劉進(jìn) 王偉明 邱偉文
[摘要] 目的 探討B(tài)OLD-fMRI結(jié)合神經(jīng)導(dǎo)航輔助技術(shù)對(duì)顯微切除運(yùn)動(dòng)功能區(qū)海綿狀血管畸形手術(shù)中神經(jīng)功能保護(hù)的價(jià)值。 方法 將41例海綿狀血管畸形患者分為導(dǎo)航組(20例)和對(duì)照組(21例),導(dǎo)航組予BOLD-fMRI 結(jié)合神經(jīng)導(dǎo)航輔助下顯微手術(shù)治療,對(duì)照組行常規(guī)海綿狀血管畸形切除術(shù)。對(duì)比兩組患者術(shù)前與術(shù)后3個(gè)月的KPS評(píng)分改變及術(shù)后并發(fā)癥發(fā)生率。 結(jié)果 術(shù)前導(dǎo)航組與對(duì)照組KPS評(píng)分差異無統(tǒng)計(jì)學(xué)意義(P>0.05);術(shù)后3個(gè)月導(dǎo)航組KPS評(píng)分高于對(duì)照組(P<0.05);導(dǎo)航組術(shù)后3個(gè)月KPS評(píng)分與術(shù)前比較明顯改善(P<0.05)。 結(jié)論 BOLD-fMRI結(jié)合神經(jīng)導(dǎo)航輔助技術(shù)在顯微切除運(yùn)動(dòng)功能區(qū)海綿狀血管畸形手術(shù)中具有保護(hù)神經(jīng)功能的作用。
[關(guān)鍵詞] 血氧水平依賴性功能磁共振成像;皮層運(yùn)動(dòng)區(qū);神經(jīng)導(dǎo)航;腦海綿狀血管畸形
[中圖分類號(hào)] R739.41 [文獻(xiàn)標(biāo)識(shí)碼] B [文章編號(hào)] 1673-9701(2018)09-0049-04
BOLD-fMRI combined with neuro-navigation microsurgical removal of cavernous vascular malformations
LIU Jin WANG Weiming QIU Weiwen YE Suilin
Department of Neurosurgery, Lishui Peoples Hospital in Zhejiang Province, Lishui 323000, China
[Abstract] Objective To investigate the value of BOLD-fMRI combined with neuro-navigational aids in neurofunctional protection during microsurgical removal of motor function cavernous vascular malformation. Methods A total of 41 patients with cavernous vascular malformations were divided into the navigation group(n=20) and the control group (n=21). The navigation group was given BOLD-fMRI combined with neuronavigation-assisted microsurgery. The control group was given conventional cavernous malformation resection. The changes of KPS score and the incidence of postoperative complications between the two groups before surgery and 3 months after the surgery were compared. Results There was no statistically significant difference in KPS score between the navigation group and the control group before surgery(P>0.05). The score of KPS in navigation group was higher than that in the control group 3 months after surgery(P<0.05); the score of KPS in the navigation group 3 months after the surgery was significantly higher than that before surgery(P<0.05). Conclusion BOLD-fMRI combined with neuro-navigational aids can protect neurological function during microsurgical removal of motor function cavernous vascular malformation.
[Key words] BOLD-fMRI; Motor cortex; Neuronavigation; Cavernous vascular malformation
腦海綿狀血管畸形(cerebral cavernous malformation,CCM)是一種腦血管畸形,CCM人群發(fā)病率為0.5%[1]。CCM占中樞神經(jīng)系統(tǒng)中血管畸形的5%~10%[2]。術(shù)中如何避免神經(jīng)功能受損是功能區(qū)CCM顯微手術(shù)切除的關(guān)鍵。2003年 1月~2013年3月我院神經(jīng)外科應(yīng)用BOLD-fMRI結(jié)合神經(jīng)導(dǎo)航技術(shù)輔助下顯微手術(shù)治療大腦運(yùn)動(dòng)功能區(qū)CCM20例,取得較好的療效,現(xiàn)報(bào)道如下。
1 資料與方法
1.1一般資料
選擇2003年1月~2013年3月我院神經(jīng)外科顯微手術(shù)治療大腦運(yùn)動(dòng)功能區(qū)CCM 41例患者作為研究對(duì)象。按照是否應(yīng)用BOLD-fMRI結(jié)合神經(jīng)導(dǎo)航技術(shù)分為導(dǎo)航組(20例)和對(duì)照組(21例)。入組標(biāo)準(zhǔn):術(shù)前MRI診斷運(yùn)動(dòng)區(qū)CCM,術(shù)后病理確診為CCM。排除標(biāo)準(zhǔn):曾進(jìn)行放療的CCM 患者[3]。導(dǎo)航組男12例,女8例,年齡21~68歲,平均(44.20±13.07)歲。發(fā)病時(shí)間1周~3年,平均2個(gè)月。對(duì)照組男11例,女10例,年齡23~65歲,平均(43.90±12.77)歲。發(fā)病時(shí)間1周~2年,平均3個(gè)月。兩組一般資料差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。1.2 fMRI成像方法
美國(guó)GE公司3.0T(Signa HDx)超導(dǎo)磁共振,采用8通道頭顱高分辨率相控陣線圈。參數(shù)如下:TR/TE:2000/30 ms,F(xiàn)OV=192 mm×192 mm,翻轉(zhuǎn)角90°,矩陣64×64,層厚4 mm,層間隔0.2 mm,層數(shù)31。實(shí)驗(yàn)采用靜息-運(yùn)動(dòng)循環(huán)模式。一次功能像EPI序列掃描時(shí)間為330 s?;颊甙匆笠来芜M(jìn)行左右手的功能像掃描。靜息狀態(tài)要求患者保持休息狀態(tài),運(yùn)動(dòng)態(tài)要求患者進(jìn)行有序的對(duì)指運(yùn)動(dòng)。通過GE公司Brainwave軟件分析處理圖像。計(jì)算每個(gè)體素內(nèi)的信號(hào)改變生成激活圖。將生成的激活區(qū)域圖與解剖圖相疊加,分析CCM與運(yùn)動(dòng)區(qū)的關(guān)系(圖1、2)。
1.3 導(dǎo)航手術(shù)過程
1.3.1 根據(jù)導(dǎo)航系統(tǒng)制定手術(shù)計(jì)劃 患者于手術(shù)當(dāng)日早晨備皮。以海綿狀血管畸形為中心粘貼6~7枚頭皮標(biāo)記,行頭顱MRI掃描。成像參數(shù):層厚2 mm,矩陣256×256。將數(shù)據(jù)輸入美敦力神經(jīng)導(dǎo)航儀。由導(dǎo)航系統(tǒng)進(jìn)行圖像的三維重建,麻醉成功后用Mayfield頭顱架固定頭顱。借助神經(jīng)導(dǎo)航儀設(shè)計(jì)手術(shù)入路及手術(shù)切口,注意避開功能區(qū)。
1.3.2 手術(shù)過程 切開頭皮后用銑刀去除顱骨瓣,剪開硬腦膜前再次用神經(jīng)導(dǎo)航確定病灶位置及CCM至腦表面的距離并計(jì)算CCM與運(yùn)動(dòng)區(qū)的空間關(guān)系,設(shè)計(jì)最佳手術(shù)入路。顯微鏡下沿腦溝解剖蛛網(wǎng)膜及軟腦膜,注意保護(hù)功能區(qū)。少量滲血可使用速即紗壓迫止血。沿腦溝分離顯露出CCM,切斷血供后完整切除CCM及周圍的含鐵血黃素層。對(duì)照組根據(jù)術(shù)前頭顱MRI結(jié)果設(shè)計(jì)手術(shù)切口,按照常規(guī)方法在顯微鏡下切除CCM。
1.4 評(píng)價(jià)標(biāo)準(zhǔn)
KPS評(píng)分表示患者的功能狀態(tài),100 分正常,70分生活可自理,得分越高功能狀況越好。對(duì)患者手術(shù)前后進(jìn)行 KPS 評(píng)分,評(píng)價(jià)患者手術(shù)前后功能變化[4]。
1.5 統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS 17.0統(tǒng)計(jì)學(xué)軟件對(duì)數(shù)據(jù)進(jìn)行分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組比較采用t檢驗(yàn),多組比較采用單因素方差分析;計(jì)數(shù)資料采用χ2檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1兩組患者手術(shù)前與術(shù)后3個(gè)月KPS評(píng)分比較
應(yīng)用BOLD-fMRI結(jié)合神經(jīng)導(dǎo)航技術(shù)輔助下顯微手術(shù)治療20例運(yùn)動(dòng)功能區(qū)CCM,術(shù)中神經(jīng)導(dǎo)航儀定位準(zhǔn)確(注冊(cè)誤差<1 mm)。術(shù)后未引起永久性神經(jīng)功能損害。根據(jù)Karnofsky評(píng)分表對(duì)生存質(zhì)量進(jìn)行計(jì)分,分析患者手術(shù)前與術(shù)后3個(gè)月KPS計(jì)分。得分越高,神經(jīng)功能恢復(fù)越好。術(shù)前導(dǎo)航組與對(duì)照組KPS評(píng)分差異無統(tǒng)計(jì)學(xué)意義(P>0.05);術(shù)后3個(gè)月導(dǎo)航組KPS評(píng)分高于對(duì)照組(P<0.05);導(dǎo)航組術(shù)前KPS計(jì)分為(76.5±16.94)分,術(shù)后3個(gè)月KPS計(jì)分為(91.5±7.45)分,與術(shù)前比較有顯著差異(P<0.05)。
2.2患者并發(fā)癥情況
導(dǎo)航組肺部感染2例,顱內(nèi)感染0例,感覺麻木1例,肌力較術(shù)前下降0例,并發(fā)癥發(fā)生率為15.00%;對(duì)照組肺部感染3例,顱內(nèi)感染1例,感覺麻木2例,肌力較術(shù)前下降1例,并發(fā)癥發(fā)生率為33.33%。兩組并發(fā)癥發(fā)生率比較有顯著性差異(P<0.05)。
3 討論
運(yùn)動(dòng)區(qū)CCM的臨床特點(diǎn)主要有癲癇、頭痛、偏癱、局灶性神經(jīng)功能缺失等[5]。癲癇是運(yùn)動(dòng)功能區(qū)CCM最常見的臨床表現(xiàn)。由于CCM缺乏血腦屏障導(dǎo)致紅細(xì)胞漏出形成含鐵血黃素環(huán)是引起癲癇的主要原因[6]。運(yùn)動(dòng)功能區(qū)CCM急性出血或本身的占位效應(yīng)引起患者出現(xiàn)神經(jīng)功能損害[7]。運(yùn)動(dòng)區(qū)主要包括:(1)初級(jí)運(yùn)動(dòng)區(qū)(M1);(2)次級(jí)運(yùn)動(dòng)區(qū):輔助運(yùn)動(dòng)區(qū)(supplementary motor area,SMA)、前額葉皮層(prefrontal cortex)、運(yùn)動(dòng)前區(qū)皮層(premotor cortex,PMC)及后頂葉皮層(posterior parietal cortex,PPC)等[8]。M1區(qū)又可分為腹側(cè)的M1-4a區(qū)和背側(cè)的M1-4p區(qū)[9]。M1-4a 區(qū)負(fù)責(zé)運(yùn)動(dòng)的執(zhí)行[10]。M1-4p區(qū)能感覺運(yùn)動(dòng),并調(diào)節(jié)運(yùn)動(dòng)[11]。
BOLD-fMRI能夠清晰的顯示出大腦的解剖結(jié)構(gòu)圖像,并且能無創(chuàng)的顯示大腦皮層的功能信息變化從而定位功能區(qū),該技術(shù)對(duì)初級(jí)運(yùn)動(dòng)區(qū)(M1)和輔助運(yùn)動(dòng)區(qū)的定位準(zhǔn)確性較佳[12],BOLD-fMRI對(duì)語(yǔ)言功能區(qū)定位的敏感度37.1%,特異性83.4%[13]。Wengenroth等[14]研究發(fā)現(xiàn)術(shù)前BOLD-fMRI可準(zhǔn)確定位中央?yún)^(qū)。Bizzi等[15]通過對(duì)34例患者的前瞻性研究報(bào)道,BOLD-fMRI敏感度83%,特異度82%。Bartos等[16]報(bào)道與皮層電刺激比較,BOLD-fMRI對(duì)77%的患者功能區(qū)定位誤差不超過5 mm。BOLD-fMRI能夠準(zhǔn)確定位功能區(qū),無侵襲性、圖像直觀,能提供運(yùn)動(dòng)區(qū)的影像信息為術(shù)前制定手術(shù)計(jì)劃提供可靠依據(jù)。Slotty PJ等[17]報(bào)道在神經(jīng)導(dǎo)航輔助下通過小切口切除位置較深的CCM。Enchev YP等[18]報(bào)道在深部CCM切除術(shù)中,神經(jīng)導(dǎo)航有利于制定最安全的手術(shù)計(jì)劃[19]。術(shù)中神經(jīng)導(dǎo)航能夠幫助術(shù)者識(shí)別關(guān)鍵的解剖結(jié)構(gòu),評(píng)估手術(shù)進(jìn)程,識(shí)別可能的殘余病灶。神經(jīng)導(dǎo)航指引下手術(shù)有助于提高安全性,降低手術(shù)致殘率[20]。造成神經(jīng)導(dǎo)航準(zhǔn)確度下降的原因主要有注冊(cè)誤差、腦漂移。術(shù)前應(yīng)通過以下方法降低注冊(cè)誤差:(1)術(shù)前標(biāo)志應(yīng)貼在頭皮不容易移位的位置,標(biāo)志不少于6枚。(2)頭顱架固定過程中不能使皮膚移位。術(shù)中腦漂移對(duì)神經(jīng)導(dǎo)航的準(zhǔn)確度影響最高,應(yīng)采用以下方法降低:(1)術(shù)前擺放體位時(shí)應(yīng)使CCM位于最高的位置,減少手術(shù)過程中腦組織因重力影響向側(cè)方移動(dòng)。(2)手術(shù)過程中盡可能的減少手術(shù)操作引起的腦移位。(3)手術(shù)過程中不引流腦脊液,不使用脫水劑。(4)手術(shù)操作輕柔,避免損傷血管造成腦組織腫脹[21]。
本組患者神經(jīng)導(dǎo)航術(shù)前、術(shù)中均能精確定位CCM,為術(shù)前確定最優(yōu)手術(shù)入路及術(shù)中引導(dǎo)術(shù)者全切CCM提供了極大的幫助。神經(jīng)導(dǎo)航技術(shù)對(duì)手術(shù)中精確定位CCM有重大指導(dǎo)作用。BOLD-fMRI、神經(jīng)導(dǎo)航是運(yùn)動(dòng)功能區(qū)CCM外科治療有效的輔助技術(shù),這些技術(shù)的聯(lián)合應(yīng)用能夠更精確的定位病灶和運(yùn)動(dòng)功能區(qū),有利于最大范圍的切除病灶和最小的神經(jīng)損傷[22]。BOLD-fMRI聯(lián)合神經(jīng)導(dǎo)航能夠準(zhǔn)確定位CCM和功能區(qū),極大的提高了手術(shù)的安全性。導(dǎo)航組20例CCM術(shù)中均未發(fā)生誤損傷運(yùn)動(dòng)區(qū)導(dǎo)致術(shù)后神經(jīng)功能障礙的情況。術(shù)后KPS 計(jì)分與術(shù)前比較明顯改善(P<0.05)。
綜上,BOLD-fMRI結(jié)合神經(jīng)導(dǎo)航輔助技術(shù)在顯微切除運(yùn)動(dòng)功能區(qū)CCM手術(shù)中具有保護(hù)神經(jīng)功能的作用。
[參考文獻(xiàn)]
[1] Maddaluno L,Rudini N,Cuttano R,et al.End MT contributes to the onset and progression of cerebral cavernous malformations[J]. Nature,2013,498(7455):492-496.
[2] Dziedzic T,Kunert P,Matyja E,et al.Familial cerebral cavernous malformation[J].Folia Neuropathol,2012,50(2):152-158.
[3] 吳紅記,張文君,賈同樂,等.腦多發(fā)海綿狀血管畸形的手術(shù)治療[J].國(guó)際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志,2016,43(3):198-201.
[4] 蔡洪,李捷萌,黃桂鋒.中醫(yī)藥輔助FOLFOX-4化療方案治療晚期直腸癌效果及對(duì)KPS評(píng)分的影響[J]. 實(shí)用中西醫(yī)結(jié)合臨床,2016,16(5):34-36.
[5] Slotty PJ,Ewelt C,Sarikaya-Seiwert S,et al.Localization techniques in resection of deep seated cavernous angiomas-review and reevaluation of frame based stereotactic approaches[J].Br J Neurosurg,2013,27(2):175-180.
[6] Matsuda R,Coello AF,De Benedictis A,et al.Awake mapping for resection of cavernous angioma and surrounding gliosis in the left dominant hemisphere:Surgical technique and functional results[J].J Neurosurg. 2012,117(6):1076-1081.
[7] Jung YJ,Hong SC,Seo DW,et al.Surgical resection of cavernous angiomas located in eloquent areas-clinical research[J]. Acta Neurochir Suppl,2006,99:103-108.
[8] Krause V,Schnitzler A,Pollok B,et a1.Functional network interactions during sensorimotor synchronization in musicians and non-musicians[J]. Neuroimage,2010,52(1):245-251.
[9] Eickhoff SB,Heim S,Zilles K,et al.A systems perspective on the effective connectivity of overt speech production[J].Philos Trans A Math Phys Eng Sci,2009,367(1896):2399-2421.
[10] Rathelot JA,Strick PL.Subdivisions of primary motor cortex based on cortico-motoneuronal cells[J].Proc Natl Acad Sci USA,2009,106(3):918-923.
[11] Sharma N,Jones PS,Carpenter TA,et al.Mapping the involvement of BA 4a and 4p during Motor Imagery[J]. Neuroimage,2008,41(1):92-99.
[12] Choo PL,Gallagher HL,Morris J,et al.Correlations between arm motor behavior and brain function following bilateral arm training after stroke:A systematic review[J].Brain Behav,2015,5(12):e00411.
[13] Kuchcinski G,Mellerio C,Pallud J,et al.Three-tesla functional MR language mapping:comparison with direct cortical stimulation in gliomas[J].Neurology,2015,84(6):560-568.
[14] Wengenroth M,Blatow M,Guenther J,et al.Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex[J]. Eur Radiol,2011,21(7):1517-1525.
[15] Bizzi A,Blasi V,F(xiàn)alini A,et al.Presurgical functional MR imaging of language and motor functions:Validation with intraoperative electrocortical mapping[J]. Radiology,2008,248(2):579-589.
[16] Bartos R,Jech R,Vymazal J,et al.Validity of primary motor area localization with fMRI versus electric cortical stimulation:A comparative study[J]. Acta Neurochir(Wien),2009,151(9):1071-1080.
[17] Slotty PJ,Ewelt C,Sarikaya-Seiwert S,et al.Localization techniques in resection of deep seated cavernous angiomas-review and reevaluation of frame based stereotactic approaches[J].Br J Neurosurg,2013,27(2):175-180.
[18] Enchev YP,Popov RV,Romansky KV,et al.Neuronavigated surgery of intracranial cavernomas--enthusiasm for high technologies or a gold standard[J]. Folia Med(Plovdiv),2008,50(2):11-17.
[19] Kumar A,Chandra PS,Sharma BS,et al.The role of neuro navigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions[J].Br J Neurosurg,2014,(28):226.
[20] Zhao J,Wang Y,Kang S,et al. The benefit of neuronavigation for the treatment of patients with intracerebral cavernous malformations[J].Neurosurg Rev,2007,30(4):313-318.
[21] Cho JM,Kim EH,Kim J,et al. Clinical use of diffusion tensor image-merged functional neuronavigation for brain tumor surgeries:Review of preoperative,intraoperative,and postoperative data for 123 cases[J]. Yonsei Med J,2014,55(5):1303-1309.
[22] Miao XL,Chen ZJ,Yang WD,et al.Intraoperative magnetic resonance imaging-guided functional neuronavigation plus intraoperative neurophysiological monitoring for microsurgical resection of lesions involving hand motor area[J].Zhonghua Yi Xue Za Zhi,2013,93(3):212-214.
(收稿日期:2017-10-20)