付石琴 劉曉冀
參考文獻(xiàn):
[1]BAKSALARY O M. Revisitation of generalized and hypergeneralized projectors[M]//Statistical Inference, Econometric Analysis and Matrix Algebra. Physica-Verlag HD, 2009:317-324.
[2]BENITEZ J, THOME N. Characterizations and linear combinations of k-generalized projectors [J]. Linear Algebra & Its Applications, 2005, 410(2):150-159.
[3]鄧春源, 李啟慧, 杜鴻科. Generalized n-idempotents and Hyper-generalized n-idempotents[J]. Communications in Mathematical Research, 2006, 22(4):387-394.
[4] BAKSALARY J, BAKSALARY O M, LIU X. Further properties of generalized and hypergeneralized projectors[J]. Linear Algebra & Its Applications, 2004, 389(1):295-303.
[5] BAKSALARY J K, BAKSALARY O M, LIU X, et al. Further results on generalized and hypergeneralized projectors[J]. Linear Algebra & Its Applications, 2008, 429(5-6):1038-1050.
[6] ZENG Y D, LIN L F, MATHEMATICS D O. Nonsingularity of linear combinations of idempotent matrices[J]. Linear Algebra & Its Applications, 2013, 388(1):25-29.
[7]LIU X, WU S, BENITEZ J. On nonsingularity of combinations of two group invertible matrices and two tripotent matrices[J]. Linear & Multilinear Algebra, 2011, 59(12):1409-1417.
[8]TOSIC M. Characterizations and the Moore-Penrose inverse of hypergeneralized k-projectors[J]. Bulletin of the Korean Mathematical Society, 2014, 51(2):438-441.
[9] M, D S, DENG C. The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors[J]. Electronic Journal of Linear Algebra Ela, 2011, 22(1):1129-1137.
[10] LIU X, ZHANG M, JULIO B. Expressions of the group inverse of the linear combinations of k-ldempotent matrices and the Moore-Penrose generalized lnverse of the linear combinations of the hypergeneralized ldempotent matrices[J]. Chinese Annals of Mathematics, 2014,35(4):463-478.
[11] ZUO K. Nonsingularity of the difference and the sum of two idempotent matrices[J]. Linear Algebra & Its Applications, 2010, 433(2):476-482.
[12]LI H Y,ZUO K Z. The study of idempotence, reversibility, the group inverse, D-inverse, M-P inverse of combination for two special operator[J]. Applied Mathematics, 2014:19-25.
[13]MEYER C. Matrix analysis and applied linear algebra[M]. Society for Industrial and Applied Mathematics, 2000.
[14] J. Moore-Penrose inverses and commuting elements of C*-algebras[J]. Journal of Mathematical Analysis & Applications, 2008, 345(2):766-770.