王英 張浩 馬軍韜 張麗艷 鄧凌偉 王永力 高晶 張國(guó)民
摘 要 水稻是我國(guó)主要糧食作物之一,整個(gè)生長(zhǎng)階段對(duì)水分的需求遠(yuǎn)遠(yuǎn)大于其它作物。然而隨著極端氣候以及水資源短缺的影響,干旱已經(jīng)成為造成農(nóng)作物產(chǎn)量損失最大的非生物脅迫。全面詳細(xì)地了解水稻抗旱研究相關(guān)內(nèi)容,有助于抗旱水稻品種的培育。本綜述從水稻抗旱篩選方法、篩選指標(biāo)、干旱脅迫條件下產(chǎn)量及其產(chǎn)量相關(guān)性狀QTL發(fā)掘以及抗旱基因的克隆和應(yīng)用進(jìn)行論述,并對(duì)水稻抗旱品種的培育進(jìn)行展望。
關(guān)鍵詞 水稻;抗旱;篩選方法及指標(biāo);分子機(jī)理
中圖分類號(hào) S332.4 文獻(xiàn)標(biāo)識(shí)碼 A
Abstract Rice is one of the main food crops in China. Demand for water in the whole growth stage of rice is far greater than that of other crops. But with extreme weather and the impact of the shortage of water resources, the losses caused by drought on crops are the highest among all abiotic stresses. This article summarized the screening method and index of drought tolerance, QTL mining of yield and yield related traits under drought stress, and cloning and application of drought tolerance genes. Meanwhile, it also put forward the rice breeding for drought tolerance. Comprehensive and detailed understanding of rice drought tolerance would help to breed rice varieties with drought tolerance.
Key words rice; drought tolerance; screening methods and index; molecular mechanism
doi 10.3969/j.issn.1000-2561.2018.05.031
全球氣候環(huán)境的變化,極端天氣導(dǎo)致降水不均勻和持續(xù)干旱等出現(xiàn)的頻率和持續(xù)的時(shí)間不斷增加,其危害和損失程度也呈現(xiàn)出上升趨勢(shì)。我國(guó)人口眾多,人均水資源的占有量較低,約是世界水平的1/4。生活、工業(yè)用水的不斷增加,水資源污染和嚴(yán)重浪費(fèi)等問題進(jìn)一步加劇了水資源的危機(jī)。水稻作為主要糧食作物,為世界一半以上的人口提供能量[1]。生物脅迫和非生物脅迫對(duì)水稻產(chǎn)量的影響越來越大。隨著水資源的匱乏和旱災(zāi)的日益嚴(yán)重,干旱已成為水稻減產(chǎn)的重要因素[2-3]。與其他作物相比,水稻對(duì)水分的需求量較大,約占我國(guó)農(nóng)業(yè)用水量的80%(農(nóng)業(yè)用水占我國(guó)總用水量的80%)[4]。截止2010年,據(jù)報(bào)道我國(guó)65%的稻田已經(jīng)受到了干旱的影響[5],導(dǎo)致水稻欠收問題受到更多關(guān)注。提高水稻品種的抗旱能力不僅利于水稻的增產(chǎn)與穩(wěn)產(chǎn),更關(guān)系到農(nóng)民切身利益[6],培育抗旱水稻品種已成為育種家為之努力的重要方向之一。
1 抗旱概述
抗旱性是指作物在干旱條件下的適應(yīng)性和抵抗力。當(dāng)土壤或大氣干旱的情況下,使作物受到的傷害較輕、產(chǎn)量下降減少。由于水稻對(duì)水分要求的特殊性,水稻一生中任何時(shí)期受旱都會(huì)造成不良后果[7]。相對(duì)而言,水稻的生殖生長(zhǎng)期被認(rèn)為是水稻需水最為敏感時(shí)期,該時(shí)期受到干旱脅迫后將嚴(yán)重影響水稻產(chǎn)量[8]。所以,明確水稻不同生育階段對(duì)干旱的響應(yīng)以及干旱脅迫對(duì)水稻產(chǎn)量的影響是十分必要的。同時(shí),水稻本身也進(jìn)化出應(yīng)對(duì)水分脅迫策略,主要包括逃旱、避旱和耐旱。逃旱(Drought escape):嚴(yán)重缺水前的快速開花并完成生殖生長(zhǎng);避旱(Drought avoidance):通過扎深根、關(guān)閉氣孔等擴(kuò)大水源、減少水耗,使地上部維持較高的水分狀態(tài);耐旱(Drought tolerance):調(diào)節(jié)滲透,提高氧化能力,或加強(qiáng)細(xì)胞壁承受脫水的能力,以及復(fù)水后的恢復(fù)能力(Drought recovery)[9-10]??购邓酒贩N具有發(fā)達(dá)根系,其中較大的根冠比和根系穿透力利于水稻高效吸收土壤中的水分[11];抗旱水稻品種通過葉片表面蠟質(zhì)增多、葉片暫時(shí)卷曲、氣孔密度增加和氣孔導(dǎo)度下降等來減少水分蒸發(fā)[12-14];滲透調(diào)節(jié)物質(zhì)的主動(dòng)積累和內(nèi)源激素在水稻的抗旱能力方面起著重要的作用[15]。例如,可溶性糖,甜菜堿含量的增加、超氧化物歧化酶,過氧化氫酶活性升高,都提高水稻的抗旱性。內(nèi)源脫落酸(ABA)的增加是很多干旱誘導(dǎo)基因被激活的前提,也稱為依賴ABA的信號(hào)傳導(dǎo)途徑。在植物抗旱中起到重要作用,是抗旱研究的重要內(nèi)容之一[16]。除了品種間抗旱能力的不同,水稻生活環(huán)境中的光照、土壤等自然因素,也會(huì)導(dǎo)制其抗旱性在不同的年季間存在很大差異[17-19]。由于抗旱性受到環(huán)境的影響較大以及抗旱機(jī)制本身的復(fù)雜性等原因,抗旱品種的選育仍存在很大困難。
2 抗旱篩選方法及指標(biāo)
抗旱水稻品種的篩選與水稻生育周期密不可分。發(fā)芽期主要利用聚乙二醇、甘露醇等高滲液模擬干旱脅迫[8],篩選指標(biāo)為發(fā)芽率、發(fā)芽勢(shì)、胚芽長(zhǎng)度、主胚根長(zhǎng)度、胚芽鞘長(zhǎng),烘干后的種子干重、胚芽干重、胚根干重,根冠比和物質(zhì)轉(zhuǎn)運(yùn)率等[20]。水稻苗期抗旱篩選既可以在大田也可以在溫室進(jìn)行,最根本的是避免降雨等外界水分的影響,主要依據(jù)國(guó)際水稻所抗旱鑒定標(biāo)準(zhǔn),干旱脅迫后,對(duì)卷葉、枯葉、干旱恢復(fù)進(jìn)行調(diào)查[21],評(píng)定其抗旱級(jí)別;或?qū)﹁b定品種進(jìn)行兩次干旱脅迫,計(jì)算反復(fù)干旱存活率篩選苗期抗旱水稻品種;一些學(xué)者對(duì)干旱脅迫后水稻品種的滲透調(diào)節(jié)物質(zhì)、生化物質(zhì)、膜透性、保護(hù)性酶類、內(nèi)源激素等進(jìn)行研究,試圖找到抗旱篩選指標(biāo)[22]。水稻大田抗旱鑒定是將被鑒定的水稻品種種植于降雨極少地區(qū),通過對(duì)主要生育時(shí)期,特別是敏感時(shí)期,進(jìn)行不同程度的干旱脅迫,篩選抗旱水稻品種。同時(shí),測(cè)定形態(tài),生理生化,滲透調(diào)節(jié)物質(zhì)等,確定抗旱篩選指標(biāo)??购迪禂?shù)作為作物抗旱性鑒定中較通用生長(zhǎng)指標(biāo)[23],是干旱脅迫與非干旱脅迫條件下產(chǎn)量的比值,反映了水稻品種對(duì)干旱的敏感程度??购迪禂?shù)受干旱脅迫程度的影響,干旱脅迫程度的年度間變化導(dǎo)致抗旱系數(shù)的不穩(wěn)定性,為年度間的比較造成困難。因此提出了干旱脅迫敏感指數(shù)[24]以及利用抗旱指數(shù)(DI)衡量抗旱性[25]??购抵笖?shù)反映了不同水分條件下品種的穩(wěn)產(chǎn)性,體現(xiàn)了品種在干旱條件下的產(chǎn)量水平。實(shí)際操作過程中,大田篩選條件很難控制,特別是降雨的影響,導(dǎo)致試驗(yàn)條件和鑒定結(jié)果很難重復(fù)。因此旱棚被廣泛應(yīng)用于抗旱鑒定中,能夠有效的防止降雨對(duì)抗旱試驗(yàn)的影響[8]。為了使旱棚更好的模擬大田種植條件,熊立仲[26]課題組通過電源控制旱棚的封閉和開放,使其大部分時(shí)間處于開放狀態(tài),保證棚內(nèi)與外界自然條件的一致性,有效的避免了降雨對(duì)抗旱試驗(yàn)的影響。無論采取什么鑒定方法,其目的都是為了篩選到干旱脅迫條件下,產(chǎn)量損失最低的水稻品種。與大田抗旱鑒定相比,生育前期抗旱篩選操作程序相對(duì)簡(jiǎn)單,耗時(shí)較短。早期研究認(rèn)為干旱脅迫條件下,產(chǎn)量作為抗旱篩選指標(biāo),其篩選效率較低[27]?;谝陨显?,之前的研究多數(shù)采用次級(jí)性狀進(jìn)行抗旱篩選[28-30],并且利用次級(jí)性狀成功的剖析了一定的抗旱機(jī)理[31]。目前水稻抗旱性篩選指標(biāo)尚無定論[32],苗期抗旱性不能代表水稻的綜合抗旱水平[20]。為了保證結(jié)果的可信度,早期得到的抗旱水稻品種仍需進(jìn)行大田抗旱鑒定。在干旱脅迫條件下水稻籽粒產(chǎn)量為抗旱篩選指標(biāo)的優(yōu)勢(shì)表現(xiàn)明顯[33-35],能夠有效的反應(yīng)水稻品種的抗旱性。目前,在IRRI和印度東部初見成效[36]。
3 干旱脅迫條件下產(chǎn)量QTL的發(fā)掘
由于籽粒產(chǎn)量遺傳力較低,有關(guān)產(chǎn)量QTL的早期研究主要以產(chǎn)量構(gòu)成因素等二級(jí)性狀為主,深入研究表明,對(duì)產(chǎn)量進(jìn)行直接選擇更加有效[36]。所以,更多的研究者越來越重視干旱脅迫條件下產(chǎn)量QTL的發(fā)掘工作。多個(gè)遺傳背景或多個(gè)干旱脅迫環(huán)境下均穩(wěn)定表達(dá)且貢獻(xiàn)率較大的QTL在實(shí)際生產(chǎn)和育種中才更具有利用價(jià)值。
Lanceras等[34]在五種不同干旱脅迫條件下,檢測(cè)到4個(gè)與產(chǎn)量有關(guān)的QTL,其中一個(gè)在三種水分條件下均被檢測(cè)到,最大效應(yīng)的QTL能夠解釋30%的遺傳變異。Bernier等[37]在第12號(hào)染色體上檢測(cè)到一個(gè)與籽粒產(chǎn)量相關(guān)的QTL,該QTL在多種干旱條件下均被檢測(cè)到,并且效應(yīng)較大(51%);Yue等[38]檢測(cè)到一個(gè)影響產(chǎn)量、降低收獲指數(shù)的QTL,該QTL不僅表型變異在14-25%之間,而且多年試驗(yàn)中均被檢測(cè)到;干旱脅迫條件下,位于RM11943與RM431之間的qDTY1.1在N22/IR64、N22/MTU1010和N22/Swarna3個(gè)群體,連續(xù)兩年均被檢測(cè)到,并且都起到了增加籽粒產(chǎn)量作用。在正常灌溉條件下,該QTL也表現(xiàn)出增產(chǎn)的作用[39];Alvin等[40]利用同一供體Kali Aus構(gòu)建的兩個(gè)抗旱定位群體,qDTY2.3(RM573-RM213)和qDTY2.2(RM211-RM233A)分別被兩個(gè)群體檢測(cè)到。無論正常灌溉還是干旱脅迫條件,這2個(gè)QTL都起到增產(chǎn)的作用,重要的是兩個(gè)QTL的效應(yīng)并沒有隨著干旱程度的增加而減小。在重度和中度干旱脅迫條件下,均起到的相同的作用。Wang等[41]利用雙向?qū)胂刀ㄎ豢购滴稽c(diǎn),發(fā)現(xiàn)5個(gè)與產(chǎn)量及產(chǎn)量相關(guān)性狀相關(guān)QTL,且這些位點(diǎn)在兩個(gè)背景中均被檢測(cè)到。Venuprasad等[42]檢測(cè)到一個(gè)效應(yīng)值較大且與籽粒產(chǎn)量相關(guān)的QTL(qDTY6.1),該位點(diǎn)不僅在3個(gè)遺傳背景,而且多個(gè)水分處理?xiàng)l件下均被檢測(cè)到;同時(shí)也發(fā)現(xiàn)在sd1基因相鄰位置上存在一個(gè)與產(chǎn)量相關(guān)的QTL,其變異率為32%[43]。基于對(duì)抗旱QTL的研究,最關(guān)鍵的就是將干旱脅迫條件下,增產(chǎn)QTL應(yīng)用到生產(chǎn)實(shí)踐,培育抗旱水稻品種(系)。經(jīng)過努力,利用回交育種與分子標(biāo)記輔助選擇技術(shù),成功的將干旱脅迫條件下,增加產(chǎn)量的QTL轉(zhuǎn)移到主栽品種中,使其抗旱性得到增強(qiáng),獲得抗旱品系[44]。
4 抗旱基因的克隆及應(yīng)用
根系是土壤干旱的第一感知者,干旱脅迫條件下OsNAC9的過量表達(dá),使水稻植株根系結(jié)構(gòu)改變,中柱和通氣組織變大,提高大田條件下水稻耐旱性及籽粒產(chǎn)量[45]。有Dro1的近等基因系的根生長(zhǎng)角度增大,促進(jìn)根系對(duì)水分的吸收,提高水稻避旱能力[46];干旱脅迫葉片產(chǎn)生適應(yīng)性調(diào)節(jié)機(jī)制,DWA1通過調(diào)控水稻中干旱誘導(dǎo)的角質(zhì)層蠟質(zhì)(Cuticular wax)累積,進(jìn)而控制抗旱性[47-48]、位于保衛(wèi)細(xì)胞的OsSRO1c過表達(dá)降低氣孔孔徑并且減少水分流失[49]。Xu等[50]利用大麥的HVA1基因?qū)λ具M(jìn)行轉(zhuǎn)化,HVA1的過量表達(dá)延長(zhǎng)其植株長(zhǎng)勢(shì)的萎蔫時(shí)間,值得一提的是,第2代轉(zhuǎn)基因水稻的抗旱性明顯得到提高。將擬南芥中的HARDY基因轉(zhuǎn)到水稻后,在干旱脅迫條件下,該基因通過增加水稻葉片的光合能力,提高水稻抗旱性[51]。干旱脅迫條件下, SNAC1基因通過調(diào)節(jié)ABA促進(jìn)氣孔關(guān)閉。與野生型相比,在嚴(yán)重干旱條件下,轉(zhuǎn)入該基因的水稻產(chǎn)量增加22%~34%。在正常灌溉條件下,產(chǎn)量與野生型產(chǎn)量相當(dāng)[52-53]。但有些基因調(diào)控,作用相反。例如,OsGH3-2過表達(dá)后,導(dǎo)致IAA缺乏,顯著降低胡蘿卜素、ABA和游離IAA含量,加大氣孔孔徑,加速水分蒸發(fā),增強(qiáng)了水稻對(duì)干旱的敏感性[54]。轉(zhuǎn)錄因子在對(duì)干旱脅迫信號(hào)傳遞和應(yīng)答中起重要作用。Yoon等[55]發(fā)現(xiàn),在整個(gè)植株特別是根部中OsbZIP66過表達(dá)后,將大大增加水稻的抗旱性;與對(duì)照相比,OsHsfA7過表達(dá)后,使受到干旱脅迫后復(fù)水的轉(zhuǎn)基因植株能正常生長(zhǎng)發(fā)育[56];過表達(dá)OsGRAS23能激活水稻中抗氧化相關(guān)基因的表達(dá),進(jìn)而提高轉(zhuǎn)基因水稻抗旱性[57];過表達(dá)OsC3H47能提高轉(zhuǎn)基因水稻苗期的抗旱性[58]。干旱脅迫將誘導(dǎo)、激活某些基因,導(dǎo)致植物營(yíng)養(yǎng)組織中的相關(guān)蛋白的積累。目前,超氧化物歧化酶,Rubisco活化酶、晚期胚胎發(fā)生豐富蛋白、水孔蛋白等研究得比較透徹[59]。最新研究發(fā)現(xiàn),如果水稻營(yíng)養(yǎng)生長(zhǎng)期遭遇干旱脅迫,其OsEm1基因過表達(dá),LEA蛋白增加,提高水稻的成活率[60]。蛋白激酶通過磷酸化改變自身和底物的活性,進(jìn)而調(diào)控下游基因的表達(dá)水平。一些蛋白激酶也參與水稻抗旱過程。如OsCPK10通過調(diào)節(jié)過氧化氫酶的積累量降低脂質(zhì)過氧化的程度和保護(hù)細(xì)胞膜的完整性,實(shí)現(xiàn)水稻的抗旱性[61]、OsCPK4過表達(dá)后,水稻表現(xiàn)出較強(qiáng)的持水能力,同時(shí)膜脂過氧化和電解質(zhì)滲漏水平降低[62]、OsMAPK44[63]和OsCIPK03、OsCIPK12、OsCIPK15[64]等都抗旱性起到一定的作用。因此,干旱脅迫條件下,OsSKIPa基因不僅使水稻幼苗存活率得到提高,并且成熟期的產(chǎn)量和結(jié)實(shí)率比對(duì)照增加20%左右。過量表達(dá)OsSKIPa的水稻轉(zhuǎn)基因植株在干旱脅迫下清除活性氧的能力顯著提高,而OsSKIPa基因調(diào)動(dòng)其它抗旱基因的表達(dá),進(jìn)而增強(qiáng)水稻細(xì)胞活力,提高生存能力,降低干旱引起的產(chǎn)量損失。該基因的這種類似觸發(fā)鏈?zhǔn)椒磻?yīng)的獨(dú)特作用機(jī)制在水稻研究中首次發(fā)現(xiàn)[65]。
5 展望
近幾年極端氣候事件出現(xiàn)頻率不斷上升,且呈現(xiàn)出無規(guī)律性變化,加劇了農(nóng)業(yè)生產(chǎn)的波動(dòng)性[66]。干旱具有不可預(yù)測(cè)性,突發(fā)的干旱給農(nóng)民造成很大的經(jīng)濟(jì)損失。在干旱條件下,抗旱性水稻品種表現(xiàn)出相對(duì)高產(chǎn)的優(yōu)勢(shì)。在沒有脅迫的正常年份,其產(chǎn)量大大降低。干旱發(fā)生的不確定性,農(nóng)民依舊愿意冒著絕產(chǎn)的風(fēng)險(xiǎn)種植高產(chǎn)品種。在培育正常灌溉條件下高產(chǎn),干旱脅迫條件下抗旱的水稻品種都有利于解決生產(chǎn)實(shí)際問題。
干旱脅迫對(duì)水稻各生育期都有影響,嚴(yán)重時(shí)導(dǎo)致水稻死亡[67]。水稻不同生育時(shí)期各個(gè)器官、表型、生理生化過程乃至分子水平上也存在差異。所以,水稻抗旱研究要做到表型與基因型共同協(xié)作。無論是單一性狀鑒定指標(biāo),還是綜合鑒定指標(biāo),都要將干旱脅迫后產(chǎn)量損失最少作為目標(biāo)。因此,抗旱相關(guān)指標(biāo)與產(chǎn)量的相關(guān)性以及該相關(guān)性的穩(wěn)定程度更是值得注意的方面。充分、全面了解水稻抗旱響應(yīng)機(jī)理,確定多數(shù)人認(rèn)可的抗旱篩選指標(biāo)及評(píng)價(jià)體系,是研究工作者努力研究的方向之一??购敌詫儆跀?shù)量性狀,基因與環(huán)境間存在著高度互作現(xiàn)象,干旱脅迫導(dǎo)致水稻進(jìn)行適應(yīng)性調(diào)節(jié)。因此,水稻在表型和基因型的不同干旱條件下,出現(xiàn)差異,特別是基因型層面上。由于試驗(yàn)設(shè)計(jì)與年季間的干旱程度的不同,導(dǎo)致試驗(yàn)與生產(chǎn)存在差距[8]。所以,結(jié)合實(shí)際生產(chǎn)情況,了解當(dāng)?shù)厮旧a(chǎn)發(fā)生旱災(zāi)的大致時(shí)間,總結(jié)水稻不同生育時(shí)期抗旱規(guī)律,培育某個(gè)生育時(shí)期表現(xiàn)抗旱性的水稻品種,合理有效地對(duì)水分供給進(jìn)行調(diào)配,是培育抗旱水稻品種的有效途徑。目前,培育抗旱水稻品種的普遍做法是提高抗旱性的基礎(chǔ)上增加產(chǎn)量,即利用篩選到的抗旱資源,進(jìn)行抗旱品種選育;也有育種者在保持高產(chǎn)的基礎(chǔ)上增強(qiáng)抗旱能力,是通過多次回交培育近等基因系,再利用抗旱育種圃篩選抗旱品種[68]。隨著分子手段的飛速發(fā)展,利用分子標(biāo)記輔助選擇以及轉(zhuǎn)基因的方法提高主栽品種抗旱性,將為水稻抗旱育種提供有力支撐。
參考文獻(xiàn)
[1] Borah P,Sharma E,Kaur A,et al. Analysis of drought-responsive signaling network in two contrasting rice cultivars using transcriptome-based approach[J]. Scientific Reports,2017,7:42 131
[2] Bernier J,Atlin G,Serraj R,et al. Breeding upland rice for drought resistance[J]. Journal of the Science of Food and Agriculture,2008,88(6):927-939
[3] 翟榮榮,馮 躍,王會(huì)民,等. 不同水分條件下水稻苗期根系性狀的QTL分析[J]. 核農(nóng)學(xué)報(bào),2012,26(7):975-982
[4] 凌祖銘,李自超,余 榮,等. 水旱栽培條件下水、陸稻品種產(chǎn)量和生理性狀比較[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,7(3):13-18
[5] Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China[J]. Journal of Experimental Botany,2010,61(13):3 509-3 517
[6] 段素梅,楊安中,黃義德,等. 干旱脅迫對(duì)水稻生長(zhǎng)、生理特性和產(chǎn)量的影響[J]. 核農(nóng)學(xué)報(bào),2014,28(6):1 124-1 132
[7] Swain P,Raman A,Singh S P,et al. Breeding drought tolerant rice for shallow rainfed ecosystem of eastern India[J]. Field Crops Research,2017,209:168-178
[8] 王 英. 利用回交導(dǎo)入系篩選水稻高產(chǎn)、抗旱和耐鹽株系及選擇導(dǎo)入系相關(guān)性狀的QTL定位[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2013.
[9] Zhou L G,Liu Z C,Liu Y H,et al. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientific Reports,2016,6:30264
[10] Li Z,Peng Y. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifoliumrepens L.) associated with antioxidative enzyme protection and lignin metabolism[J]. Acta Physiologiae Plantarum,2013,35(1):213-222
[11] Jongdee B,F(xiàn)ukai S,Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice[J]. Field Crops Research,2002,76(2):153-163
[12] Seki M,Umezawa T,Urano K,et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology,2007,10:296-302
[13] Hadiarto T, Tran L S. Progress studies of drought-responsive genes in rice. Plant Cell Reports,2011,30(3):297-310
[14] 汪本福,黃金鵬,葛雙桃,等. 水稻高效節(jié)水技術(shù)及抗旱生理機(jī)制研究[J]. 湖北農(nóng)業(yè)科學(xué),2016,55(24):6 347-6 352
[15] 梅德勇,王士梅,朱啟升,等. 于智坤水稻抗旱性遺傳生理機(jī)制及育種研究進(jìn)展[J]. 安徽農(nóng)學(xué)通報(bào),2016,22(22):10-14
[16] 郭貴華,劉海艷,李剛?cè)A,等. ABA緩解水稻孕穗期干旱脅迫生理特性的分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(22):4 380-4 391
[17] 李柏貞,周廣勝. 干旱指標(biāo)研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2014,34(5):1 043-1 052
[18] Cooper M. Concept and strategies for plant adaptation research in rainfed lowland rice[J]. Field Crops Research,1999,64(1-2):13-34
[19] Fukai S. Phenology in rainfed lowland rice[J]. Field Crops Research,1999,64(1-2):51-60
[20] 田又升,謝宗銘,王志軍,等. 水稻種子芽期抗旱性與產(chǎn)量抗旱系數(shù)關(guān)系分析[J]. 作物雜志,2014,(5):148-152
[21] 肖宇龍,余傳元,雷建國(guó),等. 水稻種質(zhì)資源的苗期抗旱性鑒定[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,34(3):428-433
[22] 王賀正,徐國(guó)偉,馬 均. 水稻抗旱性鑒定方法及鑒定指標(biāo)的研究進(jìn)展[J]. 中國(guó)種業(yè),2009 (3):16-18
[23] 李冀南,李樸芳,孔海燕, 等. 干旱脅迫下植物根源化學(xué)信號(hào)研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2011,31(9):2 610-2 620
[24] Fischer K S,Edmeades G O,Johnson E C. Selection for improvement in maize yield under moisture-deficits[J]. Field Crops Research,1989,22(3):227-243
[25] 蘭巨生,胡福順,張景瑞. 作物抗旱指數(shù)的概念和統(tǒng)計(jì)方法[J]. 華北農(nóng)學(xué)報(bào),1990,5(2):20-25
[26] Osmond G. The Blue Revolution, Drop by Drop, Gene by Gene[J]. Science,2008,320:171-173
[27] 胡標(biāo)林,李名迪,萬 勇,等. 我國(guó)水稻抗旱性鑒定方法與指標(biāo)研究進(jìn)展[J]. 江西農(nóng)業(yè)學(xué)報(bào),2005,17(2):56-60
[28] Price A,Courtois B. Mapping QTLs associated with drought resistance in rice: Progress, problems, and prospects[J]. Plant Growth Regulation,1999,29(1):123-133
[29] Pantuwan G,F(xiàn)ukai S,Cooper M,et al. Yield response of rice (Oryza sativa L.) to drought under rainfed lowlands: 3. Plant factors contributing to drought resistance[J]. Field Crops Research,2002,73(2-3):181-200
[30] Toorchi M,Shashidhar H E,Gireesha T M,et al. Performance of backcross involving trangressant doubled haploid lines in rice under contrasting moisture regimes[J]. Crop Science,2003,43(4):1 448-1 456
[31] Richards R A,Rebetzke G J,Condon A G,et al. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals[J]. Crop Science,2002,42(1):111-121
[32] Venuprasad R,Lafitte H R,Atlin G N. Response to direct selection for grain yield under drought stress in rice[J]. Crop Science, 2007,47(1):285-293
[33] Babu R C,Nguyen B D,Chamarerk V,et al. Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance[J]. Crop Science,2003,43(4):1 457-1 469
[34] Lanceras J,Pantuwan G,Jongdee B,et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice[J]. Plant Physiology,2004,135(1):384-399
[35] Monneveux P,Saanchez C,Beck D,et al. Drought tolerance improvement in tropical maize source populations: evidence of progress[J]. Crop Science,2006,46(1):180-191
[36] Kumar A,Bernier J,Verulkar S,et al. Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations[J]. Field Crops Research,2008,107(3):221-231
[37] Bernier J,Kumar A,Ramaiah V,et al. A large effect QTL for grain yield under reproductive-stage drought stress in upland rice[J]. Crop Science,2007,47(2):507-516
[38] Yue B,Xiong L Z,Xue W Y,et al. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil[J]. Theoretical and Applied Genetics,2005,111(6):1 127-1 136
[39] Vikram P,Swamy B P,Dixit S, et al. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds[J]. BMC Genetics,2011,12(1):1-15
[40] Alvin D,Palanog A D,Swamy B P M,et al. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice[J]. Field Crops Research,2014,161(1385):46-54
[41] Wang Y,Zhang Q,Zheng T Q,et al. Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice[J]. Crop & Pasture Science,2014,65(2):171-184
[42] Venuprasad R,Bool M E,Quiatchon L,et al. A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds[J]. Theoretical and Applied Genetics,2012,124(2):323-332
[43] Kumar R,Venuprasad R,Atlin G N. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects[J]. Field Crops Research,2007,103(1):45-52
[44] Singh R,Singh Y,Xalaxo S,et al. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network[J]. Plant Science: an International Journal of Experimental Plant Biology,2016,242:278-287
[45] Redillas M C,Jeong J S,Kim Y S,et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnology Journal,2012,10(7):792-805
[46] Uga Y,Sugimoto K,Ogawa S,et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics,2013,45(9):1 097-1 102
[47] Xue D W,Zhang X Q,Lu X L,et al. Molecular and evolutionary mechanisms of cuticular Wax for plant drought tolerance[J]. Frontiers in Plant Science,2017,8:621
[48] Zhu X Y,Xiong L Z. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(44):17 790-17 795
[49] You J,Zong W,Li X K,et al. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany,2013,64(2):569-583
[50] Xu D P,Duan X L,Wang B Y,et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiology,1996,110(1):249-257
[51] Karaba A,Dixit S,Greco R,et al. Improvement of water use efficiency in rice by expression of HARDY,an Arabidopsis drought and salt tolerance gene[J]. Proceedings of the National Academy of Sciences,2007,104(39):15 270-15 275
[52] Li J J,Yin Z G,Jiang J H,et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signaling in rice[J]. Plant Biotechnology Journal,2017,15(2):183-196
[53] Hu H H,Dai M Q,Yao J L,et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences,2006,103(35):12 987-12 992
[54] Du H,Wu N,F(xiàn)u J,et al. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice[J]. Journal of Experimental Botany,2012,63(18):6 467-6 480
[55] Yoon S,Lee D K,Yu I J,et al. Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants[J]. Plant Biotechnology Reports,2017,11(1):53-62
[56] Liu A L,Zou J,Liu C F,et al. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice[J]. BMB Reports,2013,46(1):31-36
[57] Xu K,Chen S J,Li T F,et al. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology,2015,15(1):141-153
[58] Wang W,Liu B,Xu M,et al. ABA induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa[J]. Biochemical and Biophysical Research Communications,2015,464(1):33-37
[59] 舒烈波,梅捍衛(wèi),羅利軍. 水稻抗旱耐鹽蛋白質(zhì)組學(xué)研究進(jìn)展[J]. 生物技術(shù)通報(bào),2007 (4):31-37
[60] Yu J,Lai Y M,Wu X,et al. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice[J]. Biochemical and Biophysical Research Communications,2016,478(2):703-709
[61] Bundó M,Coca M. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants[J]. Journal of Experimental Botany,2017,68(11):2 963-2 975
[62] Campo S,Baldrich P,Messeguer J,et al. Overexpression of a Calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation[J]. Plant Physiology,2014,165(2):688
[63] Jeong M J,Lee S K,Kim B G,et al. A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses[J]. Plant Cell,Tissue Organ Culture,2006,85(2):151-160
[64] Xiang Y,Huang Y M,Xiong L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement[J]. Plant Physiology,2007,144(3):1 416-1 428
[65] Hou X,Xie K B,Yao J L,et al. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(15):6 410-6 415
[66] 周 宏,張恒嘉,莫 非,等. 極端干旱條件下燕麥壟溝覆蓋系統(tǒng)水生態(tài)過程[J]. 生態(tài)學(xué)報(bào),2014,34(7):1 757-1 771
[67] 董 蕾,李吉躍. 植物干旱脅迫下水分代謝、碳饑餓與死亡機(jī)理[J]. 生態(tài)學(xué)報(bào),2013,33(18):5 477-5 483
[68] 周少川, 李 宏, 盧德城, 等. 水稻抗旱育種材料的篩選與研究[J]. 分子植物育種,2010,8(6):1 202-1 207