high temperature stability composite gussasphalt concrete[J]. Highway Engineering, 2014, 39(5):75-77.
[4]李國芬,王宏暢,王勇,等.基于修正Burgers模型的鋼橋面鋪裝車轍有限元分析[J].林業(yè)工程學報,2016,1(5):120-125.
LI G F, WANG H C, WANG Y,et al. Finite element analysis of steel bridge deck pavement rut[J]. Journal of Forestry Engineering, 2016, 1(5):120-125.
[5]馬雪城,王宏暢,魏洋等.基于連續(xù)變溫下鋼橋面鋪裝結構的力學性能研究[J].中外公路,2017,37(5):135-140.
MA X C, WANG H C, WEI Y, et al.Research on mechanical properties of steel deck pavement structure under consecutive temperature variation[J]. Journal of China & Foreign Highway, 2017,37(5):135-140.
[6]趙毅,郭志敏,梁乃興.瀝青混合料永久變形黏彈性力學模型通用性研究[J].公路工程,2018,43(2):192-196.
ZHAO Y, GUO Z M, LIANG N X. Study on the universality of permanent deformation viscoelastic mechanics model of asphalt mixture[J].Highway Engineering,2018,43(2):192-196.
[7]湯文,吳學文,孫立軍.瀝青路面車轍的多參數(shù)預估模型研究[J].中外公路,2016,36(1):45-49
TANG W, WU X W, SUN L J. Research on multi-parameter prediction model of asphalt pavement rutting[J]. Journal of China & Foreign Highway, 2016,36(1):45-49.
[8]楊軍, 叢菱, 朱浩然,等. 鋼橋面瀝青混合料鋪裝車轍有限元分析[J]. 工程力學, 2009, 26(5):110-115.
YANG J, CONG L, ZHU H R, et al. Analysis on rutting potential of asphalt pavement on the steel deck by finite element method[J]. Engineering Mechanics, 2009, 26(5):110-115.
[9]胡靖,錢振東,楊宇明.GA+EA鋼橋面鋪裝復合結構的高溫性能與力學特性[J].中南大學學報(自然科學版),2015,46(5):1946-1952.
HU J, QIAN Z D, YANG Y M. High temperature properties of composite structure of gussasphalt epoxy asphalt at bridge deck pavement[J]. Journal of Central South University (Natural Science), 2015,46(5):1946-1952.
[10]黃菲.瀝青路面永久變形數(shù)值模擬及車轍預估[D].南京:東南大學,2006.
HUANG F. Numerical simulation of road surface deformation and rutting prediction[D]. Nanjing: Southeast University, 2006.
[11]龍堯, 謝晶, 王德群,等. 基于Burgers模型的瀝青混合料室內(nèi)車轍試驗粘彈性分析[J]. 中外公路, 2011, 31(5):239-242.
LONG X, XIE J, WANG D Q, et al. Viscous and elastic analysis of asphalt concrete indoor rutting test based on burgers model[J]. Journal of China & Foreign Highway, 2011, 31(5):239-242.
[12]AL-QADI I L, ELSEIFI M A. Viscoelastic modeling and field validation of flexible pavements[J]. Journal of Engineering Mechanics, 2006, 132(2):172-178.
[13]HUANG H M. Analysis of accelerated pavement tests and finite element modeling of rutting phenomenon[D]. West Lafayette: Purdue University, 1995.
[14]FWA T F, TAN S A, ZHU L Y. Rutting prediction of asphalt pavement layer using C–φ model[J]. Journal of Transportation Engineering, 2004, 130(5):675-683.
[15]李凌林. 瀝青路面長大縱坡段車轍性能研究[D]. 南京:東南大學, 2008.
LI L L. Research on rutting resistance of the long and steep slope asphalt pavements[D]. Nanjing: Southeast University, 2008.
[16]呂悅晶,應保勝,鄒麗瓊, 等.隨機荷載作用下瀝青路面應力應變分析[J].公路工程,2018,43(1):94-101.
LV Y J, YING B S, ZOU LQ, et al. Stress and strain analysis of asphalt pavement under random load[J].Highway Engineering,2018,43(1):94-101.
[17]胡小弟, 孫立軍. 輕型貨車輪胎接地壓力分布實測[J]. 公路交通科技, 2005, 22(8):1-7.
HU X D, SUN L J. Measuring tire contact pressure distribution of light vehicle[J]. Journal of Highway and Transportation Research and Development, 2005, 22(8):1-7.
[18]李婷. 載重汽車輪胎接地壓力研究[D]. 西安:長安大學, 2013.
LI T. Study on the tire contact pressure of heavy truck[D]. Xian: Changan University, 2013.
[19]胡小弟,孫立軍.重型貨車輪胎接地壓力分布實測[J].同濟大學學報(自然科學版),2005,33(11):1443-1448.
HU X D, SUN L J. Measuring tire ground pressure distribution of heavy vehicle[J]. Journal of Tongji University (Natural Science), 2005, 33(11):1443-1448.