陳迪,潘偉槐,周哉材,嚴(yán)旭,潘建偉3*
(1.浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華321004;2.紹興文理學(xué)院生命科學(xué)學(xué)院,浙江紹興312000;3.蘭州大學(xué)生命科學(xué)學(xué)院,蘭州730000)
氮(N)、磷(P)、鉀(K)和鋅(Zn)等是植物生長(zhǎng)發(fā)育的重要必需元素。N是植物所需的最重要的大量元素之一,土壤中的硝酸鹽(NO3-)和銨鹽(NH4+)是植物吸收利用氮源的主要形式。植物根的表皮和皮層細(xì)胞通過(guò)不同的轉(zhuǎn)運(yùn)蛋白從土壤中吸收NO3-,然后通過(guò)代謝還原成銨鹽,由銨直接合成氨基酸,供植物利用[1]。P是能量轉(zhuǎn)移和各類(lèi)代謝等的重要調(diào)控元素。K參與植物細(xì)胞的許多生理過(guò)程,如酶激活、氣孔運(yùn)動(dòng)和pH的穩(wěn)態(tài)等。Zn是植物生長(zhǎng)發(fā)育所必需的微量元素,參與糖類(lèi)、脂類(lèi)和核酸等各類(lèi)代謝的調(diào)控。
由于植物營(yíng)養(yǎng)是作物高產(chǎn)、穩(wěn)產(chǎn)的重要生理基礎(chǔ),目前對(duì)植物細(xì)胞如何吸收利用N、P、K和Zn等營(yíng)養(yǎng)元素的分子機(jī)制已有較為深入的研究,尤其是對(duì)這些營(yíng)養(yǎng)元素的轉(zhuǎn)運(yùn)蛋白本身的調(diào)控研究已取得長(zhǎng)足進(jìn)展,并且是近幾年作物營(yíng)養(yǎng)研究領(lǐng)域的熱點(diǎn)之一。本文在扼要介紹N、P、K和Zn等轉(zhuǎn)運(yùn)蛋白理化特性的基礎(chǔ)上,著重介紹了最近幾年有關(guān)這些轉(zhuǎn)運(yùn)蛋白的生物學(xué)功能及其作用機(jī)制的最新進(jìn)展,為作物養(yǎng)分高效利用和品質(zhì)遺傳改良提供新的研究思路和策略。
已知高等植物有4類(lèi)轉(zhuǎn)運(yùn)蛋白具有NO3-的轉(zhuǎn)運(yùn)活性,包括 NRT1/PTR(nitrate transporter 1/peptide transporter,硝酸鹽轉(zhuǎn)運(yùn)蛋白1/寡肽轉(zhuǎn)運(yùn)蛋白)或NPF(NRT1/PTR family,NRT1/PTR家族)、NRT2、CLC(chloride channel family,氯離子通道家族)和SLAC/SLAH(slow anion channels,慢速陰離子通道蛋白)。高等植物為適應(yīng)不同濃度的NO3-環(huán)境,分別進(jìn)化出2類(lèi)NO3-轉(zhuǎn)運(yùn)蛋白系統(tǒng):高親和轉(zhuǎn)運(yùn)系統(tǒng)(high-affinity transport system,HATS)和低親和轉(zhuǎn)運(yùn)系統(tǒng)(low-affinity transport system,LATS)。HATS由 NRT2/NNP(NRT2/nitrate-nitrite-porter)家族成員組成,當(dāng)外界NO3-濃度低至微摩爾水平時(shí),其對(duì)NO3-的吸收有積極作用;相反,LATS由NPF家族成員主導(dǎo),在毫摩爾濃度時(shí)吸收NO3-。這2類(lèi)轉(zhuǎn)運(yùn)蛋白系統(tǒng)的轉(zhuǎn)運(yùn)活性均需要細(xì)胞提供能量和胞外質(zhì)子梯度[2]。
在N不足的情況下,NRT2在植物NO3-/H+同向吸收過(guò)程中起著關(guān)鍵性調(diào)控作用,但需要伴侶蛋白NAR2的參與(圖1)。水稻基因組編碼5個(gè)OsNRT2家族成員,其中OsNRT2.3a和OsNRT2.3b由OsNRT2.3通過(guò)選擇性剪接機(jī)制形成,在不同組織中發(fā)揮功能。水稻OsNRT2.1、OsNRT2.2和OsNRT2.3a介導(dǎo)NO3-的吸收,但依賴(lài)于伴侶蛋白OsNAR2.1的參與、根的發(fā)育狀態(tài)和植株體內(nèi)N的水平[8]。此外,其他物種的NRT2成員也已經(jīng)被鑒定(表1)。
第3類(lèi)轉(zhuǎn)運(yùn)體是氯離子通道蛋白CLC,具有轉(zhuǎn)運(yùn)NO3-的功能。擬南芥和水稻基因組均編碼7個(gè)CLC家族成員(表1)。有研究表明,CLCa和CLCb是定位于液泡膜上的2NO3-/1H+逆向轉(zhuǎn)運(yùn)蛋白,在液泡NO3-的積累中發(fā)揮重要的作用(圖1)。而定位于液泡膜上的CLCg的具體功能目前尚不清楚。當(dāng)前,對(duì)煙草和大豆CLC功能的研究還較落后(表1)。
第4類(lèi)NO3-轉(zhuǎn)運(yùn)體是SLAC/SLAH。擬南芥的SLAC/SLAH家族共有5個(gè)成員(表1),這些基因的蛋白產(chǎn)物均定位在質(zhì)膜上。AtSLAC1和AtSLAH3在保衛(wèi)細(xì)胞中編碼S型陰離子通道,能直接調(diào)控脫落酸(abscisic acid,ABA)信號(hào),促使Cl-和NO3-從保衛(wèi)細(xì)胞中釋放,刺激氣孔關(guān)閉。AtSLAH2在根中柱細(xì)胞中表達(dá),介導(dǎo)NO3-的輸出,與從根到莖中NO3-的運(yùn)輸有關(guān)。功能分析表明,SLAH2是NO3-的特異性通道,其活性受CBL1和CIPK21/23互作蛋白調(diào)控。而SLAH3的活性受CDPK21(calciumdependent protein kinase,鈣離子依賴(lài)性蛋白激酶)磷酸化激活(圖1)[25]。目前,在水稻中僅鑒定出2個(gè)SLAC基因(表 1),其中 SLAC1受蛋白激酶OsSAPK8(stress-activated protein kinase,應(yīng)激活化蛋白激酶)的正調(diào)控。這些研究結(jié)果表明,SLAC/SLAH在不同組織部位中介導(dǎo)NO3-的運(yùn)輸。
表1 不同植物物種已被鑒定的N轉(zhuǎn)運(yùn)蛋白類(lèi)型和種類(lèi)Table 1 Types and numbers of identified N transporter in different plant species
植物NH4+的運(yùn)輸主要由銨轉(zhuǎn)運(yùn)蛋白(ammonium transporters,AMT)介導(dǎo)。擬南芥共有6個(gè)AMT轉(zhuǎn)運(yùn)蛋白(表1)。最近的研究發(fā)現(xiàn),AMT1;1和1;2受CBL1-CIPK23的磷酸化調(diào)控,從而抑制NH4+的轉(zhuǎn)運(yùn)活性[26](圖1)。水稻共有10個(gè)AMT類(lèi)轉(zhuǎn)運(yùn)蛋白,分為 4個(gè)亞類(lèi):OsAMT1、OsAMT2、OsAMT3和OsAMT4。其中OsAMT1是高親和轉(zhuǎn)運(yùn)蛋白,而OsAMT2~AMT4介導(dǎo)低親和NH4+的轉(zhuǎn)運(yùn)[23],但至今有關(guān)OsAMT2~AMT4的報(bào)道較少。最近研究表明,轉(zhuǎn)錄因子OsDOF18(DNA binding with one finger 18)正調(diào)控OsAMT1;1、1;3和2;1的表達(dá),從而促進(jìn)植物細(xì)胞對(duì)NH4+的吸收[27]。此外,在小麥和玉米中也已鑒定出若干個(gè)AMT蛋白(表1),但其具體的作用機(jī)制仍有待研究。
已知植物磷轉(zhuǎn)運(yùn)蛋白(phosphate transporter,PHT)主要分為5個(gè)家族:PHT1、PHT2、PHT3、PHT4和PHT5。
圖1 植物N、P、K和Zn轉(zhuǎn)運(yùn)蛋白及其調(diào)控機(jī)制[25-26,28-31]Fig.1 Transporters and their action mechanisms of N,P,K and Zn in plants[25-26,28-31]
PHT1主要定位于質(zhì)膜上(圖1)。從表2可知,擬南芥共有9個(gè)PHT1成員,在其他物種中也已經(jīng)被鑒定到多個(gè)PHT1成員。已知擬南芥RING類(lèi)型 E3泛素化連接酶NLA(nitrogen limitation adaptation)能介導(dǎo)PHT1的降解,從而降低PHT1的質(zhì)膜豐富度和Pi的吸收[28](圖1)。水稻共有13個(gè)PHT1成員,多數(shù)功能已經(jīng)被鑒定(表2)。有研究顯示,水稻OsNLA通過(guò)與OsPHT1.2和OsPHT1.8互作,促進(jìn)其降解,從而抑制Pi的過(guò)度積累。在Pi充足的條件下,水稻酪蛋白激酶ⅡCK2磷酸化OsPHT,抑制OsPHT與磷酸鹽轉(zhuǎn)運(yùn)蛋白運(yùn)輸促進(jìn)因子(phosphate transporter traffic facilitator 1,PHF1)的互作,從而阻止OsPHT從內(nèi)質(zhì)網(wǎng)到質(zhì)膜的運(yùn)輸,導(dǎo)致其在內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)積累[32]。有研究表明,低Pi能促進(jìn)小麥MYB轉(zhuǎn)錄因子TaPHR1(phosphate starvation response 1)與 TaPHT1基因啟動(dòng)子結(jié)合,從而上調(diào)TaPHT1的轉(zhuǎn)錄[33]。相反,擬南芥轉(zhuǎn)錄因子MYB62經(jīng)低Pi誘導(dǎo)下調(diào)AtPHT1;1和AtPHT1;4的轉(zhuǎn)錄[34],并且抑制WRKY75表達(dá)也會(huì)導(dǎo)致AtPHT1;1和AtPHT1;4轉(zhuǎn)錄下調(diào)[35]。同樣,大麥轉(zhuǎn)錄因子TabHLH1上調(diào)促進(jìn)煙草NtPHT1表達(dá),從而提高植株對(duì)低Pi的耐受性[36]。此外,其他多個(gè)物種的PHT1功能也陸續(xù)被鑒定(表1)。以上研究結(jié)果表明,PHT1轉(zhuǎn)錄調(diào)控和轉(zhuǎn)錄后調(diào)控均為介導(dǎo)磷吸收的重要調(diào)控機(jī)制。
PHT2轉(zhuǎn)運(yùn)蛋白定位于葉綠體內(nèi)膜上(圖1)。擬南芥和水稻均只有1個(gè)PHT2成員(表2),均在葉中表達(dá)且受低Pi誘導(dǎo)。目前,PHT2的具體作用機(jī)制仍有待進(jìn)一步研究。
PHT3轉(zhuǎn)運(yùn)蛋白定位于線(xiàn)粒體內(nèi)膜上(圖1)。從表2中可以看出,擬南芥有3個(gè)AtPHT3成員,在水稻、小麥等物種中也存在多個(gè)PHT3同源蛋白。PHT4轉(zhuǎn)運(yùn)蛋白位于高爾基體上(圖1),參與調(diào)控葉的形成、植物防御、耐鹽性等過(guò)程。擬南芥共有6個(gè)AtPHT4成員,主要在根和葉中表達(dá),其他物種也存在多個(gè)PHT4轉(zhuǎn)運(yùn)蛋白(表2)。但PHT3和PHT4的具體功能至今仍知之甚少。
隨著新媒體的快速發(fā)展,微信群成為家校溝通的重要渠道。管理班級(jí)微信群,與其要求家長(zhǎng)在群里不能做什么,還不如與家長(zhǎng)商討能做什么,以及怎么做。開(kāi)學(xué)初,我借助家長(zhǎng)會(huì),與各科老師以及家長(zhǎng)充分探討,最終確定了班級(jí)微信群每天“群聊”的話(huà)題。同時(shí),這也被當(dāng)作家長(zhǎng)的一項(xiàng)“作業(yè)”來(lái)完成。
PHT5蛋白,又被稱(chēng)為SPX-MFS蛋白(SYG1/PHO81/XPR1),定位于液泡膜上(圖1)。表2顯示:擬南芥PHT5家族共由3個(gè)成員組成,過(guò)表達(dá)AtPHT5均能引起植株生長(zhǎng)緩慢和液泡Pi的積累,表明PHT5成員具有功能豐余性;水稻SPX-MFS家族有4個(gè)成員,Pi饑餓會(huì)抑制OsSPX-MFS1的表達(dá),但促進(jìn)OsSPX-MFS2的表達(dá),不過(guò)它們均受OsmiR827的負(fù)調(diào)控[49]。這些研究結(jié)果證實(shí)了PHT5能調(diào)控胞內(nèi)Pi的穩(wěn)態(tài),對(duì)維持植物細(xì)胞的正常生長(zhǎng)分化具有重要的生物學(xué)功能。
表2 不同物種已被鑒定的P轉(zhuǎn)運(yùn)蛋白的類(lèi)型和數(shù)量Table 2 Types and numbers of identified P transporters in different plant species
與硝態(tài)氮吸收機(jī)制相似,植物細(xì)胞內(nèi)也同樣存在高親和與低親和的K+吸收系統(tǒng),它們分別應(yīng)對(duì)低濃度和高濃度的K+環(huán)境。關(guān)于K+通道蛋白家族的研究,近幾年國(guó)內(nèi)已經(jīng)有較好的綜述[50],本節(jié)著重介紹K+轉(zhuǎn)運(yùn)蛋白的功能及其作用機(jī)制。
植物細(xì)胞共有4類(lèi)K+轉(zhuǎn)運(yùn)蛋白家族:KT/HAK/KUP(K+transporter/high-affinity K+transporter/K+uptake permease,K+轉(zhuǎn)運(yùn)蛋白/高親和K+轉(zhuǎn)運(yùn)蛋白/K+吸收通透酶)、HKT(high-affinity K+transporter,高親和 K+轉(zhuǎn)運(yùn)蛋白)、CHX(cation/hydrogen exchanger,陽(yáng)離子/H+反向轉(zhuǎn)運(yùn)蛋白)和KEA(K+/H+efflux antiporters,K+/H+反向轉(zhuǎn)運(yùn)蛋白)。從表3中可以看出,擬南芥KT/HAK/KUP轉(zhuǎn)運(yùn)蛋白共有13個(gè)成員,水稻OsHAK家族共有27個(gè)成員。此外,在其他物種中也存在多個(gè)同源蛋白。KT/HAK/KUP基因幾乎在所有植物組織或器官中均有表達(dá),表明該轉(zhuǎn)運(yùn)蛋白家族對(duì)植物器官的生長(zhǎng)發(fā)育和維持細(xì)胞中K+的平衡具有非常重要的作用。
HKT轉(zhuǎn)運(yùn)蛋白是K+/Na+同向轉(zhuǎn)運(yùn)體。HKT可分為亞族Ⅰ和Ⅱ,其中亞族Ⅰ存在于單子葉和雙子葉植物中,主要由Na+轉(zhuǎn)運(yùn)蛋白組成,亞族Ⅱ似乎只存在于單子葉植物中,由Na+和K+轉(zhuǎn)運(yùn)蛋白組成。由表3可知,擬南芥HKT家族僅有1個(gè)成員,而水稻HKT家族由9個(gè)成員組成,主要介導(dǎo)Na+的轉(zhuǎn)運(yùn)。
已知HAK5和AKT1是擬南芥中2大主要的K+吸收系統(tǒng)。從圖1中可以看出:在低K+條件下,擬南芥生長(zhǎng)素響應(yīng)因子(auxin response factor 2,ARF2)能與HAK5啟動(dòng)子結(jié)合從而抑制HAK5的表達(dá)[31];CBL1與CIPK9互作能促進(jìn)HAK5的磷酸化和K+的吸收;擬南芥AKT1介導(dǎo)的K+吸收表現(xiàn)為雙親和特性,在K+不足的情況下,CBL1/9能分別與CIPK23互作,并招募CIPK23至細(xì)胞質(zhì)膜,進(jìn)而磷酸化AKT1,導(dǎo)致由低親和吸收轉(zhuǎn)變?yōu)楦哂H和;而CBL10作為負(fù)調(diào)控因子直接與AKT1互作,抑制AKT1介導(dǎo)的K+胞質(zhì)轉(zhuǎn)運(yùn)[51];水稻OsAKT1是鹽敏感型K+吸收的主要通道,OsCBL1-OsCIPK23復(fù)合物能提高OsAKT1介導(dǎo)的K+吸收[52],表明OsAKT1介導(dǎo)的K+轉(zhuǎn)運(yùn)過(guò)程受OsCBL1-OsCIPK23的正調(diào)控。
CHX屬于CPA(cation/proton antiporters,陽(yáng)離子/質(zhì)子反向轉(zhuǎn)運(yùn)蛋白)超家族。表3顯示,擬南芥共有28個(gè)成員,其中研究最廣泛的CHX17介導(dǎo)質(zhì)膜K+的轉(zhuǎn)運(yùn)[53](圖1)。關(guān)于CHX的功能在水稻和野生大豆中也有報(bào)道,但其具體作用機(jī)制有待進(jìn)一步研究。
植物KEA家族是K+/H+轉(zhuǎn)運(yùn)體。擬南芥有6個(gè)KEA成員,它們均在維管組織中表達(dá)(表3)。葉綠體有3個(gè)K+輸出反向轉(zhuǎn)運(yùn)體KEA1~KEA3,其中KEA1和KEA2位于葉綠體內(nèi)膜上,調(diào)控葉綠體K+/H+的穩(wěn)態(tài)(圖1),均與光合作用相關(guān)[54]。有關(guān)水稻、玉米和高粱等作物的KEA作用機(jī)制仍需進(jìn)行深入研究。
表3 不同物種已被鑒定的K轉(zhuǎn)運(yùn)蛋白的類(lèi)型和數(shù)量Table 3 Types and numbers of identified K transporters in different plant species
Zn轉(zhuǎn)運(yùn)蛋白可分為ZIP、CDF(cation diffusion facilitator,陽(yáng)離子擴(kuò)散促進(jìn)子家族)和P1B-ATP酶型家族HMA等蛋白家族(表4)。ZIP轉(zhuǎn)運(yùn)蛋白在植物和動(dòng)物中功能相當(dāng)保守,在Zn2+的吸收和轉(zhuǎn)運(yùn)過(guò)程中不可或缺。擬南芥ZIP家族共有16個(gè)成員,其中研究最清楚的是AtZIP1和AtZIP2,分別定位在液泡膜和質(zhì)膜上,介導(dǎo)液泡Zn2+的輸出和質(zhì)膜Zn2+/Mn2+的吸收[71]。水稻ZIP家族有17個(gè)成員,主要參與 Zn2+轉(zhuǎn)運(yùn)[72]。
表4 不同物種已被鑒定的Zn轉(zhuǎn)運(yùn)蛋白的類(lèi)型和數(shù)量Table 4 Types and numbers of identified Zn transporters in different plant species
CDF轉(zhuǎn)運(yùn)蛋白,又稱(chēng)金屬耐受性蛋白(metal tolerance proteins,MTP)。大多數(shù)CDF是Mn2+/H+(Zn2+)逆向運(yùn)輸?shù)鞍?,介?dǎo)過(guò)度金屬陽(yáng)離子從胞質(zhì)到胞外或細(xì)胞器的轉(zhuǎn)運(yùn)。CDF通常定位于質(zhì)膜或細(xì)胞器膜上,參與金屬解毒、金屬蛋白的組裝和分泌囊泡的包裝。擬南芥CDF家族有12個(gè)成員,而水稻有10個(gè)成員,按功能可分為3類(lèi):Zn-CDF、Zn/Fe-CDF和Mn-CDF。由圖1可知,AtMTP1和AtMTP3定位于液泡膜上,介導(dǎo)Zn2+從胞質(zhì)到液泡的轉(zhuǎn)運(yùn),以維持胞質(zhì)低Zn2+濃度;AtMTP5和AtMTP12位于高爾基體,介導(dǎo)Zn2+從胞質(zhì)到高爾基體的轉(zhuǎn)運(yùn)[77]。
P1B-ATP酶型家族HMA在重金屬離子的胞內(nèi)分配與解毒過(guò)程中起重要作用,可分為2個(gè)亞類(lèi):Ⅰ型(Cu+/Ag+)和Ⅱ型(Zn2+/Cd2+/Pb2+/Co2+)。擬南芥HMA亞族有8個(gè)HMA成員,其中AtHMA1~AtHMA4屬于Ⅱ型,分別介導(dǎo)不同組織中Zn2+的轉(zhuǎn)運(yùn),而其余屬于Ⅰ型。水稻共有9個(gè)HMA成員,其中OsHMA1~OsHMA3屬于Ⅱ型,其余屬于Ⅰ型。大麥和小麥等作物中的HMA蛋白也有報(bào)道。
盡管營(yíng)養(yǎng)元素對(duì)植物生長(zhǎng)發(fā)育是必需的,但過(guò)多的吸收與積累也會(huì)對(duì)植物細(xì)胞造成毒害;因此,對(duì)營(yíng)養(yǎng)元素吸收和轉(zhuǎn)運(yùn)進(jìn)行精確調(diào)控是植物生長(zhǎng)發(fā)育的重要調(diào)控機(jī)制之一。質(zhì)膜內(nèi)吞(endocytosis)是真核細(xì)胞吸收胞外營(yíng)養(yǎng)物質(zhì)和傳遞胞內(nèi)外信號(hào)的重要途徑,也是調(diào)控脂質(zhì)、受體和轉(zhuǎn)運(yùn)蛋白質(zhì)膜豐度與降解的重要手段。因此,深入剖析質(zhì)膜內(nèi)吞調(diào)控機(jī)制對(duì)理解植物生長(zhǎng)發(fā)育調(diào)控機(jī)制具有重要的科學(xué)意義。
已知硼和鐵轉(zhuǎn)運(yùn)蛋白的質(zhì)膜內(nèi)吞是植物細(xì)胞吸收硼和鐵及其分布的重要機(jī)制[78-81]。在低硼條件下,擬南芥硼輸入載體NIP5;1(nodulin 26-like intrinsic protein 5;1,類(lèi)Nod26膜內(nèi)在蛋白)和硼輸出載體BOR1(boron transporter 1,硼轉(zhuǎn)運(yùn)蛋白)在根尖細(xì)胞中分別定位于細(xì)胞外側(cè)質(zhì)膜和內(nèi)側(cè)質(zhì)膜上,這種亞細(xì)胞定位對(duì)硼的吸收與轉(zhuǎn)運(yùn)極為重要。硼外源處理能快速誘導(dǎo)BOR1質(zhì)膜內(nèi)吞和液泡降解,但不影響NIP5;1亞細(xì)胞定位[81];網(wǎng)格蛋白接頭蛋白復(fù)合體AP-2亞基AP-2μ功能缺失將抑制NIP5;1質(zhì)膜內(nèi)吞和側(cè)向極性定位[80]。植物細(xì)胞鐵的吸收在很大程度上依賴(lài)于鐵輸入載體IRT1(iron-regulated transporter 1,鐵離子轉(zhuǎn)運(yùn)蛋白),而化學(xué)或遺傳損害網(wǎng)格蛋白或網(wǎng)格蛋白介導(dǎo)的內(nèi)吞(clathrin-mediated endocytosis,CME)功能促進(jìn)了IRT1的質(zhì)膜定位,尤其在質(zhì)膜外側(cè)定位[78-79]。這些研究結(jié)果表明,網(wǎng)格蛋白及其介導(dǎo)的內(nèi)吞對(duì)維持轉(zhuǎn)運(yùn)蛋白的質(zhì)膜極性定位具有重要功能。
目前,對(duì)N、P、K和Zn等轉(zhuǎn)運(yùn)蛋白的內(nèi)吞研究相對(duì)較少。布雷菲德菌素A(brefeldin A,BFA)是植物細(xì)胞外吐(exocytosis)或再回收(recycling)途徑的抑制劑,是植物細(xì)胞質(zhì)膜內(nèi)吞分析的重要工具。已知K+轉(zhuǎn)運(yùn)蛋白CHX17定位于質(zhì)膜上,其表達(dá)受K+饑餓誘導(dǎo)。BFA處理會(huì)引起AtCHX17質(zhì)膜信號(hào)下降,但在BFA小體中的信號(hào)上升[82]。AtPHT1;1是質(zhì)膜和內(nèi)質(zhì)網(wǎng)定位的Pi轉(zhuǎn)運(yùn)蛋白,BFA處理同樣誘導(dǎo)PHT1;1質(zhì)膜信號(hào)下降而B(niǎo)FA小體信號(hào)上升[83]。這些研究結(jié)果表明,CHX17和PHT1;1質(zhì)膜豐度受內(nèi)吞途徑的調(diào)控。
植物營(yíng)養(yǎng)元素的吸收與轉(zhuǎn)運(yùn)機(jī)制是近幾年植物營(yíng)養(yǎng)生理學(xué)研究領(lǐng)域的重要熱點(diǎn)之一。至今對(duì)植物N、P、K和Zn等轉(zhuǎn)運(yùn)蛋白的功能研究已經(jīng)取得了一定進(jìn)展,尤其對(duì)這些蛋白家族基因在不同生理?xiàng)l件下的響應(yīng)機(jī)制已經(jīng)有了較好的了解。然而,關(guān)于這些轉(zhuǎn)運(yùn)蛋白的具體分子作用機(jī)制或調(diào)控機(jī)制仍有待于進(jìn)一步探索。目前亟待解決的科學(xué)問(wèn)題有:1)對(duì)這些轉(zhuǎn)運(yùn)蛋白晶體結(jié)構(gòu)的解析將是理解轉(zhuǎn)運(yùn)蛋白分子作用機(jī)制的核心科學(xué)問(wèn)題,其晶體結(jié)構(gòu)能否解析成功將成為本研究領(lǐng)域的一個(gè)突破/瓶頸;2)弄清這些轉(zhuǎn)運(yùn)蛋白的分泌、膜定位和液泡降解等過(guò)程的細(xì)節(jié)問(wèn)題將是理解轉(zhuǎn)運(yùn)蛋白功能調(diào)控的核心內(nèi)容;3)將植物響應(yīng)外界的信號(hào)通路整合成全面的信號(hào)網(wǎng)通路將成為研究轉(zhuǎn)運(yùn)蛋白功能機(jī)制的突破性進(jìn)展;4)剖析不同轉(zhuǎn)運(yùn)蛋白之間的協(xié)調(diào)作用;5)分析這些轉(zhuǎn)運(yùn)蛋白在植物逆境脅迫過(guò)程中的生物學(xué)功能,尤其是在逆境條件下,對(duì)作物產(chǎn)量性狀的貢獻(xiàn)。這些科學(xué)問(wèn)題的解決將對(duì)作物產(chǎn)量生產(chǎn)(包括作物高產(chǎn)、穩(wěn)產(chǎn)和品質(zhì)育種等)具有重要的理論和現(xiàn)實(shí)指導(dǎo)意義。
:
[1] LI T Y,LIAO K,XU X F,et al.Wheat ammonium transporter(AMT)gene family:Diversity and possible role in hostpathogen interaction with stem rust.Frontiers in Plant Science,2017,8:1637.
[2] LAW C J,MALONEY P C,WANG D N.Ins and outs of major facilitator superfamily antiporters.Annual Review of Microbiology,2008,62:289-305.
[3] CHIBA Y,SHIMIZU T,MIYAKAWA S,et al.Identification ofArabidopsisthaliana NRT1/PTR FAMILY (NPF)proteins capable of transporting plant hormones.Journal of Plant Research,2015,128(4):679-686.
[4] LéRAN S,EDEL K H,PERVENT M,et al.Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2,a phosphatase inactivated by the stress hormone abscisic acid.Science Signaling,2015,8(375):ra43.
[5] FAN X R,FENG H M,TAN Y W,et al.A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen.Journal of Integrative Plant Biology,2016,58(6):590-599.
[6] XIA X D,FAN X R,WEI J,et al.Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and longdistance transport.Journal of Experimental Botany,2015,66(1):317-331.
[7] LIN C M,KOH S,STACEY G,et al.Cloning and functional characterization of a constitutively expressed nitrate transporter gene,OsNRT1,from rice.Plant Physiology,2000,122(2):379-388.
[8] KOTUR Z,GLASS A D M.A 150 kDa plasma membrane complexofAtNRT2.5andAtNAR2.1isthemajor contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana.Plant,Cell&Environment,2015,38(8):1490-1502.
[9]PELLIZZARO A,ALIBERT B,PLANCHET E,et al.Nitrate transporters:An overview in legumes.Planta,2017,246(2):585-595.
[10]FAN X R,NAZ M,FAN X R,et al.Plant nitrate transporters:From gene function to application.Journal of Experimental Botany,2017,68(10):2463-2475.
[11]BUCHNER P,HAWKESFORD M J.Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family(NPF)in wheat.Journal of Experimental Botany,2014,65(19):5697-5710.
[12]BAI H,EURING D,VOLMER K,et al.The nitrate transporter(NRT)gene family in poplar.PLoS One,2013,8(8):e72126.
[13]SEYOSHI K,ISHIKAWA S,ABDEL-LATIF H I S.Nitrate transport in barley//Nitrogen Assimilation in Plants.Kerala,India:Research Signpost,2010.
[14]VON WITTGENSTEIN N J J B,LE C H,HAWKINS B J,et al.Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants.BMC Evolutionary Biology,2014,14:11.
[15]GUO T C,XUAN H M,YANG Y Y,et al.Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation.Journal of Plant Growth Regulation,2014,33(4):837-848.
[16]孟森.林木細(xì)根氮素吸收動(dòng)態(tài)及氮轉(zhuǎn)運(yùn)蛋白基因表達(dá).陜西,楊凌:西北農(nóng)林科技大學(xué),2016.MENG S.Dynamics of nitrogen uptake and gene expression of nitrogen transporter by forest roots.Yangling,Shaanxi:Northwest A&F University,2016.(in Chinese with English abstract)
[17]NGUYEN C T,AGORIO A,JOSSIER M,etal.Characterization of the chloride channel-like,AtCLCg,involved in chloride tolerance in Arabidopsis thaliana.Plant Cell Physiology,2016,57(4):764-775.
[18]LI X J,YU B J,CUI Y Q,et al.Melatonin application confers enhanced salt tolerance by regulating Na+and Claccumulation in rice.Plant Growth Regulation,2017,83(3):441-454.
[19]WONG T H,LI M W,YAO X Q,et al.The GmCLC1 protein from soybean functions as a chloride ion transporter.Journal of Plant Physiology,2013,170(1):101-104.
[20]LURIN C,GüCLü J,CHENICLET C,et al.CLC-Nt1,a putative chloride channel protein of tobacco,co-localizes with mitochondrial membrane markers.The Biochemical Journal,2000,348(2):291-295.
[21]QIU J E,HENDERSON S W,TESTER M,et al.SLAH1,a homologue of the slow type anion channel SLAC1,modulates shoot Cl-accumulation and salt tolerance in Arabidopsis thaliana.Journal of Experimental Botany,2016,67(15):4495-4505.
[22]FAN X L,WU J M,CHEN T Y,et al.Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice.Journal of Integrative Plant Biology,2015,57(12):1063-1077.
[23]YE X X,SUN Y J,LIU P P,et al.Evolutionary analysis of AMT (ammonium transporters)family in Arabidopsis thaliana and Oryza sativa.Molecular Soil Biology,2016,7(11):1-7.
[24]GU R L,DUAN F Y,AN X,et al.Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize(Zea mays L.).Plant Cell Physiology,2013,54(9):1515-1524.
[25]GEIGER D,MAIERHOFER T,AL-RASHEID K A S,et al.Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1.Science Signaling,2011,4(173):ra32.
[26]STRAUB T,LUDEWIG U,NEUH?USER B.The kinase CIPK23 inhibitsammonium transportin Arabidopsis thaliana.The Plant Cell,2017,29(2):409-422.
[27]WU Y F,YANG W Z,WEI J H,et al.Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots.Molecules Cells,2017,40(3):178-185.
[28]LIN W Y,HUANG T K,CHIOU T J.Nitrogen limitation adaptation,a target of microRNA827,mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis inArabidopsis.The Plant Cell,2013,25(10):4061-4074.
[29]MA Q,TANG R J,ZHENG X J,et al.The calcium sensor CBL7 modulatesplantresponsesto low nitrate in Arabidopsis. Biochemical and Biophysical Research Communications,2015,468(1/2):59-65.
[30]MAO J J,MANIK S M N,SHI S J,et al.Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana.Genes,2016,7(9):62.
[31]ZHAO S,ZHANG M L,MA T L,et al.Phosphorylation of ARF2 relieves its repression of transcription of the K+transporter gene HAK5 in response to low potassium stress.The Plant Cell,2016,28(12):3005-3019.
[32]CHEN J Y,WANG Y F,WANG F,et al.The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels.The Plant Cell,2015,27(3):711-723.
[33]WANG J,SUN J H,MIAO J,et al.A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat.Annals of Botany,2013,111(6):1139-1153.
[34]DEVAIAH B N,MADHUVANTHI R,KARTHIKEYAN A S,et al.Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor inArabidopsis.Molecular Plant,2009,2(1):43-58.
[35]DEVAIAH B N,KARTHIKEYAN A S,RAGHOTHAMA K G.WRKY75 transcription factorisa modulatorof phosphate acquisition and root development in Arabidopsis.Plant Physiology,2007,143(4):1789-1801.
[36]DING WW,WANGYX,FANG W B,et al.TaZAT8,a C2H2-ZFP type transcription factor gene in wheat,plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition,ROS homeostasis and root system establishment.Plant Physiology,2016,158(3):297-311.
[37]AYADI A,DAVID P,ARRIGHI J F,et al.Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling.Plant Physiology,2015,167(4):1511-1526.
[38]PASZKOWSKI U,KROKEN C,ROUX V,et al.Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscularmycorrhizal symbiosis.Proceedings ofthe NationalAcademy of Sciences of the USA,2002,99(20):13324-13329.
[39]MLODZINSKA E,ZBOINSKA M.Phosphate uptake and allocation:A closer look at Arabidopsis thaliana L.and Oryza sativa L.Frontiers in Plant Science,2016,7:1198.
[40]LIU F,XU Y J,JIANG H H,et al.Systematic identification,evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi.International Journal of Molecular Sciences,2016,17(6):930.
[41]SISAPHAITHONG T,KONDO D,MATSUNAGA H,et al.Expression of plant genes for arbuscular mycorrhizainducible phosphate transporters and fungal vesicle formation in sorghum,barley,and wheat roots.Bioscience,Biotechnology,and Biochemistry,2012,76(12):2364-2367.
[42]ZHANG C X,MENG S,LI M J,et al.Genomic identification and expression analysis of the phosphate transporter gene family in poplar.Frontiers in Plant Science,2016,7:1398.
[43]CHEN A Q,CHEN X,WANG H M,et al.Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato.BMC Plant Biology,2014,14:61.
[44]VERSAW W K,HARRISON M J.A chloroplast phosphate transporter,PHT2;1,influences allocation of phosphate within the plant and phosphate-starvation responses.The Plant Cell,2002,14(8):1751-1766.
[45]史書(shū)林,王丹鳳,顏彥,等.水稻磷轉(zhuǎn)運(yùn)蛋白OsPHT2;1在提高磷素利用率方面的作用.中國(guó)水稻科學(xué),2013,27(5):457-465.SHI S L,WANG D F,YAN Y,et al.Function of phosphate transporter OsPHT2;1 in improving phosphate utilization in rice.Chinese Journal of Rice Science,2013,27(5):457-465.(in Chinese with English abstract)
[46]SHUKLA V,KAUR M,AGGARWAL S,et al.Tissue specific transcript profiling of wheat phosphate transporter genes and its association with phosphate allocation in grains.Scientific Reports,2016,6:39293.
[47]WANG D L Y,Lü S L,JIANG P,et al.Roles,regulation,and agricultural application of plant phosphate transporters.Frontiers in Plant Science,2017,8:817.
[48]VELASCO V M E,MANSBRIDGE J,BREMNER S,et al.Acclimation of the crucifer Eutrema salsugineumto phosphate limitation is associated with constitutively high expression of phosphate-starvation genes.Plant,Cell&Environment,2016,39(8):1818-1834.
[49]LIN S I,SANTI C,JOBET E,et al.Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation.Plant and Cell Physiology,2010,51(12):2119-2131.
[50]伍國(guó)強(qiáng),水清照,馮瑞軍.植物K+通道AKT1的研究進(jìn)展.植物學(xué)報(bào),2017,52(2):225-234.WU G Q,SHUI Q Z,FENG R J.Research advance of K+channel AKT1 in plants.Chinese Bulletin of Botany,2017,52(2):225-234.(in Chinese with English abstract)
[51]REN X L,QI G N,FENG H Q,et al.Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+homeostasis in Arabidopsis.The Plant Journal,2013,74(2):258-266.
[52]LI J,LONG Y,QI G N,et al.The Os-AKT1 channel is critical for K+uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex.The Plant Cell,2014,26(8):3387-3402.
[53]WANG Y,WU W H.Regulation of potassium transport and signaling in plants.Current Opinion in Plant Biology,2017,39:123-128.
[54]DANA S,HERDEAN A,LUNDIN B,et al.Each of the chloroplast potassium efflux antiporters affects photosynthesis and growth of fully developedArabidopsis rosettes under shortday photoperiod.Physiologia Plantarum,2016,158(4):483-491.
[55]GOMEZ-PORRAS J L,RIA?O-PACHóN D M,BENITO B,et al.Phylogenetic analysis of K+transporters in bryophytes,lycophytes,and flowering plants indicates a specialization of vascular plants.Frontiers in Plant Science,2012,3:167.
[56]HE C Y,CUI K,DUAN A G,et al.Genome-wide and molecular evolution analysis of the poplar KT/HAK/KUP potassium transporter gene family.Ecology and Evolution,2012,2(8):1996-2004.
[57]YANG T Y,ZHANG S,HU Y B,et al.The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels.Plant Physiology,2014,166(2):945-959.
[58]HYUN T K,RIM Y,KIM E,et al.Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato(Solanum lycopersicum L.).Genes&Genomics,2014,36(3):365-374.
[59]ZHANG Z B,ZHANG J W,CHEN Y J,et al.Genome-wide analysis and identification of HAK potassium transporter gene family in maize(Zea mays L.).Molecular Biology Reports,2012,39(8):8465-8473.
[60]晁毛妮,溫青玉,張晉玉,等.大豆KUP/HAK/KT鉀轉(zhuǎn)運(yùn)體基因家族的鑒定與表達(dá)分析.西北植物學(xué)報(bào),2017,37(2):239-249.CHAO M N,WEN Q Y,ZHANG J Y,et al.Identification and expression analysisofKUP/HAK/KT potassium transporter gene family in soybean[Glycine max(L.)Merr.].Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):239-249.(in Chinese with English abstract)
[61]ZHANG C,LI H J,WANG J Y,et al.The rice high-affinity K+transporter OsHKT2;4 mediates Mg2+homeostasis under high-Mg2+conditions in transgenic Arabidopsis.Frontiers in Plant Science,2017,8:1823.
[62]PLATTEN J D,COTSAFTIS O,BERTHOMIEU P,et al.Nomenclature for HKT transporters,key determinants of plant salinity tolerance.Trends in Plant Science,2006,11(8):372-374.
[63]REN Z J,LIU Y,KANG D,et al.Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants.Plant Cell,Tissue and Organ Culture,2015,123(3):569-578.
[64]WANG T T,LIU Z J,LIU Z Q,et al.SbHKT1;4,a member of the high-affinity potassium transporter gene family from Sorghum bicolor,functions to maintain optimal Na+/K+balance under Na+stress.Journal of Integrative Plant Biology,2014,56(3):315-332.
[65]GIERTH M,MASER P.Potassium transporters in plants:Involvement in K+acquisition,redistribution and homeostasis.FEBS Letters,2007,581(12):2348-2356.
[66]CHEN Y,MA J K,MILLER A J,et al.OsCHX14 is involved in the K+homeostasis in rice(Oryza sativa)flowers.Plant Cell Physiology,2016,57(7):1530-1543.
[67]JIA B W,SUN M Z,DUANMU H Z,et al.GsCHX19.3,a member of cation/H+exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance.Scientific Reports,2017,7:9423.
[68]ZHENG S,PANT,FAN LG,et al.AnovelAtKEAgene family,homolog of bacterial K+/H+antiporters,plays potential roles in K+homeostasis and osmotic adjustment in Arabidopsis.PLoS One,2013,8(11):e81463.
[69]CHEN H T,CHEN X,WU B Y,et al.Whole-genome identification and expression analysis of K+efflux antiporter(KEA)and Na+/H+antiporter(NHX)families under abiotic stress in soybean.Journal of Integrative Agriculture,2015,14(6):1171-1183.
[70]韓蕾,宋志忠,王莉,等.7種植物K+/H+逆向轉(zhuǎn)運(yùn)蛋白的生物信息學(xué)分析.基因組學(xué)與應(yīng)用生物學(xué),2011,30(3):372-378.HAN L,SONG Z Z,WANG L,et al.Bioinformatics analysis of 7 plants’K+/H+antiporters.Genomics and Applied Biology,2011,30(3):372-378.(in Chinese with English abstract)
[71]MILNER M J,SEAMON J,CRAFT E,et al.Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis.Journal of Experimental Botany,2013,64(1):369-381.
[72]ISHIMARU Y,BASHIR K,NISHIZAWA N K.Zn uptake and translocation in rice plants.Rice,2011,4(1):21-27.
[73]KOLAJ-ROBIN O,RUSSELL D,HAYES K A,et al.Cation diffusion facilitator family:Structure and function.FEBS Letters,2015,589(12):1283-1295.
[74]DENG F L,YAMAJI N,XIA J X,et al.A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice.Plant Physiology,2013,163(3):1353-1362.
[75]KAZNINA N M,TITOV A F,TOPCHIEVA L V,et al.The content of HvHMA2 and HvHMA3 transcripts in barley plants treated with cadmium.Russian Journal of Plant Physiology,2014,61(3):355-359.
[76]TAN J J,WANG J W,CHAI T Y,et al.Functional analyses of TaHMA2,a P1B-type ATPase in wheat.Plant Biotechnology Journal,2013,11(4):420-431.
[77]TANAKA N,FUjIWARAT,TOMIOKA R,etal.Characterization of the histidine-rich loop of Arabidopsis vacuolar membrane zinc transporter AtMTP1 as a sensor of zinc level in the cytosol.Plant and Cell Physiology,2015,56(3):510-519.
[78]BARBERON M,ZELAZNYE,ROBERTS,etal.Monoubiquitin-dependent endocytosis of the IRON-REGUL ATED TRANSPORTER 1(IRT1)transporter controls iron uptake in plants.Proceedings of the National Academy of Sciences of the USA,2011,108(32):12985-12986.
[79]BARBERON M,DUBEAUX G,KOLB C,et al.Polarization of IRON-REGULATED TRANSPORTER 1(IRT1)to the plant-soil interface plays crucial role in metal homeostasis.Proceedings of the National Academy of Sciences of the USA,2014,111(22):8293-8298.
[80]WANG S L,YOSHINARI A,SHIMADA T,et al.Polar localization of the NIP5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots.The Plant Cell,2017,29(4):824-842.
[81]TAKANO J,TANAKA M,TOYODA A,et al.Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways.Proceedings of the National Academy of Sciences of the USA,2010,107(11):5220-5225.
[82]CHANROJ S,PADMANABAN S,CZERNY D D,et al.K+transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system:Role in reproduction and seed set.Molecular Plant,2013,6(4):1226-1246.
[83]BAYLE V,ARRIGHI J F,CREFFA,et al.Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation.The Plant Cell,2011,23(4):1523-1535.
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2018年3期