張春巍 劉東升
摘要: 研究了被動(dòng)調(diào)諧質(zhì)量阻尼器(Tuned Mass Damper,TMD)在一種新的安裝方式下對(duì)懸吊結(jié)構(gòu)平面擺振的控制效果,并考慮懸吊結(jié)構(gòu)質(zhì)量分布對(duì)TMD系統(tǒng)調(diào)頻的影響。首先基于拉格朗日原理建立了附加雙TMD體系雙質(zhì)點(diǎn)懸吊結(jié)構(gòu)的無阻尼自由振動(dòng)方程,并對(duì)質(zhì)量分布對(duì)雙質(zhì)點(diǎn)懸吊結(jié)構(gòu)周期的影響進(jìn)行了理論分析;然后定義了TMD控制無阻尼自由振動(dòng)的控制效果評(píng)價(jià)指標(biāo),利用Simulink對(duì)運(yùn)動(dòng)方程進(jìn)行數(shù)值求解,證明此時(shí)TMD對(duì)懸吊結(jié)構(gòu)具有一定的控制效果,并對(duì)質(zhì)量分布在TMD調(diào)頻、質(zhì)量比與板長擺長比變化情況下對(duì)控制效果的影響進(jìn)行了數(shù)值分析,發(fā)現(xiàn)控制效果隨著雙質(zhì)點(diǎn)的分散而下降的規(guī)律,而這種規(guī)律與質(zhì)量比和板長擺長比的變化無關(guān),驗(yàn)證了理論分析中對(duì)質(zhì)點(diǎn)分布影響的推斷,并得出TMD應(yīng)根據(jù)懸吊結(jié)構(gòu)質(zhì)量分布的影響來調(diào)頻以保證控制效果的結(jié)論。關(guān)鍵詞: 擺振控制; 平面擺振; 懸吊結(jié)構(gòu); 調(diào)諧質(zhì)量阻尼器; 質(zhì)量分布
中圖分類號(hào): TU311.3; TB123文獻(xiàn)標(biāo)志碼: A文章編號(hào): 10044523(2017)04065406
DOI:10.16385/j.cnki.issn.10044523.2017.04.017
引言
被動(dòng)調(diào)諧質(zhì)量阻尼器(Tuned Mass Damper,TMD)是一種被動(dòng)動(dòng)力吸振器,傳統(tǒng)的TMD由質(zhì)量、彈簧、阻尼構(gòu)成,在土木工程振動(dòng)控制領(lǐng)域有廣泛的應(yīng)用。目前大部分對(duì)TMD的研究都集中于其對(duì)直線運(yùn)動(dòng)形式的控制,如橋梁的豎向振動(dòng)、高層建筑的橫向振動(dòng),而關(guān)于TMD控制廣泛存在的扭轉(zhuǎn)運(yùn)動(dòng)的研究則相對(duì)較少。對(duì)于大跨橋梁來說,其在風(fēng)荷載作用下的振動(dòng)包含扭轉(zhuǎn)成分[13],偏心建筑在地震作用下也會(huì)發(fā)生扭轉(zhuǎn)振動(dòng)[45],目前TMD控制這類扭轉(zhuǎn)的研究其實(shí)是一定程度上將扭轉(zhuǎn)運(yùn)動(dòng)線性化為雙向的直線運(yùn)動(dòng),并沒有完全考慮扭轉(zhuǎn)運(yùn)動(dòng)形式對(duì)于TMD本身運(yùn)動(dòng)的影響[68];對(duì)于吊鉤、懸索橋、斜拉橋等懸吊結(jié)構(gòu)的擺動(dòng),也可以看作繞吊點(diǎn)的扭轉(zhuǎn)運(yùn)動(dòng),TMD對(duì)此種轉(zhuǎn)動(dòng)運(yùn)動(dòng)的控制有局限性[9],且在懸吊結(jié)構(gòu)擺振控制的研究中多將懸吊結(jié)構(gòu)質(zhì)量簡化為單質(zhì)點(diǎn)或雙質(zhì)點(diǎn)[911]。本文將討論新安裝方式下TMD對(duì)懸吊結(jié)構(gòu)平面擺振運(yùn)動(dòng)的控制效果并考慮懸吊結(jié)構(gòu)簡化計(jì)算模型質(zhì)量分布對(duì)TMD調(diào)頻的影響。
1安裝TMD懸吊結(jié)構(gòu)運(yùn)動(dòng)建?!?〗1.1安裝切向單TMD懸吊結(jié)構(gòu)運(yùn)動(dòng)建模本文的前期工作[9]已通過實(shí)驗(yàn)與理論分析證明了TMD沿懸吊結(jié)構(gòu)切向放置時(shí)對(duì)懸吊結(jié)構(gòu)平面擺振控制無效,現(xiàn)將簡化計(jì)算模型、運(yùn)動(dòng)方程與基于Simulink的數(shù)值分析結(jié)果展示如下:
設(shè)安裝切向TMD的懸吊結(jié)構(gòu)體系有2個(gè)自由度:懸吊結(jié)構(gòu)擺動(dòng)角度θ、TMD位移x。圖1中l(wèi)為懸吊結(jié)構(gòu)的擺長,m為懸吊質(zhì)點(diǎn)的質(zhì)量,ma為TMD質(zhì)量,k為TMD彈簧剛度;設(shè)ma=μmm,μm為TMD質(zhì)量與單擺質(zhì)量之比,ω12=gl,ω22=km。
圖1安裝切向TMD的懸吊結(jié)構(gòu)示意圖
Fig.1Sketch of suspended structure with tangential TMD
切向TMD懸吊結(jié)構(gòu)體系的運(yùn)動(dòng)方程[9]為:+kmax=x-l-gsinθ (1)
ml2+mal2+x2+2max+
mgl+maglsinθ+magxcosθ=
-mal (2)取擺長l=9.8 m,初始擺角θ0=0,單擺初始速度v0=π/20 rad/s(9°/s),質(zhì)量比μm=5%,初始TMD位移x0=0,令ω1=ω2=1?;赟imulink對(duì)運(yùn)動(dòng)方程進(jìn)行數(shù)值求解,得到體系的時(shí)程曲線如圖2所示,可以看到,整個(gè)運(yùn)動(dòng)過程中結(jié)構(gòu)擺角沒有衰減,且TMD始終保持靜止,未對(duì)懸吊結(jié)構(gòu)的擺動(dòng)起到控制作用。
圖2懸吊結(jié)構(gòu)擺角與TMD位移時(shí)程曲線
Fig.2Time history of pendular angles and TMD displacement第4期張春巍,等:考慮質(zhì)量分布影響的雙TMD系統(tǒng)控制懸吊結(jié)構(gòu)平面擺振分析振 動(dòng) 工 程 學(xué) 報(bào)第30卷1.2安裝法向雙TMD懸吊結(jié)構(gòu)運(yùn)動(dòng)建模
如圖3所示,安裝雙TMD的懸吊結(jié)構(gòu)體系有三個(gè)自由度:懸吊結(jié)構(gòu)擺動(dòng)角度θ、相對(duì)于板面的TMD質(zhì)量塊位移x1和x2。圖3中λa定義為結(jié)構(gòu)質(zhì)點(diǎn)到平板中心距離與TMD到平板中心距離a的圖3安裝雙TMD的懸吊結(jié)構(gòu)示意圖
Fig.3Sketch of suspended structure with dual TMD
比值。懸吊結(jié)構(gòu)總質(zhì)量為m,并假設(shè)其質(zhì)量集中于兩個(gè)質(zhì)點(diǎn),設(shè)m1=m2=μmm,k1=k2,M1=M2=12m,ω12=gl,ω22=k1m1,μm為TMD與結(jié)構(gòu)的質(zhì)量之比;定義λl=al為板長與擺長之比。
系統(tǒng)動(dòng)能與勢能的表達(dá)式為:T=12m(l2+λaa2)2+
12m11+a2+x1+l22+
12m22-a2+x2+l22 (3)
U=12k1x21+1〖〗2k2x22+mgl1-cosθ+
m1g-x1cosθ-l1cosφ-θ-l+
m2g-x2cosθ+l-l1cosφ+θ (4)根據(jù)拉格朗日原理可建立懸吊結(jié)構(gòu)雙TMD體系的運(yùn)動(dòng)方程:m1(a+1)+k1x1-m1x1+l2=m1gcosθ (5)
m2(-a+2)+k2x2-m2x2+l2=m2gcosθ (6)
mglsinθ+m1g-l1sinφ-θ+sinθx1+
m2gl1sinφ+θ+sinθx2+
m(l2+λaa2)+m1[2l1+2x11+a1+
l21+2lx1+x21]+m2[2l2+2x22-
a2+l21+2lx2+x22]=0 (7)式中φ為l與l1的夾角;,1,2,1,2為沿各自廣義坐標(biāo)方向的速度與加速度。
首先需要檢驗(yàn)法向雙TMD體系對(duì)懸吊結(jié)構(gòu)擺振是否有控制效果。設(shè)λa=0,l=9.8 m,ω1=ω2=1,初始擺角a0=0,初始速度v0=π/20 rad/s (9°/s),初始TMD自由垂落(即x10=x20=g/ω22),板長與擺長比λ1=0.5,質(zhì)量比μm=5%。應(yīng)用Simulink求解運(yùn)動(dòng)微分方程,得到懸吊結(jié)構(gòu)擺角與TMD位移的時(shí)程曲線如圖4所示,可以看到擺角發(fā)生了衰減,證明此時(shí)TMD可以起到控制作用。
圖4懸吊結(jié)構(gòu)擺角與TMD位移時(shí)程曲線
Fig.4Time history of pendular angles and TMD displacement
2λa對(duì)控制效果影響的理論分析
由復(fù)擺的周期計(jì)算公式可知,將實(shí)際懸吊結(jié)構(gòu)簡化為計(jì)算模型時(shí),質(zhì)量的簡化方式會(huì)影響懸吊結(jié)構(gòu)的擺振周期,進(jìn)而影響被動(dòng)控制裝置的調(diào)頻,一般情況下會(huì)根據(jù)實(shí)際情況將懸吊質(zhì)量簡化為一個(gè)或兩個(gè)質(zhì)點(diǎn)[911]。為討論質(zhì)量簡化方式對(duì)懸吊結(jié)構(gòu)平面擺振周期及TMD調(diào)頻的影響,建立懸吊結(jié)構(gòu)簡化計(jì)算模型(圖5)的運(yùn)動(dòng)方程,各參數(shù)的意義與圖3中相同。
圖5無TMD的懸吊結(jié)構(gòu)示意圖
Fig.5Sketch of suspended structure without TMD
懸吊結(jié)構(gòu)平面擺振動(dòng)能與勢能的表達(dá)式為:T=12m(l2+λaa2)2 (8)
U=mgl1-cosθ (9)懸吊結(jié)構(gòu)平面擺振的運(yùn)動(dòng)方程為ml2+λaa)2+mglsinθ=0 (10)可以將式(10)化簡為+gl(11+λaa/l2)sinθ=0 (11)由式(11)可以看出,懸吊結(jié)構(gòu)擺振周期是隨著λa的增大而增大的,因此TMD的調(diào)頻會(huì)受到λa變化(即懸吊體質(zhì)量分布簡化方式)的影響。
3λa對(duì)控制效果影響的數(shù)值分析
為了定量研究參數(shù)變化對(duì)控制效果的影響,定義2個(gè)控制效果的指標(biāo):衰減周期數(shù)n=
振動(dòng)幅值衰減到最小所需的振動(dòng)周期數(shù) (12)
相對(duì)衰減幅值η=maxθ-minθmaxθ×100% (13)圖6控制效果指標(biāo)
Fig.6Index of control effectiveness
應(yīng)用Simulink求解安裝法向雙TMD懸吊結(jié)構(gòu)的運(yùn)動(dòng)方程(公式(5)~(7)),改變TMD調(diào)頻方式觀察控制效果的變化。
3.1TMD按單擺頻率公式固定調(diào)頻
令TMD按單擺頻率公式調(diào)頻,改變懸吊結(jié)構(gòu)計(jì)算模型的λa觀察TMD控制效果的變化。設(shè)擺長l=9.8 m,ω1=ω2=1,初始擺角a0=0,初始速度v0=π/20 rad/s (9°/s),初始TMD自由垂落(即x10=x20=g/ω22=9.8 m)。
3.1.1質(zhì)量比μm的影響
固定板長擺長比,設(shè)板長a=5 m,研究質(zhì)量比與λa變化對(duì)控制效果的影響。
圖7中每個(gè)點(diǎn)都代表一種參數(shù)情況下擺角時(shí)程曲線的控制效果指標(biāo),固定λa與板長擺長比變化質(zhì)量比的一組時(shí)程曲線如圖8(a)所示,計(jì)算每種參數(shù)情況下時(shí)程曲線的控制效果指標(biāo)繪成圖7。
從圖7可以看出,隨著λa的增大,衰減周期數(shù)的變化不明顯,但相對(duì)衰減幅值出現(xiàn)了大幅下降,這是因?yàn)殡S著λa的增大,TMD的頻率越來越偏離懸吊結(jié)構(gòu),導(dǎo)致控制效果下降。大量的數(shù)值分析結(jié)果表明,在板長擺長比取0.1到1.1范圍內(nèi)的其他值時(shí)也有相同的規(guī)律,因此在這里只取一個(gè)值來說明這種規(guī)律。
3.1.2板長擺長比λl的影響
固定質(zhì)量比,設(shè)質(zhì)量比μm=%,研究板長擺長比與λa變化對(duì)控制效果的影響。圖7質(zhì)量比對(duì)衰減周期數(shù)與相對(duì)衰減幅值的影響
Fig.7Effect of mass ratio on the number of attenuation period and the amplitude of relative attenuation
圖8質(zhì)量比變化與板長擺長比變化的擺角時(shí)程曲線
Fig.8Time history of pendular angles with varying mass ratio and ratio of panel length to pendulum length
同樣,圖9中每一點(diǎn)都代表一種參數(shù)情況下擺角時(shí)程曲線的控制效果指標(biāo),固定λa與質(zhì)量比變化板長擺長比的一組時(shí)程曲線如圖8(b)所示,計(jì)算每種參數(shù)情況下時(shí)程曲線的控制效果指標(biāo)繪成圖9。
圖9板長與擺長比對(duì)衰減周期數(shù)與相對(duì)衰減幅值的影響
Fig.9Effect of ratio of panel length to pendulum length on the number of attenuation period and the amplitude of relative attenuation
從圖9可以看出,隨著λa的增大,衰減周期數(shù)的變化并不明顯,但相對(duì)衰減幅值出現(xiàn)了大幅下降,這一點(diǎn)與圖7是相同的,進(jìn)一步驗(yàn)證了這是因?yàn)殡S著λa的增大,TMD頻率越來越偏離懸吊結(jié)構(gòu)頻率而使控制效果下降,與質(zhì)量比、板長擺長比的變化無關(guān)。另外,還可以觀察到,隨著λa的增大即質(zhì)點(diǎn)的分散,相對(duì)衰減幅值峰值對(duì)應(yīng)的板長與擺長比減小,結(jié)構(gòu)越接近于單質(zhì)點(diǎn)體系,即頻率越接近于單質(zhì)點(diǎn)體系,這也從側(cè)面驗(yàn)證了是頻率偏離造成了相對(duì)衰減幅值的減小。大量的數(shù)值分析結(jié)果表明,在質(zhì)量比取0.1%到100%范圍內(nèi)的其他值時(shí)也有相同的規(guī)律,因此在這里只取一個(gè)值來說明這種規(guī)律。
3.2TMD按懸吊結(jié)構(gòu)計(jì)算模型實(shí)際頻率調(diào)頻
改變懸吊結(jié)構(gòu)計(jì)算模型的λa,同時(shí)根據(jù)λa對(duì)TMD進(jìn)行調(diào)頻,觀察控制效果的變化。設(shè)擺長l=9.8 m,ω1=1,ω22=ω12/l2+(λa×a)2l2,初始擺角a0=0,初始速度v0=π/20 rad/s (9°/s),初始TMD自由垂落(即x10=x20=g/ω22)。
3.2.1質(zhì)量比μm的影響
設(shè)板長a=5 m,與3.1.1中相同。
從圖10可以看出,質(zhì)量比改變時(shí),隨著λa的增大,衰減周期數(shù)與相對(duì)衰減幅值均未發(fā)生明顯變化,控制效果未出現(xiàn)下降,這是因?yàn)楦鶕?jù)λa變化調(diào)整TMD頻率后,TMD頻率不再偏離懸吊結(jié)構(gòu)計(jì)算模型頻率。
圖10質(zhì)量比對(duì)衰減周期數(shù)與相對(duì)衰減幅值的影響
Fig.10Effect of mass ratio on the number of attenuation period and the amplitude of relative attenuation
3.2.2板長與擺長的比值λl的影響
設(shè)質(zhì)量比μm=1%,與3.1.2中相同。
從圖11可以看出,板長擺長比改變時(shí),隨著λa的增大,衰減周期數(shù)與相對(duì)衰減幅值均未發(fā)生明顯變化,這與圖10的規(guī)律相同,進(jìn)一步驗(yàn)證了這是因?yàn)楦鶕?jù)λa變化調(diào)整TMD頻率后,TMD頻率不再偏離懸吊結(jié)構(gòu)計(jì)算模型頻率,與質(zhì)量比和板長擺長比的變化無關(guān)。因此當(dāng)懸吊結(jié)構(gòu)不能簡化為單擺時(shí),被動(dòng)控制裝置應(yīng)按懸吊結(jié)構(gòu)計(jì)算模型實(shí)際的頻率調(diào)頻。
圖11板長與擺長比對(duì)衰減周期數(shù)與相對(duì)衰減幅值的影響
Fig.11Effect of ratio of panel length to pendulum length on the number of attenuation period and the amplitude of relative attenuation
4結(jié)論
本文利用拉格朗日原理建立了懸吊結(jié)構(gòu)法向雙TMD體系的運(yùn)動(dòng)方程,并通過理論分析與數(shù)值分析研究了法向雙TMD對(duì)懸吊結(jié)構(gòu)平面擺振的控制效果與懸吊結(jié)構(gòu)質(zhì)點(diǎn)分布對(duì)TMD控制效果的影響,得到以下主要結(jié)論:
(1) 由于TMD沿懸吊結(jié)構(gòu)運(yùn)動(dòng)方向切向放置時(shí)對(duì)懸吊結(jié)構(gòu)平面擺振無控制效果,將兩TMD沿懸吊結(jié)構(gòu)運(yùn)動(dòng)方向法向?qū)ΨQ放置并建立運(yùn)動(dòng)方程,數(shù)值分析發(fā)現(xiàn)結(jié)構(gòu)擺角會(huì)發(fā)生衰減,表明TMD安裝于懸吊結(jié)構(gòu)運(yùn)動(dòng)方向法向并對(duì)稱放置時(shí)對(duì)懸吊結(jié)構(gòu)平面擺振是有控制效果的,相關(guān)原理也可以應(yīng)用到擺振運(yùn)動(dòng)的測量中。
(2) 理論分析與數(shù)值分析結(jié)果都表明懸吊結(jié)構(gòu)的質(zhì)量分布會(huì)對(duì)懸吊結(jié)構(gòu)擺振頻率產(chǎn)生影響,若TMD仍按單擺頻率公式調(diào)頻,計(jì)算模型質(zhì)量分布與單質(zhì)點(diǎn)的差異越大,TMD與懸吊結(jié)構(gòu)的頻率偏離越嚴(yán)重,控制效果就越差,TMD需要根據(jù)懸吊結(jié)構(gòu)計(jì)算模型的真實(shí)頻率調(diào)頻才能保證控制效果。
參考文獻(xiàn):
[1]Nobuto J, Fujino Y, Ito M. Study on the effectiveness of TMD to suppress a coupled flutter of bridge deck[J]. Doboku Gakkai Rombunshu/Proceedings, 1988,(398): 413—416.
[2]陳艾榮, 項(xiàng)海帆. 斜拉橋渦激扭轉(zhuǎn)振動(dòng)的被動(dòng)控制[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版), 1994, 22(4): 487—492.
Chen Airong, Xiang Haifan. Vortexinduced torsional vibration control of cablestayed bridges[J]. Journal of Tongji University (Natural Science),1994,22(4):487—492.
[3]Gu M, Chang C C, Wu W, et al. Increase of critical flutter wind speed of longspan bridges using tuned mass dampers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998,73(2): 111—123.
[4]李春祥,韓傳峰. 非對(duì)稱結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)多重調(diào)諧質(zhì)量阻尼器(MTMD)控制的最優(yōu)位置[J]. 地震工程與工程振動(dòng), 2003, 06: 149—155.
Li Chunxiang, Han Chuanfeng. Optimum placements of multiple tuned mass dampers (MTMD) for suppressing torsional vibration of asymmetric structures[J]. Earthquake Engineering and Engineering Vibration, 2003, 06: 149—155.
[5]樊長龍. MTMD對(duì)地震作用下高層結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)的控制[D].上海:同濟(jì)大學(xué),2007.
Fan Changlong.MTMD for torsional vibration control of tall building structures under seismic actions[D].Shanghai: Tongji University, 2007.
[6]李春祥,余瓊,王肇民. 大跨橋梁結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)的MTMD控制研究[J]. 特種結(jié)構(gòu),2002,(04):66—70.
Li Chunxiang, Yu Qiong, Wang Zhaomin. A study on MTMD for attenuating pitching motion of longspan bridge structures [J]. Special Structures,2002,(04):66—70.
[7]Lin Y Y, Cheng C M, Lee C H. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of longspan bridges[J]. Engineering Structures, 2000, 22(9): 1195—1204.
[8]Gu M, Chen S R, Chang C C. Control of windinduced vibrations of longspan bridges by semiactive levertype TMD[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(2): 111—126.
[9]Zhang C, Li L, Ou J. Swinging motion control of suspended structures: Principles and applications[J]. Structural Control and Health Monitoring, 2010, 17(5): 549—562.
[10]張春巍,徐懷兵,李蘆鈺,等. 基于調(diào)諧轉(zhuǎn)動(dòng)慣量阻尼器的結(jié)構(gòu)擺振控制方法(I):參數(shù)影響分析與小型比例模型試驗(yàn)[J]. 控制理論與應(yīng)用,2010,09:1159—1165.
Zhang Chunwei, Xu Huaibing, Li Luyu, et al. Structural pendulum vibration control methods based on tunedrotaryinertiadamper (I): parametric impact analysis and benchscale model tests[J]. Control Theory & Applications,2010,09:1159—1165.
[11]徐懷兵,張春巍,李蘆鈺,等. 基于調(diào)諧轉(zhuǎn)動(dòng)慣量阻尼器的結(jié)構(gòu)擺振控制方法(Ⅱ):足尺模型試驗(yàn)與TRID裝置小型化研究[J]. 控制理論與應(yīng)用,2010,10:1315—1321.
Xu Huaibing, Zhang Chunwei, Li Luyu, et al. Structural pendulum vibration control methods based on tunedrotaryinertiadamper (Ⅱ) full scale model experiments and miniaturization study[J]. Control Theory & Applications,2010,10:1315—1321.
Control effect analysis on pendular vibration of suspensory structures with
varied mass distribution controlled by dual TMD systems
ZHANG Chunwei, LIU Dongsheng
(School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China)
Abstract: This paper has studied the control effectiveness of tuned mass damper (TMD) for the planar pendular vibration and the effect of mass distribution of suspensory structures on TMD tuning. Firstly, the equation of motion for the suspensory structure and dual TMD in planar motion are established based on the Lagrangian principles, and the theoretical analysis of the probable effect of the mass distribution of suspensory structures is presented. Secondly, assessment of TMD control effect is defined. Numerical simulation using Simulink has proven that in this new installing way TMD can control planar pendular vibration. The effect of TMD frequency tuning, mass ratio and ratio of length of panel to length of pendulum in varying mass distribution has been studied by numerical simulation. Numerical simulation has found that control effect decreasing with distributing of the mass distribution and this tendency is irrelevant with varying of mass ratio and ratio of length of panel to length of pendulum. Simulation results proved the deduction of effect of mass distribution in theoretical analysis and came to a conclusion that dual TMD has to be retuned according to the effect of mass distribution of suspensory structures.Key words: pendular control; planar pendular vibration; suspensory structures; tuned mass damper (TMD); mass distribution作者簡介: 張春?。?977—),男,博士,教授。電話:(0532)85071693;Email:zhangchunwei@qut.edu.cn