王立新 吳樹(shù)靜 李山山
摘 要:豬籠草葉籠能夠捕集昆蟲(chóng)并將其消化成生長(zhǎng)所需的營(yíng)養(yǎng)元素,依據(jù)宏/微觀形貌結(jié)構(gòu)差異可劃分為蓋子、口緣、滑移區(qū)與消化區(qū)等區(qū)域。口緣密布楔形盲孔的輻射狀溝脊結(jié)構(gòu)可使液膜產(chǎn)生定向移動(dòng),滑移區(qū)形貌結(jié)構(gòu)呈現(xiàn)抑制昆蟲(chóng)附著、低黏附超疏水等特性,受到學(xué)者普遍關(guān)注并逐步成為研究熱點(diǎn)。從口緣與滑移區(qū)在工程仿生領(lǐng)域的研究現(xiàn)狀入手,介紹其形貌結(jié)構(gòu)特征與功能特性,重點(diǎn)關(guān)注以其為仿生原型制備液膜定向傳輸、昆蟲(chóng)滑移捕集、超疏水等功能表面的研究進(jìn)展,并對(duì)未來(lái)需要關(guān)注的研究?jī)?nèi)容進(jìn)行分析,從而進(jìn)一步加深人們對(duì)葉籠形貌結(jié)構(gòu)與功能特性的認(rèn)識(shí),為功能表面仿生研制提供新思路。
關(guān)鍵詞:工程仿生學(xué);豬籠草葉籠;口緣;滑移區(qū);超疏水表面;定向傳輸
中圖分類號(hào):TB17 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-1542(2018)03-0221-11
食蟲(chóng)性植物豬籠草(Nepenthes)大多生存于土壤貧瘠地區(qū),依靠位于葉片末端的葉籠(pitcher)捕集昆蟲(chóng)并將其消化成生長(zhǎng)所需的營(yíng)養(yǎng)元素[1-3]?;陲@著不同的宏/微觀形貌結(jié)構(gòu)及功能特性,葉籠可劃分為蓋子、口緣、滑移區(qū)和消化區(qū)等部分(見(jiàn)圖1)。穹幕狀蓋子能夠保護(hù)葉籠內(nèi)部免遭雨水、灰塵等污染物的侵染,還可抑制葉籠底部消化液蒸發(fā)[4];近期研究發(fā)現(xiàn)蓋子可充當(dāng)彈弩,在雨滴的激發(fā)下產(chǎn)生扭桿彈簧式振動(dòng),致使昆蟲(chóng)彈落至葉籠底部[5]。口緣由朝向葉籠內(nèi)部延伸的輻射狀溝脊構(gòu)成并密布盲孔狀蜜腺,呈現(xiàn)各向異性和濕滑特征,
能夠吸引螞蟻、蒼蠅等昆蟲(chóng)并促其滑移至葉籠內(nèi)部[6-8]?;茀^(qū)覆蓋著由微米級(jí)月骨體和納米級(jí)蠟質(zhì)晶體組成的微納復(fù)合結(jié)構(gòu),能夠有效抑制昆蟲(chóng)附著功能并呈現(xiàn)低黏附超疏水特性[9-10]。消化區(qū)密布能夠分泌蛋白酶、幾丁質(zhì)酶、有機(jī)酸等物質(zhì)的消化腺,可將捕獲的昆蟲(chóng)消化成氮磷等生長(zhǎng)所需的營(yíng)養(yǎng)元素并可傳輸至根部[11]。
葉籠因其獨(dú)特的形貌結(jié)構(gòu)與捕食昆蟲(chóng)功能受到學(xué)者普遍關(guān)注,主要集中在形貌結(jié)構(gòu)表征、捕食昆蟲(chóng)效率、抑制昆蟲(chóng)附著機(jī)理、功能表面仿生研制等方面。隨著哈佛大學(xué)Aizenberg在Nature發(fā)文宣布以滑移區(qū)蠟質(zhì)晶體為仿生原型成功制備潤(rùn)滑液注入式微孔結(jié)構(gòu)超滑表面[12],以及北京航空航天大學(xué)陳華偉團(tuán)隊(duì)在Nature發(fā)文揭示口緣的液膜定向搬運(yùn)機(jī)制[13],葉籠逐步成為工程仿生領(lǐng)域的研究熱點(diǎn)。本文評(píng)述豬籠草葉籠的口緣與滑移區(qū)在工程仿生領(lǐng)域的研究進(jìn)展,重點(diǎn)關(guān)注以其為仿生原型制備液膜定向傳輸、昆蟲(chóng)滑移捕集、超疏水等功能表面的研究,并對(duì)后續(xù)研究需要關(guān)注的方面進(jìn)行分析。
1 口緣結(jié)構(gòu)功能特性與仿生應(yīng)用
1.1 口緣形貌結(jié)構(gòu)與功能特性
口緣具有瓶口狀宏觀形貌,表層覆蓋著濕滑膜狀物質(zhì)并呈現(xiàn)亮麗顏色(見(jiàn)圖2 a))[6]。顯微狀態(tài)下,口緣表面呈現(xiàn)延伸至葉籠內(nèi)部的輻射狀溝脊結(jié)構(gòu)(見(jiàn)圖2 b)),并密布楔形盲孔陣列(見(jiàn)圖2 c))。臨近滑移區(qū)的溝脊內(nèi)邊緣底部分布著齒形結(jié)構(gòu),齒形結(jié)構(gòu)上側(cè)呈現(xiàn)微米尺度的蜜孔(見(jiàn)圖2 d))。歸因于口緣表面的微米級(jí)輻射狀溝脊結(jié)構(gòu)及其產(chǎn)生的毛細(xì)作用,蜜孔分泌的花蜜狀物質(zhì)可由口緣內(nèi)部延展到外側(cè)并形成濕滑膜層,致使被花蜜吸引的蝴蝶、螞蟻、蒼蠅等昆蟲(chóng)滑落至葉籠底部[7,14]。測(cè)試結(jié)果顯示,口緣具有較小水滴接觸角(40°)與較高表面自由能(60 mN/m),預(yù)示具有親水特性,從而保障口緣能夠長(zhǎng)久維持濕滑特征[15]。
口緣研究已由過(guò)去的形貌結(jié)構(gòu)表征、物化特性測(cè)試、滑移捕集昆蟲(chóng)機(jī)理等擴(kuò)展到現(xiàn)在的液膜定向傳輸機(jī)制、仿生模型構(gòu)建與功能表面研制。近期,北京航空航天大學(xué)陳華偉團(tuán)隊(duì)在Nature發(fā)文報(bào)道了液膜在口緣區(qū)域的定向傳輸現(xiàn)象,即水滴能夠沿著口緣表面的輻射狀溝脊結(jié)構(gòu)從底部傳輸至頂部,最終延展成覆蓋整個(gè)脊溝結(jié)構(gòu)的液膜,以此保障口緣區(qū)域的持久濕滑特性。這是因?yàn)檩椛錉顪霞菇Y(jié)構(gòu)密布的楔形盲孔陣列使得水滴能夠連續(xù)正向填充楔形盲孔,而在相反方向上楔形盲孔的拱形輪廓可有效阻礙水滴傳輸[13]。該項(xiàng)研究不僅發(fā)現(xiàn)了植物表面液膜無(wú)動(dòng)力定向連續(xù)搬運(yùn)現(xiàn)象,還揭示了微納結(jié)構(gòu)與界面材料特性對(duì)液膜無(wú)動(dòng)力定向傳輸?shù)挠绊憴C(jī)制,為液膜無(wú)動(dòng)力定向傳輸功能表面的仿生研制奠定了重要的理論基礎(chǔ)。
1.2 以口緣為仿生原型研制功能表面
輻射狀溝脊結(jié)構(gòu)及液膜定向傳輸特性使口緣成為絕佳的仿生原型,用以研制可控微流體、藥物輸送、無(wú)動(dòng)力農(nóng)業(yè)灌溉、機(jī)械自潤(rùn)滑等應(yīng)用于工程領(lǐng)域的液膜定向傳輸功能表面,相關(guān)研究已得到開(kāi)展。北京航空航天大學(xué)陳華偉團(tuán)隊(duì)基于口緣微納尺度的溝脊結(jié)構(gòu),采用紫外光刻技術(shù)在SU-8型環(huán)氧樹(shù)脂基體表面制得由具有銳角邊緣和弧形輪廓的凹坑陣列構(gòu)成的溝槽結(jié)構(gòu);功效測(cè)試證實(shí),凹坑的銳角邊緣和弧形輪廓對(duì)液膜定向傳輸發(fā)揮關(guān)鍵作用,仿生制備的功能表面能夠?qū)崿F(xiàn)液膜迅速、遠(yuǎn)距離及無(wú)動(dòng)力定向傳輸[16]。雖已研制具有潤(rùn)濕梯度和非對(duì)稱微納結(jié)構(gòu)的功能表面實(shí)現(xiàn)液膜無(wú)動(dòng)力定向傳輸,但仍存在液滴種類受限、傳輸速度低等限制其實(shí)際應(yīng)用的問(wèn)題。因此,該團(tuán)隊(duì)將熱敏性高分子材料聚N-異丙基丙烯酰胺(PNIPAAm)嫁接到由聚二甲基硅氧烷(PDMS)制得的口緣表面,從而仿生制得可實(shí)現(xiàn)水滴定向傳輸?shù)臏乜毓δ鼙砻?;測(cè)試結(jié)果表明,水滴的定向傳輸可通過(guò)動(dòng)態(tài)操控功能表面溫度實(shí)現(xiàn),并呈現(xiàn)顯著的定向傳輸可逆性和穩(wěn)定性[17]。采用立體光刻技術(shù)制備的功能表面能夠提高定向傳輸液滴的表面張力和黏度,極大拓寬了以口緣為仿生原型制備的功能表面在微流體器具、油水分離、生物毒性測(cè)試等方面的應(yīng)用范圍[18-19]。
以口緣為仿生原型研制液膜定向傳輸功能表面,緣于口緣微納多尺度結(jié)構(gòu)因具有銳角邊緣和楔形輪廓而可使液滴產(chǎn)生釘扎效應(yīng)(pinning effect)泰勒毛細(xì)升作用[20]。從研究現(xiàn)狀來(lái)看,具有液膜定向傳輸特性的功能表面研制處于起步階段,后續(xù)研究需要結(jié)合激光微納加工技術(shù)在金屬基材表面制備口緣形貌結(jié)構(gòu),以將液膜無(wú)動(dòng)力定向傳輸功能表面的應(yīng)用范圍擴(kuò)展至機(jī)械工程領(lǐng)域。
2 滑移區(qū)結(jié)構(gòu)功能特性與仿生應(yīng)用
2.1 滑移區(qū)形貌結(jié)構(gòu)特征
滑移區(qū)位于口緣下部,表面覆蓋著末端朝向葉籠內(nèi)部彎曲的月骨體,以及形狀不規(guī)則、排列致密、雜亂無(wú)序的蠟質(zhì)晶體層(見(jiàn)圖3 a))。每個(gè)月骨體對(duì)應(yīng)著增大交疊的細(xì)胞體,形成具有不對(duì)稱凸面的表層輪廓(見(jiàn)圖 3b)),致使滑移區(qū)形貌結(jié)構(gòu)呈現(xiàn)顯著的各向異性。蠟質(zhì)晶體層由形狀不規(guī)則但可辨別輪廓的片狀物構(gòu)成,近乎垂直排列于滑移區(qū)基體且緊密交錯(cuò)成網(wǎng)狀,因此產(chǎn)生輪廓不規(guī)則的孔洞(見(jiàn)圖3 c))。蠟質(zhì)晶體層又可分為形貌結(jié)構(gòu)顯著不同的頂層和底層,其中頂層蠟質(zhì)晶體排列較為疏松且呈現(xiàn)相對(duì)較大的形貌結(jié)構(gòu)?;茀^(qū)的這種形貌結(jié)構(gòu)未隨豬籠草種屬的不同而呈現(xiàn)顯著差異[21-23]。
對(duì)滑移區(qū)形貌結(jié)構(gòu)的縱向掃描顯示,月骨體上側(cè)高度變化緩慢而產(chǎn)生“緩坡”結(jié)構(gòu),下側(cè)高度變化劇烈而形成“懸崖”結(jié)構(gòu)(見(jiàn)圖4 a)—圖4 c))[10];蠟質(zhì)晶體表面相對(duì)較為光滑,僅呈現(xiàn)微米級(jí)高度變化(見(jiàn)圖4 d)—圖4 f))。蠟質(zhì)晶體層厚度約為3 μm,頂層蠟質(zhì)晶體通過(guò)直徑約為0.5 μm的細(xì)桿與底層蠟質(zhì)晶體連接[24]。通過(guò)觀測(cè)的4種豬籠草滑移區(qū)的表面結(jié)構(gòu),發(fā)現(xiàn)月骨體具有~10 μm級(jí)的三維結(jié)構(gòu)參數(shù),而蠟質(zhì)晶體具有微-納米級(jí)的三維結(jié)構(gòu)參數(shù),月骨體的形貌結(jié)構(gòu)特征致使滑移區(qū)表面呈現(xiàn)較大粗糙度(Ra=1.84~3.45 μm);不同種屬豬籠草的滑移區(qū)結(jié)構(gòu)特征參數(shù)存在差別,不僅導(dǎo)致表面粗糙度不同,還使昆蟲(chóng)附著功能抑制效果呈現(xiàn)差異[25-26]。滑移區(qū)表面的多尺度復(fù)合結(jié)構(gòu)能夠抑制昆蟲(chóng)的附著功能,在限制被捕獲的昆蟲(chóng)從葉籠內(nèi)部逃脫過(guò)程中發(fā)揮重要作用。學(xué)者對(duì)于滑移區(qū)的研究,由過(guò)去的形貌結(jié)構(gòu)特征、昆蟲(chóng)附著功能抑制機(jī)理、昆蟲(chóng)捕集滑板仿生制備等方面,轉(zhuǎn)變成現(xiàn)階段的各向異性超疏水機(jī)理、超疏水表面仿生研制等方面。
2.2 滑移區(qū)反附著機(jī)理與昆蟲(chóng)捕集滑板仿生研制
滑移區(qū)在工程仿生領(lǐng)域的應(yīng)用首先體現(xiàn)在其能有效抑制昆蟲(chóng)的附著功能,學(xué)者們基于該背景開(kāi)展滑移區(qū)形貌結(jié)構(gòu)對(duì)昆蟲(chóng)附著功能的影響規(guī)律研究,試圖揭示滑移區(qū)減附機(jī)理,為致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板研制提供仿生原理。通過(guò)自然進(jìn)化,昆蟲(chóng)附著系統(tǒng)形成了爪、爪墊結(jié)構(gòu),用以在接觸面上穩(wěn)固停留或自由行走[27-28]。接觸面粗糙度較大時(shí),依靠具有尖硬末端的爪形成機(jī)械鎖合;接觸面粗糙度較小時(shí),依靠具有柔軟易變形的表皮或剛毛的爪墊獲取足夠的接觸面積,以此產(chǎn)生附著力,供爬行或附著的需要[29-31]。滑移區(qū)對(duì)昆蟲(chóng)附著功能的有效抑制是通過(guò)蠟質(zhì)晶體、月骨體對(duì)爪、爪墊的限制實(shí)現(xiàn),學(xué)者們對(duì)此開(kāi)展了廣泛研究。
GAUME等[32]觀察了蒼蠅在滑移區(qū)的附著行為,發(fā)現(xiàn)其不能在滑移區(qū)表面行走或起飛,是由于蠟質(zhì)晶體能夠沾染爪墊,以及月骨體在朝向葉籠頂部方向上可有效限制爪形成機(jī)械鎖合,從而導(dǎo)致附著功能顯著降低?;茀^(qū)對(duì)甲蟲(chóng)附著功能的顯著抑制是通過(guò)2種機(jī)理實(shí)現(xiàn)的,即頂層蠟質(zhì)晶體污染爪墊,導(dǎo)致黏附作用急劇降低;底層蠟質(zhì)晶體減少爪墊附著面積,進(jìn)一步降低附著功能[21]。對(duì)于體重較輕的昆蟲(chóng),滑移區(qū)蠟質(zhì)晶體具有足夠的機(jī)械強(qiáng)度以經(jīng)受住該類昆蟲(chóng)所施加的側(cè)向力,蠟質(zhì)晶體表面合適的粗糙度能有效抑制附著功能[24]。對(duì)蝗蟲(chóng)在4種豬籠草滑移區(qū)的摩擦力測(cè)試結(jié)果證實(shí),滑移區(qū)能夠顯著抑制蝗蟲(chóng)的附著功能,這源于蠟質(zhì)晶體對(duì)爪墊的沾染,以及月骨體形貌結(jié)構(gòu)特征能夠降低爪墊的附著面積;附著功能抑制程度隨豬籠草種屬的不同而存在差異,指出月骨體與蠟質(zhì)晶體的結(jié)構(gòu)參數(shù)差異是造成抑制程度存在差異的主要原因[25-26]。東南大學(xué)畢可東等[33]、王玉娟等[34]研究發(fā)現(xiàn),滑移區(qū)片狀蠟質(zhì)晶體具有較好的力學(xué)穩(wěn)定性,不會(huì)導(dǎo)致昆蟲(chóng)附著系統(tǒng)污染,其表面粗糙度能夠降低昆蟲(chóng)附著系統(tǒng)的接觸面積,從而降低用以產(chǎn)生有效附著行為的黏附力和摩擦力。雖未有定論揭示滑移區(qū)的減附機(jī)理,但其對(duì)昆蟲(chóng)附著功能的抑制是不爭(zhēng)的事實(shí),這為致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板的仿生研制奠定了良好的基礎(chǔ)。
隨著研究的深入,滑移區(qū)因月骨體導(dǎo)致的結(jié)構(gòu)各向異性及對(duì)昆蟲(chóng)附著行為的影響機(jī)理吸引了學(xué)者的關(guān)注。20世紀(jì)初期,學(xué)者最初假定由具有末端低垂形貌的月骨體招致的滑移區(qū)結(jié)構(gòu)各向異性可顯著影響昆蟲(chóng)附著行為,即昆蟲(chóng)爪能夠抓取倒置的滑移區(qū)表面結(jié)構(gòu),但試驗(yàn)未能呈現(xiàn)所期望的現(xiàn)象[35-36]。后續(xù)行為試驗(yàn)證實(shí)了上述假說(shuō),自然生長(zhǎng)狀態(tài)放置的滑移區(qū)可有效阻止昆蟲(chóng)抓取,而倒置的滑移區(qū)可提供穩(wěn)固結(jié)構(gòu)用于抓取昆蟲(chóng),預(yù)示月骨體能夠顯著影響昆蟲(chóng)附著[4,32]。進(jìn)一步研究發(fā)現(xiàn),月骨體依據(jù)其末端低垂的形貌結(jié)構(gòu)使滑移區(qū)呈現(xiàn)顯著的各向異性,甲蟲(chóng)在自然生長(zhǎng)狀態(tài)放置的滑移區(qū)表面較易產(chǎn)生滑移行為,而在倒置的滑移區(qū)表面則產(chǎn)生較強(qiáng)的附著行為[37]。近期研究證實(shí),滑移區(qū)因月骨體產(chǎn)生的各向異性能夠顯著影響螞蟻在其表面的爬行行為和摩擦力[38]。筆者所在研究團(tuán)隊(duì)開(kāi)展了滑移區(qū)反附著機(jī)理的系統(tǒng)研究,源于爬行行為觀察、摩擦力測(cè)試、形貌結(jié)構(gòu)表征、力學(xué)模型分析等方面的數(shù)據(jù)顯示,滑移區(qū)月骨體依靠二重斜坡結(jié)構(gòu)顯著影響昆蟲(chóng)附著系統(tǒng)的附著功能,表現(xiàn)為朝向葉籠頂部方向能有效限制昆蟲(chóng)附著系統(tǒng)的爪形成機(jī)械鎖合,而在朝向葉籠底部方向能增強(qiáng)昆蟲(chóng)附著系統(tǒng)的爪形成機(jī)械鎖合;基于研究結(jié)果,對(duì)滑移區(qū)反附著機(jī)理進(jìn)行了闡釋:滑移區(qū)主要依靠具有二重斜坡形貌結(jié)構(gòu)的月骨體有效限制昆蟲(chóng)爪形成機(jī)械鎖合,從而顯著抑制昆蟲(chóng)附著功能,而蠟質(zhì)晶體在抑制昆蟲(chóng)附著功能過(guò)程中僅起到輔助作用[10]。對(duì)滑移區(qū)形貌結(jié)構(gòu)特征、反附著機(jī)理的詳細(xì)研究,為以滑移區(qū)為仿生原型研制致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板提供了重要的理論基礎(chǔ),相應(yīng)研究已得到開(kāi)展并已取得初步成效。
蝗蟲(chóng)、飛蛾等絕大多數(shù)致災(zāi)農(nóng)業(yè)昆蟲(chóng)依靠其視覺(jué)器官的感光細(xì)胞對(duì)不同波譜或頻率的光刺激作出反應(yīng),在宏觀上表現(xiàn)出對(duì)光源的趨向行為。飛蛾趨光已是不爭(zhēng)的事實(shí),對(duì)于蝗蟲(chóng)趨光行為的研究也已開(kāi)展。蝗蟲(chóng)趨光行為受到光源波譜與強(qiáng)度的影響,特定強(qiáng)度的藍(lán)紫LED燈組合光源可使蝗蟲(chóng)表現(xiàn)出較為明顯的趨光反應(yīng)[39];特定頻率的頻閃光源也會(huì)顯著增強(qiáng)蝗蟲(chóng)的趨光響應(yīng)[40],耦合振動(dòng)、干擾等機(jī)械刺激的可見(jiàn)光源不僅能夠提高蝗蟲(chóng)的運(yùn)動(dòng)敏感性,還會(huì)增強(qiáng)蝗蟲(chóng)對(duì)刺激光源的趨向運(yùn)動(dòng)速度[41-42]。對(duì)光源的趨向特性為飛蛾、蝗蟲(chóng)等致災(zāi)農(nóng)業(yè)昆蟲(chóng)的光電誘導(dǎo)滑移捕集治理奠定了理論基礎(chǔ)。源于自然進(jìn)化的結(jié)果,昆蟲(chóng)附著系統(tǒng)形成具有尖硬末端的爪和柔軟表皮/剛毛結(jié)構(gòu)的爪墊,能夠產(chǎn)生機(jī)械鎖合與柔性接觸以用于在接觸面穩(wěn)固附著和自由行走[27,43]。研制具有特殊表面結(jié)構(gòu)的捕集滑板,高效抑制昆蟲(chóng)附著系統(tǒng)形成的機(jī)械鎖合與柔性接觸,可實(shí)現(xiàn)致災(zāi)農(nóng)業(yè)昆蟲(chóng)的光電誘導(dǎo)滑移捕集治理?;谠撗芯勘尘?,學(xué)者開(kāi)展了以滑移區(qū)為仿生原型研制致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板的研究。
中國(guó)農(nóng)業(yè)大學(xué)周強(qiáng)等[44]基于為捕集滑板構(gòu)建仿生模型的研究目標(biāo),在表征滑移區(qū)蠟質(zhì)晶體結(jié)構(gòu)特征的基礎(chǔ)上,采用計(jì)算機(jī)圖形技術(shù)和OpenGL工作平臺(tái)構(gòu)建了蠟質(zhì)晶體微形貌結(jié)構(gòu)的仿真模型(見(jiàn)圖5 a)),為捕集滑板仿生模型構(gòu)建奠定了設(shè)計(jì)方面的理論基礎(chǔ)。為在仿生模型中構(gòu)建月骨體,采用3DMax軟件設(shè)計(jì)了滑移區(qū)形貌結(jié)構(gòu)(見(jiàn)圖5 b)),為捕集滑板研制提供了可參考的設(shè)計(jì)方法[45]?;跇?gòu)建的仿生模型,以鱗片狀可膨化石墨作為蠟質(zhì)晶體的替代物,采用高壓靜電吸附技術(shù)將石墨吸附于基板粘合劑表面,從而制得蝗蟲(chóng)捕集滑板(見(jiàn)圖5 c))。功效測(cè)試結(jié)果顯示,蝗蟲(chóng)在捕集滑板與滑移區(qū)的附著力之比是0.94~1.05,仿生制備的捕集滑板以32°傾斜角安裝于光電誘導(dǎo)蝗蟲(chóng)滑移捕集機(jī)時(shí),對(duì)誘集蝗蟲(chóng)的滑移率可達(dá)82.4%,預(yù)示達(dá)到了較好的仿生效果[46]。為擴(kuò)大仿生捕集滑板的使用范圍,考慮月骨體和蠟質(zhì)晶體對(duì)蝗蟲(chóng)、飛蛾、螞蟻等致災(zāi)農(nóng)業(yè)昆蟲(chóng)附著功能協(xié)同抑制的前提下,在仿生模型中構(gòu)建了月骨體的簡(jiǎn)化結(jié)構(gòu)并保留了其二重斜坡的傾斜角(23°和76°),采用激光微納加工技術(shù)在金屬基材表面制備捕集滑板基層,利用高壓靜電吸附技術(shù)將微米級(jí)鱗片狀石墨吸附于基層,以此制得致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板(見(jiàn)圖5 d))。測(cè)試結(jié)果顯示,蝗蟲(chóng)在捕集滑板的附著力約為其在滑移區(qū)的1.11倍,表明仿生制備的致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板對(duì)昆蟲(chóng)附著功能具有較好的抑制效果[47]。以滑移區(qū)表面結(jié)構(gòu)為仿生原型研制致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板的工作已開(kāi)展,但后續(xù)工作需要關(guān)注如何提高仿生模型的構(gòu)建精度,以使所制備的捕集滑板的形貌結(jié)構(gòu)更接近仿生原型并具備功效的持久性,以擴(kuò)大致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板的使用范圍。
2.3 滑移區(qū)超疏水機(jī)理與超疏水表面仿生研制
超疏水表面是指水滴接觸角大于150°且滾動(dòng)角小于10°的材料表面,在自清潔、防腐蝕、抑冰、海洋防污及船艦減阻等工程領(lǐng)域具有重要的應(yīng)用前景[48-51]。目前超疏水表面存在因微形貌結(jié)構(gòu)易遭破壞而導(dǎo)致功效耐久性低、制備工藝復(fù)雜及成本高等問(wèn)題[52-53],如何解決這些問(wèn)題將成為該領(lǐng)域未來(lái)長(zhǎng)時(shí)間內(nèi)所面臨的主要難點(diǎn)。效法自然并獲取較為理想的仿生原型,據(jù)此形成超疏水表面研制的新思路可為主要難點(diǎn)的解決提供契機(jī)[54-55]。豬籠草葉籠在捕食昆蟲(chóng)過(guò)程中難免遭受粉塵、翅膀鱗片等污染物的污染,維持滑移區(qū)較高的潔凈度對(duì)穩(wěn)定持久發(fā)揮反附著功能極其重要。實(shí)際上,宏觀形貌下的滑移區(qū)呈現(xiàn)較為潔凈的景象(見(jiàn)圖2 a)),表明滑移區(qū)具有低黏附超疏水現(xiàn)象。滑移區(qū)超疏水現(xiàn)象預(yù)示其可以作為仿生原型用于超疏水表面仿生研制,學(xué)者已開(kāi)展滑移區(qū)潤(rùn)濕行為、超疏水機(jī)理等方面的研究。
GORB等[15]測(cè)試了水、二碘甲烷和乙二醇等極性/非極性液滴在紅瓶豬籠草滑移區(qū)的潤(rùn)濕行為,接觸角分別為160°,130°和135°,表面自由能為4 mN/m,預(yù)示具有較強(qiáng)的超疏水特性。北京航空航天大學(xué)張鵬飛等[56]研究指出,滑移區(qū)由月骨體和蠟質(zhì)晶體組成的微納復(fù)合結(jié)構(gòu)決定了其超疏水特性,其中蠟質(zhì)晶體發(fā)揮主要作用;滑移區(qū)在朝向葉籠內(nèi)部方向的水滴滾動(dòng)角為3°,表明滑移區(qū)具有低黏附超疏水特性[38]。筆者等[57]在研究滑移區(qū)反附著機(jī)理與仿生研制致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板的基礎(chǔ)上,開(kāi)展了滑移區(qū)潤(rùn)濕行為研究。紅瓶(N.alata)、米蘭達(dá)(N.miranda)、印度(N.khasiana)等3種豬籠草滑移區(qū)對(duì)水滴的接觸角介于128°~156°,基于月骨體、蠟質(zhì)晶體的結(jié)構(gòu)特征,采用Cassie-Baxter模型分析了形貌結(jié)構(gòu)對(duì)接觸角的影響規(guī)律,指出不同種屬豬籠草滑移區(qū)的接觸角存在差異是源于結(jié)構(gòu)參數(shù)不同而導(dǎo)致液-固接觸面積的不同。上述對(duì)滑移區(qū)潤(rùn)濕特性的研究,并未構(gòu)建模型量化闡述形貌結(jié)構(gòu)特征對(duì)滾動(dòng)角的影響規(guī)律,亦未涉及超疏水機(jī)理分析揭示。
各向異性超疏水表面因能在不同方向上呈現(xiàn)顯著差異的潤(rùn)濕行為而在沙漠集水、生物醫(yī)學(xué)、微流體器具等方面有著巨大應(yīng)用潛力[58-60]。月骨體末端朝向葉籠內(nèi)部彎曲的形貌結(jié)構(gòu)致使滑移區(qū)表面呈現(xiàn)各向異性,顯著影響昆蟲(chóng)附著行為的同時(shí)對(duì)液滴潤(rùn)濕行為也產(chǎn)生明顯影響。測(cè)試結(jié)果顯示,朝向葉籠底部方向的水滴滾動(dòng)角為3°,而在相反方向的則為10°[38]?;茀^(qū)各向異性超疏水現(xiàn)象為各向異性超疏水表面的研制提供了潛在的仿生原型,后續(xù)研究需要關(guān)注滑移區(qū)形貌結(jié)構(gòu)特征對(duì)滾動(dòng)角的影響規(guī)律,以此闡明各向異性超疏水的機(jī)理,為各向異性超疏水表面研制奠定理論基礎(chǔ)。
現(xiàn)階段,以滑移區(qū)為仿生原型研制超疏水表面已得到開(kāi)展,主要采用制備微孔結(jié)構(gòu)并注入潤(rùn)滑液的仿生研制思路。哈佛大學(xué)Aizenberg首先提出低表面能潤(rùn)滑液注入式微孔結(jié)構(gòu)超滑表面(slippery liquid-infused porous surface),以特氟?。╰eflon)為原材料在基體表面制得蠟質(zhì)晶體微納孔狀結(jié)構(gòu),并以氟化液FC-70作為填充微納孔狀結(jié)構(gòu)的潤(rùn)滑液,制得超疏水表面(見(jiàn)圖6)。測(cè)試結(jié)果顯示,該表面對(duì)水、油的滾動(dòng)角為3°和5°,接觸角滯后小于2.5°,呈現(xiàn)較強(qiáng)的疏水/油及抑霜/冰特性、壓力穩(wěn)定性(抗675 atm)和自修復(fù)能力[12,61]。中科院蘭州化物所張俊平采用氟硅酮納米絲在載玻片表面制備微納孔狀結(jié)構(gòu),并以全氟聚醚潤(rùn)滑液填充,以此制得超疏水表面,其對(duì)多種液滴均表現(xiàn)出超低的滾動(dòng)角,并具有優(yōu)異的穩(wěn)定性和透明度[62]。ZHANG等[63](浙江大學(xué)谷長(zhǎng)棟團(tuán)隊(duì))在鎂鋁合金表面構(gòu)筑了雙層疏水抑冰抗腐蝕結(jié)構(gòu),底層為與基體致密牢固結(jié)合的層狀雙金屬氫氧化物,表層為多孔納米片狀結(jié)構(gòu)并填充潤(rùn)滑液,該仿生超疏水表面賦予鎂鋁合金優(yōu)異持久的疏水、抑冰、抗腐蝕功能。對(duì)于潤(rùn)滑液注入微孔結(jié)構(gòu)式超疏水表面,潤(rùn)滑液能夠改變液滴接觸狀態(tài),由在傳統(tǒng)超疏水表面的液-固(Wenzel模型)、液-氣-固(Cassie-Baxter模型)接觸轉(zhuǎn)變?yōu)橐?潤(rùn)滑液-固接觸。注入微納結(jié)構(gòu)的低表面能潤(rùn)滑液,在毛細(xì)作用下迅速蔓延成均勻膜層,替代微納結(jié)構(gòu)內(nèi)部的空氣層,致使液滴形成穩(wěn)固浸潤(rùn)狀態(tài)并呈現(xiàn)較高的接觸角[55,64]。現(xiàn)有研究為超疏水表面的仿生研制提供了新的技術(shù)基礎(chǔ)。
現(xiàn)階段,多采用激光微納加工、刻蝕、噴砂-電刷鍍等方法在金屬基材表面制備微納復(fù)合結(jié)構(gòu),再以電化學(xué)沉積法修飾氟碳硅烷、十二烷硫醇、硬脂酸等低表面能物質(zhì),以此賦予金屬基材表面超疏水、油水分離、抗腐蝕等特性[65-69]。金屬基材超疏水表面制備過(guò)程涉及的電化學(xué)沉積,提高了制備工藝的復(fù)雜程度并產(chǎn)生了環(huán)境污染。因此,金屬基材表面制備滑移區(qū)(仿生原型)微納復(fù)合結(jié)構(gòu),結(jié)合潤(rùn)滑液注入式超疏水表面制備的理論基礎(chǔ),形成金屬基材超疏水/各向異性超疏水表面研制的新途徑和新理論,將會(huì)是超疏水表面仿生制備的研究趨勢(shì)之一。
3 結(jié) 語(yǔ)
源于自然選擇,豬籠草葉籠已進(jìn)化成與生存環(huán)境相匹配的形貌結(jié)構(gòu)并呈現(xiàn)奇特功能。葉籠口緣因具有密布楔形盲孔陣列的輻射狀溝脊結(jié)構(gòu)而呈現(xiàn)液膜定向傳輸功能,在宏觀上表現(xiàn)為能將溝脊結(jié)構(gòu)內(nèi)邊緣底部蜜腺分泌的花蜜定向傳輸至外邊緣頂部,形成均勻分布于口緣結(jié)構(gòu)的花蜜膜層,使口緣保持持久濕滑特性。據(jù)此,學(xué)者仿生研制了用于可控微流體、藥物輸送、無(wú)動(dòng)力農(nóng)業(yè)灌溉、機(jī)械自潤(rùn)滑等工程領(lǐng)域的液膜定向傳輸功能表面。基于激光微納加工技術(shù)在金屬基材表面制備口緣形貌結(jié)構(gòu),把液膜無(wú)動(dòng)力定向傳輸功能表面的應(yīng)用范圍擴(kuò)展至機(jī)械工程領(lǐng)域,將會(huì)是該方面后續(xù)研究的發(fā)展趨勢(shì)。葉籠滑移區(qū)具有由微米級(jí)月骨體和納米級(jí)蠟質(zhì)晶體構(gòu)成的微納復(fù)合結(jié)構(gòu),在功能特性方面表現(xiàn)出對(duì)昆蟲(chóng)附著功能的抑制與超疏水/各向異性超疏水現(xiàn)象。學(xué)者據(jù)此仿生研制了用于致災(zāi)農(nóng)業(yè)昆蟲(chóng)機(jī)械化捕集治理的捕集滑板,以及用于自清潔、抑冰、抗腐蝕等方面的潤(rùn)滑液注入式超疏水表面。以設(shè)計(jì)、加工等方面作為切入點(diǎn)提高仿生模型的構(gòu)建精度,使制備的捕集滑板的形貌結(jié)構(gòu)更接近仿生原型并具備功效持久性,將會(huì)是以滑移區(qū)為仿生原型研制致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板的研究趨勢(shì)。學(xué)習(xí)滑移區(qū)超疏水/各向異性超疏水機(jī)理,用以指導(dǎo)金屬基材超疏水/各向異性超疏水表面的仿生制備,將會(huì)是以滑移區(qū)為仿生原型制備超疏水表面的研究趨勢(shì)。
參考文獻(xiàn)/References:
[1] ELLISON A,GOTELLI N. Energetics and the evolution of carnivorous plants-Darwins most wonderful plants in the world[J]. Journal of Experimental Botany,2009,60(1): 19-42.
[2] THORNHAM D,F(xiàn)EDERLE W. Setting the trap: Cleaning behavior of Camponotus schmitzi ants increases long term capture efficiency of their pitcher plant host,Nepenthes bicalcarata[J]. Functional Ecology,2012,26(1): 11-19.
[3] WANG Lixin,ZHOU Qiang. Nepenthes pitchers: Surface structure,physical property,anti-attachment function and potential application in mechanical controlling plague locust[J]. Chinese Science Bulletin, 2014,59(21): 2513-2523.
[4] GAUME L,GORB S,ROWE N. Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers[J]. New Phytologist,2002,156(3): 479-489.
[5] BAUER U,PAULIN M,ROBERT D,et al. Mechanism for rapid passive-dynamic prey capture in a pitcher plant[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(43): 13384-13389.
[6] BOHN H,F(xiàn)EDERLE W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome,a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(39): 14138-14143.
[7] BAUER U,BOHN H,F(xiàn)EDERLE W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain,condensation and nectar[J]. Proceedings of the Royal Society B: Biological Sciences,2008,275(1632): 259-265.
[8] BAUER U,WILLMES C,F(xiàn)EDERLE W. Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants[J]. Annals of Botany,2009,103(8):1219-1226.
[9] GORB E,BAUM M,GORB S. Development and regeneration ability of the wax coverage in Nepenthes alata pitchers: A cryo-SEM approach[J]. Scientific Reports,2013,3(10):1-5.
[10]WANG Lixin,DONG Shiyun,ZHOU Qiang. Slippery surface of Nepenthes alata pitcher: The role of lunate cell and wax crystal in restricting attachment ability of ant Camponotus japonicus Mayr[J]. Journal of Bionic Engineering,2016,13(3): 373-387.
[11]GORB E,KASTNER V,PERESSADKO A,et al. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention[J]. Journal of Experimental Biology,2004,207(17): 2947-2963.
[12]WONG T,KANF S,TANG S,et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477(7365): 443-447.
[13]CHEN Huawei,ZHANG Peifei,ZHANG Liwen,et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature,2016,532(7597): 85-89.
[14]BAUER U,F(xiàn)EDERLE W,SEIDEL H,et al. How to catch more prey with less effective traps: Explaining the evolution of temporarily inactive traps in carnivorous pitcher plants[J]. Proceedings of the Royal Society B: Biological Sciences,2015,282: 20142675.
[15]GORB E,GORB S. Physicochemical properties of functional surface in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae)[J]. Plant Biology,2006,8(6): 841-848.
[16]CHEN Huawei,ZHANG Liwen,ZHANG Peifei,et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata[J]. Small,2017,13(4): 1601676.
[17]ZHANG Peifei,CHEN Huawei,LI Li,et al. Bioinspired smart peristome surface for temperature-controlled unidirectional water spreading[J]. ACS Applied Materials & Interfaces,2017,9(6): 5645-5652.
[18]LI Chuxin,LI Ning,ZHANG Xinshi,et al. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids[J]. Angewandte Chemie,2016,55(48): 15212-15216.
[19]LI Chuxin,WU Lei,YU Cunlong,et al. Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops[J]. Angewandte Chemie(International Edition),2017,56(44): 13623-13628.
[20]ZHANG Pengfei,ZHANG Liwen,CHEN Huawei,et al. Surfaces inspired by the Nepenthes peristome for unidirectional liquid transport[J]. Advanced Materials,2017,29(45): 1702995.
[21]GORB E,HASS K,HENRICH A,et al. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment[J]. The Journal of Experimental Biology,2005,208(24): 4651-4662.
[22]RIEDEL M,EICHNER A,MEIMBERG H,et al. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids[J]. Planta,2007,225(6): 1517-1534.
[23]WANG Lixin,ZHOU Qiang,ZHENG Yongjun,et al. Composite structure and properties of pitcher surface of carnivorous plant Nepenthes and its influence on insect attachment system[J]. Progress in Natural Science, 2009, 19(12): 1657-1664.
[24]SCHOLZ I,BUCKINS M,DOLGE L,et al. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness[J]. Journal of Experimental Biology,2010,213(7): 1115-1125.
[25]WANG Lixin,ZHOU Qiang. Numerical characterization of surface structures of slippery zone in Nepenthes alata pitchers and its mechanism of reducing locusts attachment force[J]. Advances in Natural Science,2010,3(2): 152-160.
[26]WANG Lixin,ZHOU Qiang. Friction force of locust Locusta migratoria manilensis (Orthoptera,Locustidae) on slippery zones surface of pitchers from four Nepenthes species[J]. Tribology Letters,2011,44(3): 345-353.
[27]WANG Lixin,ZHOU Qiang,XU Shuyan. Role of locust Locusta migratoria manilensis claws and pads in attaching to substrates[J]. Chinese Science Bulletin,2011,56(8): 789-795.
[28]PEREZ G,PERESSADKO A,SCHWARZ U,et al. Material structure,stiffness,and adhesion: Why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera)[J]. Journal of Comparative Physiology A,2006,192(11): 1233-1243.
[29]DAI Z,GORB S,SCHWARZ U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera,Scarabaeidae)[J]. The Journal of Experimental Biology,2002,205(16): 2479-2488.
[30]BEUTEL R,GORB S. Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny[J]. Journal of Zoological Systematics & Evolutionary Research,2001,39(4): 177-207.
[31]KIM T,BHUSHAN B. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface[J]. Journal of Adhesion Science & Technology,2007,21(1): 1-20.
[32]GAUME L,PERRET P,GORB E. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants[J]. Arthropod Structure & Development,2004,33(1):103-111.
[33]畢可東,宋小闖,王玉娟,等. 豬籠草蠟質(zhì)滑移區(qū)表面反粘附特性的研究[J]. 機(jī)械工程學(xué)報(bào),2015,51(23):103-109.
BI Kedong,SONG Xiaochuang,WANG Yujuan,et al. Anti-adhesion mechanisms of Nepenthes waxy slippery zone surface[J]. Journal of Mechanical Engineering,2015,51(23) :103-109.
[34]王玉娟,宋小闖,陳云飛. 豬籠草捕蟲(chóng)籠超滑表面黏附特性測(cè)量和抗黏穩(wěn)定性分析[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,47(2): 259-264.
WANG Yujuan,SONG Xiaochuang,CHEN Yunfei. Measurement of adhesion properties and analysis of anti-adhesion stability on super-slippery surfaces of Nepenthes pitchers[J]. Journal of Southeast University(Natural Science Edition),2017,47(2): 259-264.
[35]BOBISUT O. ber den funktionswechsel der spaltffnungen in der gleitzone der Nepenthes-kannen[J]. Akad Wiss Wien Sitzungsber,1910,1: 3-10.
[36]KNOLL F. ber die ursache des ausgleitens der insektenbeine an wachsbedeckten pflanzenteilen[J]. Jahrbücher Für Wissenschaftliche Botanik,1914,54: 448-497.
[37]GORB V,GORB S. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment[J]. Beilstein Journal of Nanotechnology,2011,2(1): 302-310.
[38]ZHANG Peifei,CHEN Huawei,ZHANG Deyuan. Investigation of the anisotropic morphology-induced effects of the slippery zone in pitchers of Nepenthes alata[J]. Journal of Bionic Engineering,2015,12(1): 79-87.
[39]劉啟航,周強(qiáng),?;⒘? 蝗蟲(chóng)對(duì)光譜光照特性趨光反應(yīng)的對(duì)比及數(shù)學(xué)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(8): 252-256.
LIU Qihang,ZHOU Qiang,NIU Huli. Comparison and mathematical analysis of locust phototactic response to spectral illumination[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(8): 252-256.
[40]劉啟航,周強(qiáng). 頻閃光源和交變光源對(duì)蝗蟲(chóng)趨光響應(yīng)的試驗(yàn)[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,32(3): 260-265.
LIU Qihang,ZHOU Qiang. Experiment of locust phototactic response to flash and cosine alternating light[J]. Journal of Jiangsu University (Natural Science Edition),2011,32(3): 260-265.
[41]牛虎力,王立新,周強(qiáng). 光源與機(jī)械刺激下蝗蟲(chóng)的運(yùn)動(dòng)行為[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(2): 148-152.
NIU Huli,WANG Lixin,ZHOU Qiang. Influence of light and mechanical stimuli on behavior of locust [J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(2): 148-152.
[42]王立新,牛虎力,周強(qiáng). 氣擾刺激與波譜光源耦合作用下蝗蟲(chóng)的誘導(dǎo)捕集試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):108-115.
WANG Lixin,NIU Huli,ZHOU Qiang. Locust induced trapping experiment based on coupling effect of air disturbance stimulation and spectrum light source[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(5): 108-115.
[43]BITAR L,VOIGT D,ZEBITZ C,et al. Attachment ability of the codling moth Cydia pomonella L.to rough substrates[J]. Journal of Insect Physiology,2010,56(12): 1966-1972.
[44]周強(qiáng),周榮偉,王立新,等. 仿生光滑表面顯微結(jié)構(gòu)計(jì)算機(jī)仿真與設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(9):201-205.
ZHOU Qiang,ZHOU Rongwei,WANG Lixin,et al. Computer simulation and design on bionic slippery microstructure surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(9):201-205.
[45]王立新,周強(qiáng),劉啟航. 豬籠草滑移區(qū)表面結(jié)構(gòu)參數(shù)表征與捕集滑板仿生設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(1):233-235.
WANG Lixin,ZHOU Qiang,LIU Qihang. Dimensions of surface structures of slippery zone in Nepenthes pitchers and bionic design of locust trapping plate[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(1):233-235.
[46]王立新,周強(qiáng). 基于豬籠草葉籠滑移區(qū)仿生的蝗蟲(chóng)捕集滑板功效測(cè)試[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,41(5):222-225.
WANG Lixin,ZHOU Qiang. Function testing of locust slippery plate manufactured based on waxy zone of Nepenthes pitchers[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,41(5):222-225.
[47]王立新,黃風(fēng)山,周強(qiáng). 致災(zāi)農(nóng)業(yè)昆蟲(chóng)捕集滑板表面結(jié)構(gòu)仿生構(gòu)建與性能驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):34-40.
WANG Lixin,HUANG Fengshan,ZHOU Qiang. Surface structure biomimetic design and performance testing of slippery trapping plate used for controlling agricultural insect[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(20): 34-40.
[48]TIAN Ye, SU Bin, JIANG Lei. Interfacial material system exhibiting superwettability[J]. Advanced Materials, 2014,26(40): 6872-6897.
[49]LATTHE S,TERASHIMA C,NAKATA K,et al. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf[J]. Molecules,2014,19(4): 4256-4283.
[50]李小磊,張磊,馬曉雯,等. 基于微肋板伸縮疏水/超疏水表面設(shè)計(jì)及其潤(rùn)濕性調(diào)控[J]. 機(jī)械工程學(xué)報(bào),2017,53(5): 167-174.
LI Xiaolei,ZHANG Lei,MA Xiaowen,et al. Design and wettability control of hydrophobic/superhydrophobic surfaces based on the extendable micro-rib[J]. Journal of Mechanical Engineering,2017,53(5): 167-174.
[51]王立新. 東亞飛蝗體表潤(rùn)濕性測(cè)試及疏水機(jī)理分析[J]. 河北科技大學(xué)學(xué)報(bào),2017,38(5): 411-417.
WANG Lixin. Wettability measurement and hydrophobicity mechanism analysis of body surface in locust Locusta migratoria manilensis[J]. Journal of Hebei University of Science and Technology,2017,38(5): 411-417.
[52]屈孟男,侯琳剛,何金梅,等. 功能化超疏水材料的研究與發(fā)展[J]. 化學(xué)進(jìn)展,2016,28(12): 1774-1787.
QU Mengnan,HOU Lingang,HE Jinmei,et al. Research and development of functional superhydrophobic materials[J]. Progress in Chemistry,2016,28(12): 1774-1787.
[53]呂婷,王媛怡,陳慶民. 全氟癸基硅烷(PTES)修飾微納結(jié)構(gòu)超疏水表面耐久性研究[J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)),2017,53(1): 184-190.
LV Ting,WANG Yuanyi,CHEN Qingmin. Durability research of superhydrophobic surfaces prepared on micro/nano structure substrate modified by PTES[J]. Journal of Nanjing University (Natural Sciences),2017,53(1): 184-190.
[54]SOJOUDI H,WANG M,BOSCHER N,et al. Durable and scalable icephobic surfaces: Similarities and distinctions from superhydrophobic surfaces[J]. Soft Matter,2016,12(7): 1938-1963.
[55]鄭海坤,常士楠,趙媛媛. 超疏水/超潤(rùn)滑表面的防疏冰機(jī)理及其應(yīng)用[J]. 化學(xué)進(jìn)展,2017,29(1): 102-118.
ZHENG Haikun, CHANG Shinan, ZHAO Yuanyuan. Anti-icing & icephobic mechanism and applications of superhydrophobic/ultra slippery surface[J]. Progress in Chemistry,2017,29(1): 102-118.
[56]張鵬飛,張德遠(yuǎn),陳華偉. 豬籠草內(nèi)表面微觀結(jié)構(gòu)及其浸潤(rùn)性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1): 341-345.
ZHANG Peifei,ZHANG Deyuan,CHEN Huawei. Microstructure and wettability character of Nepenthes pitcher surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(1): 341-345.
[57]WANG Lixin,ZHOU Qiang. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid[J]. Scientific Reports,2016,6: 19907.
[58]陳鈺,徐建生,郭志光. 仿生超疏水性表面的最新應(yīng)用研究[J]. 化學(xué)進(jìn)展,2012,24(5): 696-708.
CHEN Yu,XU Jiansheng,GUO Zhiguang. Recent advances in application of ciomimetic superhydrophobic surfaces[J]. Progress in Chemistry,2012,24(5): 696-708.
[59]CAO Moyuan,XIAO Jiasheng,YU Cunming,et al. Hydrophobic/hydrophilic cooperative janus system for enhancement of fog collection[J]. Small,2015,11(34): 4379-4384.
[60]LIU Yan,LI Shuyi,NIU Shichao,et al. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate[J]. Applied Surface Science,2016,379: 230-237.
[61]KIM P,WONG T S,ALVAREGA J,et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano,2012,6(8): 6569-6577.
[62]ZHANG Junping,WANG Aiqin,SEEGER S. Nepenthes pitcher inspired anti-wetting silicone nanofilaments coatings: Preparation,unique anti-wetting and self-cleaning behaviors[J]. Advanced Functional Materials,2014,24(8): 1074-1080.
[63]ZHANG Jialei,GU Changdong,TU Jiangping. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg Alloy protection[J]. ACS Applied Materials & Interfaces,2017,9(12): 11247-11257.
[64]SMITH J,DHIMAN R,ANAND S,et al. Droplet mobility on lubricant-impregnated surfaces[J].Soft Matter,2013,9(6): 1772-1780.
[65]楊成娟,李媛,梅雪松,等. 納秒激光制備鈦表面紋理結(jié)構(gòu)及其潤(rùn)濕性研究[J]. 河北科技大學(xué)學(xué)報(bào),2016,37(4):315-321.
YANG Chengjuan,LI Yuan,MEI Xuesong,et al. Study on the fabrication of titanium surface texture by nanosecond laser and its wettability[J]. Journal of Hebei University of Science and Technology,2016,37(4): 315-321.
[66]LIU Yan,XUE Jingze,LUO Dan,et al. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition[J]. Journal of Colloid and Interface Science,2017,491: 313-320.
[67]SONG Yan,LIU Yan,ZHAN Bin,et al. Fabrication of bioinspired structured superhydrophobic and superoleophilic copper mesh for efficient oil-water separation[J]. Journal of Bionic Engineering,2017,14(3): 497-505.
[68]LIU Yan,LI Xinlin,JIN Jingfu,et al. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J]. Applied Surface Science,2017,400: 498-505.
[69]李晶,李紅,杜鋒,等. 噴砂-電刷鍍制備疏水耐腐蝕復(fù)合結(jié)構(gòu)[J]. 科學(xué)通報(bào),2017,62(12): 1307-1314.
LI Jing,LI Hong,DU Feng,et al. Fabricated composite structure with hydrophobicity and anti-corrosion by sandblasting and electro-brush plating[J]. Chinese Science Bulletin,2017,62(12): 1307-1314.