杜娟,吳博,殷松娜,史海燕,王愛紅,趙菊梅
(延安大學(xué)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)教研室,延安 716000)
印記基因是子代體細(xì)胞中僅父源或母源一方同源等位基因表達(dá)而另一方不表達(dá)的基因,主要存在于真獸類哺乳動(dòng)物和有袋類動(dòng)物中。個(gè)體發(fā)育過程中,基因印記在子代配子形成過程中建立,配子攜帶的親本印記在受精、卵裂過程中一直保持,至胚胎發(fā)育為8細(xì)胞和囊胚期時(shí),親本印記在性腺中發(fā)生大規(guī)模擦除[1]。早期胚胎發(fā)育過程中,印記基因?qū)μ汉吞ケP的生長具有調(diào)節(jié)作用,單一染色體來源的核移植胚胎因只含父源或母源一方染色體基因,印記基因表達(dá)異常,胚胎不能正常發(fā)育[2,3];個(gè)體發(fā)育過程中,印記基因與組織器官的建成、腫瘤等疾病的發(fā)生、發(fā)展相關(guān),印記基因的缺失或異常表達(dá)可使組織器官發(fā)育異常,促進(jìn)腫瘤的形成和發(fā)展[4-6]。因此,探究印記基因的表達(dá)調(diào)控機(jī)制有助于胚胎發(fā)育、腫瘤疾病的發(fā)生發(fā)展等生理、病理過程揭示作用機(jī)制。
印記基因的表達(dá)主要受甲基化調(diào)控。胚胎發(fā)育過程中發(fā)育多能關(guān)聯(lián)3(developmental pluripotency associated 3,Dppa3,又稱為Stella或Pgc7)能夠抑制Tet2和Tet3介導(dǎo)的母源基因組去甲基化, 維持父源基因組中特定印記區(qū)的DNA甲基化狀態(tài)[7];Uhrf1(又稱為NP95)是連接DNA甲基化與組蛋白甲基化的樞紐,能夠與增殖細(xì)胞核抗原、G9a、Dmnt1等協(xié)同作用促進(jìn)DNA的甲基化[8,9]。Dppa3和Uhrf1對(duì)DNA甲基化的維持和促進(jìn)作用提示:Dppa3和Uhrf1協(xié)同表達(dá)可能對(duì)印記基因的表達(dá)具有調(diào)節(jié)作用。前期研究中,我們通過蛋白質(zhì)免疫共沉淀聯(lián)合質(zhì)譜分析法發(fā)現(xiàn)人HEK293T細(xì)胞中Dppa3與Uhrf1存在相互作用[10],然而二者相互作用是否對(duì)胚胎發(fā)育過程中印記基因的表達(dá)具有調(diào)控作用還不清楚。本研究擬通過Dppa3和Uhrf1外源表達(dá)載體的構(gòu)建探究二者協(xié)同作用對(duì)印記基因表達(dá)的影響,以期為印記基因的表達(dá)調(diào)控提供研究基礎(chǔ)。
小鼠畸胎瘤F9細(xì)胞系購自中國科學(xué)院細(xì)胞庫,培養(yǎng)于0.1%明膠包被的含10%胎牛血清(FBS,Gibco),100μmol/L非必須氨基酸和2mmol/L L-谷氨酰胺的DMEM培養(yǎng)液中。小鼠胚胎干細(xì)胞系J1購自美國模式培養(yǎng)物集存庫(American Type Culture Collection,ATCC),培養(yǎng)于0.1%明膠包被的C57BL/6×129小鼠胚胎干細(xì)胞完全培養(yǎng)基(購自賽業(yè)生物科技有限公司)中。
為了構(gòu)建Uhrf1過表達(dá)載體pCMV-Myc-Uhrf1和Dppa3過表達(dá)載體pCDH-Flag-Dppa3,以J1小鼠胚胎干細(xì)胞為材料,Trizol法提取總RNA,經(jīng)反轉(zhuǎn)錄獲得J1細(xì)胞的cDNA。以上述cDNA為模板,Uhrf1-EcoR1-F和Uhrf1-Xhol-R,F(xiàn)lag-Dppa3-Nhe1-F和Dppa3-NotI-R分別為擴(kuò)增引物(引物序列見表1),PCR擴(kuò)增法獲得Uhrf1和Dppa3的表達(dá)序列,酶切后分別與pCMV-myc和pCDH-CMV-MCS-EF1-Puro載體連接。將連接產(chǎn)物經(jīng)熱激轉(zhuǎn)化入DH5α菌體中,小提測序鑒定正確后用去內(nèi)毒質(zhì)粒提取試劑盒提取Uhrf1和Dppa3的體外過表達(dá)載體pCMV-Myc-Uhrf1和pCDH-Flag-Dppa3用于細(xì)胞轉(zhuǎn)染。
表1 質(zhì)粒構(gòu)建引物序列Tab.1 Primer sequences for plasmids construction
為檢測Dppa3與Uhrf1之間是否有相互作用,收集J1細(xì)胞,加入含全蛋白酶抑制劑的NP-40細(xì)胞裂解液,冰上裂解15min,12000r離心15min,取上清。預(yù)留少量裂解物,剩余裂解物分兩份,一份加入Dppa3抗體和proteinA+G agarose,另一份加入IgG和proteinA+G agarose,4℃過夜旋轉(zhuǎn)孵育,離心棄上清,用含全蛋白酶抑制劑的NP-40裂解液洗滌上述沉淀3次,向沉淀中加入1×SDS蛋白上樣緩沖液,95℃煮10min,8000r/min離心10min,取上清進(jìn)行Western Blot檢測。
Trizol法提取各處理細(xì)胞總RNA,反轉(zhuǎn)錄后獲得cDNA。以GAPDH為內(nèi)參基因,實(shí)時(shí)熒光定量PCR法檢測各基因的相對(duì)表達(dá)量(內(nèi)參基因和各基因的定量引物序列見表2)。反應(yīng)體系如下:2×SYBR premix Ex Taq(10ul),primer(上下游各 1μl),cDNA(1μl), Rox(1μl),加水補(bǔ)至 20μl。反應(yīng)條件為:[95℃ 3min,(95℃ 5s, 60℃ 30s)×40 cycles](擴(kuò)增條件),95℃ 5 s,(60℃ 1 min,持續(xù)升溫至95℃,熒光檢測間隔為5℃)(融解曲線測定條件)。各檢測基因的表達(dá)量變化以2-△△CT進(jìn)行計(jì)算,P<0.05為顯著,P<0.01為極顯著。
表2 實(shí)時(shí)熒光定量PCR引物序列Tab.2 Real-time PCR primer sequences
脂質(zhì)體轉(zhuǎn)染法將pCMV-Myc-Uhrf1和pCDH-Flag-Dppa3分別轉(zhuǎn)染至F9細(xì)胞中,36h后,PBS洗滌兩次,免疫染色固定液室溫固定15min,免疫染色洗滌液洗滌3次(每次5min),棄洗滌液,加入免疫染色封閉液室溫封閉90min,棄封閉液,分別加入鼠源Myc和Flag標(biāo)簽一抗(1∶500稀釋)4℃過夜封閉。棄一抗,分別加入Cy3標(biāo)記的山羊抗小鼠二抗(1∶500稀釋),室溫避光孵育2h,免疫染色洗滌液洗滌3次(每次5min),加入DAPI染液,室溫避光染核5min,免疫染色洗滌液洗滌3次(每次5min)。倒置熒光顯微鏡觀察法Uhrf1和Dppa3的分布,拍照記錄。
Uhrf1和Dppa3均參與基因的甲基化修飾,二者是否能夠協(xié)同作用調(diào)節(jié)印記基因的表達(dá)還不清楚。在前期研究中,為確定Dppa3對(duì)胚胎干細(xì)胞多能性的調(diào)節(jié)作用,我們以小鼠J1胚胎干細(xì)胞為材料,利用免疫沉淀聯(lián)合質(zhì)譜法(Co-IP—MS)分離鑒定了J1細(xì)胞中Dppa3的相互作用蛋白,質(zhì)譜鑒定結(jié)果顯示Uhrf1與Dppa3存在相互作用[10]。在此,為探究Dppa3和Uhrf1對(duì)印記基因表達(dá)的調(diào)控作用,首先對(duì)Dppa3和Uhrf1之間是否存在相互作用進(jìn)行了驗(yàn)證,結(jié)果顯示(圖1):以小鼠J1胚胎干細(xì)胞為實(shí)驗(yàn)材料,用Dppa3抗體進(jìn)行Co-IP,Western Blot可檢測到Uhrf1,即Dppa3與Uhrf1蛋白間存在相互作用,二者可能通過協(xié)同作用調(diào)節(jié)基因的表達(dá),該結(jié)果與實(shí)驗(yàn)室前期研究結(jié)果一致。
圖1 Co-IP檢測Dppa3與Uhrf1間的相互作用Fig.1 Interaction between Dppa3 and Uhrf1 was analyzed using co-immunoprecipitation assay
為探究Dppa3和Uhrf1協(xié)同作用對(duì)印記基因的表達(dá)影響,首先利用基因體外克隆技術(shù)構(gòu)建了Dppa3和Uhrf1的過表達(dá)載體pCDH-Flag-Dppa3和pCMV-Myc-Uhrf1。將經(jīng)測序鑒定正確的Dppa3和Uhrf1表達(dá)載體pCDH-Flag-Dppa3和pCMV-Myc-Uhrf1以脂質(zhì)體轉(zhuǎn)染至F9細(xì)胞中,24h后,用Flag和Myc標(biāo)簽抗體對(duì)上述細(xì)胞進(jìn)行免疫染色,觀察Flag-Dppa3和Myc-Uhrf1在F9細(xì)胞中的表達(dá)情況。結(jié)果顯示(圖2):體外構(gòu)建的pCDH-Flag-Dppa3和pCMV-Myc-Uhrf1載體可正常表達(dá)Flag-Dppa3和Myc-Uhrf1融合基因,F(xiàn)lag-Dppa3在細(xì)胞核與細(xì)胞質(zhì)中均有分布,Myc-Uhrf1僅存在于細(xì)胞核中,這與內(nèi)源Dppa3和Uhrf1的分布一致[11,12]。該結(jié)果表明,實(shí)驗(yàn)構(gòu)建的pCDH-Flag-Dppa3和pCMV-Myc-Uhrf1載體能夠表達(dá)Dppa3和Uhrf1基因,可用于后續(xù)研究。
圖2 免疫熒光染色檢測pCDH-Flag-Dppa3和pCMV-Myc-Uhrf1載體基因在F9細(xì)胞的表達(dá)。比例尺,100μmFig.2 Immunofluorescent examination for expression of pCDH-Flag-Dppa3 and pCMV-Myc-Uhrf1 in F9 cells.Scale bar, 100μm
圖3 Dppa3與Uhrf1協(xié)調(diào)作用調(diào)節(jié)印記基因的表達(dá)。A,乙醇(RA的溶劑,用作對(duì)照,CT)和1μmol/L RA處理后的J1細(xì)胞形態(tài);比例尺:100μm; B,qPCR檢測RA處理J1細(xì)胞后Dppa3、Uhrf1、Peg3和Igf2基因的表達(dá)變化;C和D,qPCR檢測RA誘導(dǎo)J1細(xì)胞分化過程中Dppa3(2Vmyc+Dppa3+RA)、Uhrf1(Vpcdh+Uhrf1+RA)、Dppa3和Uhrf1(Uhrf1+Dppa3+RA)過表達(dá)對(duì)印記基因Peg3(C)和Igf2(D)表達(dá)的影響,以空載轉(zhuǎn)染的RA溶劑處理組細(xì)胞(2V+CT)為正常對(duì)照組,空載轉(zhuǎn)染的1μmol/L RA處理組細(xì)胞(2V+RA)為RA處理組;*P<0.05;**P<0.01Fig.3 Imprinted gene expression was regulated by Dppa3 and Uhrf1.A, morphology of J1 cells that were treated with ethanol (CT), or treated with 1μmol/L RA; scale bar∶ 100μm; B, relative expression change of Dppa3, Uhrf1, Peg3 and Igf2 in RA treated J1 cells was detected using real-time PCR;C and D, real-time PCR examination for two imprinting gene Peg3 (C) and Igf2 (D) expression, J1 cells pre-transfected with empty vectors(2V),pCDH-Flag-Dppa3(Dppa3), pCMV-Myc-Uhrf1(Uhrf1), pCDH-Flag-Dppa3 and pCMV-Myc-Uhrf1(Uhrf1+Dppa3) were treated with ethanol(CT)or 1μmol/L RA (RA)separately; * P<0.05; ** P<0.01
印記基因的表達(dá)會(huì)隨胚胎發(fā)育階段的不同而改變,為明確Dppa3和Uhrf1協(xié)同表達(dá)對(duì)胚胎發(fā)育過程中印記基因的調(diào)節(jié)作用,首先以全反式維甲酸(RA)為誘導(dǎo)劑誘導(dǎo)J1胚胎干細(xì)胞進(jìn)行分化[13]。結(jié)果顯示:RA可誘導(dǎo)J1小鼠胚胎干細(xì)胞分化,加入RA后J1細(xì)胞的克隆樣結(jié)構(gòu)消失、細(xì)胞向外遷移呈單層生長、細(xì)胞形態(tài)由近圓形變?yōu)楸馄剿鬆罨蚨嘟菭睿▓D3A)。在RA誘導(dǎo)J1細(xì)胞分化的過程中,Dppa3基因表達(dá)下調(diào),Uhrf1基因表達(dá)無明顯變化,印記基因Peg3表達(dá)上調(diào)、Igf2表達(dá)下調(diào)(圖3B)。然而,分別以pCDH-Flag-Dppa3、pCMV-Myc-Uhrf1、pCDH-Flag-Dppa3和pCMV-Myc-Uhrf1轉(zhuǎn)染J1細(xì)胞,用1μM RA誘導(dǎo)J1細(xì)胞分化時(shí)發(fā)現(xiàn):過表達(dá)Dppa3或Uhrf1均可抑制RA誘導(dǎo)的印記基因Peg3上調(diào)、Igf2下調(diào);同時(shí)過表達(dá)Dppa3和Uhrf1可顯著增強(qiáng)Dppa3或Uhrf1對(duì)印記基因Peg3(圖3C)和Igf2(圖3C)調(diào)節(jié)作用。這些結(jié)果表明Dppa3和Uhrf1在胚胎發(fā)育過程中對(duì)印記基因的表達(dá)具有調(diào)節(jié)作用。
印記基因的表達(dá)模式為單等位基因表達(dá),即雙親來源的等位基因僅父源或母源一方表達(dá),另外一方不表達(dá)。單等位基因的表達(dá)模式使得印記基因異常表達(dá)更易引起機(jī)體生命活動(dòng)網(wǎng)絡(luò)的紊亂—印記基因的異常表達(dá)不能夠通過等位基因的調(diào)節(jié)進(jìn)行“平衡”或“補(bǔ)償”。因此,印記基因異常表達(dá)常與個(gè)體異常發(fā)育、疾病的發(fā)生發(fā)展相關(guān)。胚胎發(fā)育過程中有研究結(jié)果顯示:母源印記基因如Peg3、Igf2和Peg10等可促進(jìn)胎兒和胎盤的生長,父源印記基因如H19、Igf2r和Grb10等可抑制胚胎的發(fā)育,父源或母源印記基因的缺失都可引起胚胎異常發(fā)育[14]。在疾病的發(fā)生發(fā)展過程中,印記基因異常表達(dá)不僅參與疾病的形成,也與腫瘤等疾病的臨床分期、預(yù)后相關(guān),如已有研究顯示染色體15q11–q13區(qū)印記基因的異常表達(dá)與Prader-Willi/Angelman綜合征的形成相關(guān)[15,16], Igf2、Peg10、H19等印記基因的表達(dá)與胃癌、肺癌、Wilms 腫瘤等腫瘤的臨床分期、預(yù)后相關(guān)[17,18]。印記基因與異常胚胎發(fā)育、腫瘤等疾病發(fā)生發(fā)展的關(guān)系提示:印記基因表達(dá)調(diào)控網(wǎng)絡(luò)的繪制有助于胚胎發(fā)育和腫瘤等印記異常相關(guān)疾病作用機(jī)理和調(diào)節(jié)機(jī)制的揭示[19]。
印記基因的表達(dá)調(diào)控以DNA甲基化修飾為主。已有報(bào)道顯示Uhrf1和Dppa3均能夠參與DNA甲基化的調(diào)節(jié)。Uhrf1廣泛表達(dá)于生長旺盛的組織如早期胚胎和腫瘤組織中[20,21]。胚胎發(fā)育早期,Uhrf1能夠通過其SRA結(jié)構(gòu)域與半甲基化的DNA結(jié)合,募集G9a和Dmnt1促進(jìn)DNA的甲基化[8,22,23],與親子代細(xì)胞間DNA甲基化的傳遞相關(guān)。腫瘤等組織中,Uhrf1通過其RING結(jié)構(gòu)域發(fā)揮泛素E3連接酶活性,促進(jìn)Dmnt和Dmnt3的泛素化降解,誘導(dǎo)全基因組DNA的低甲基化[24-26]。Dppa3的表達(dá)于印記基因甲基化直接相關(guān)。胚胎形成過程中,Dppa3表達(dá)于成熟卵母細(xì)胞、著床前的胚胎和原始生殖細(xì)胞形成期(E7.25至E15.5),其表達(dá)過程與印記基因的差異甲基化形成相關(guān)——等位基因的甲基化差異在卵母細(xì)胞和精子形成過程中出現(xiàn)(與Dppa3表達(dá)于胚胎原始生殖細(xì)胞形成期對(duì)應(yīng)),卵子與精子結(jié)合后在2細(xì)胞期發(fā)生父源基因組的主動(dòng)去基甲基化(與Dppa3表達(dá)于著床前的胚胎相對(duì)應(yīng))[7,12]。受精卵中,Dppa3能夠直接抑制Tet3介導(dǎo)DNA主動(dòng)去甲基化,保護(hù)母源印記基因的DNA的甲基化[7]。Uhrf1對(duì)DNA甲基化的調(diào)節(jié)作用和Dppa3對(duì)印記基因DNA甲基化的保護(hù)作用提示:Uhrf1和Dppa3協(xié)調(diào)表達(dá)可能對(duì)印記基因的表達(dá)具有調(diào)控作用。
前期研究中,我們通過Co-IP聯(lián)合質(zhì)譜檢測發(fā)現(xiàn)Dppa3與Uhrf1間存在相互作用[10],然而二者相互作用是否影響印記基因的表達(dá)還不清楚。為確定Dppa3和Uhrf1對(duì)印記基因表達(dá)的調(diào)控作用,本研究首先通過實(shí)驗(yàn)證實(shí)Dppa3與Uhrf1間存在相互作用,隨后以甲酸誘導(dǎo)分化前后的J1小鼠胚胎干細(xì)胞為模型,通過Dppa3和Uhrf1過表達(dá)實(shí)驗(yàn)證實(shí):Dppa3和Uhrf1協(xié)調(diào)表達(dá)能夠調(diào)節(jié)印記基因表達(dá)。該研究結(jié)果的發(fā)現(xiàn)一方面有助于印記基因表達(dá)調(diào)控機(jī)制的闡明,另一方面為Dppa3、Uhrf1和印記基因表達(dá)異常相關(guān)疾病發(fā)病機(jī)制的揭示,治療方式的選擇具有積極作用。
目前,本研究盡管通過實(shí)驗(yàn)證實(shí)Dppa3和Uhrf1協(xié)調(diào)表達(dá)可以調(diào)節(jié)印記基因的表達(dá),但二者協(xié)同作用是通過印記基因DNA甲基化修飾亦或其它基因表達(dá)調(diào)控方式調(diào)節(jié)印記基因的表達(dá)還不清楚。今后,我們將進(jìn)一步通過DNA甲基化測序等方法探究Dppa3與Uhrf1協(xié)調(diào)表達(dá)調(diào)節(jié)印記基因表達(dá)的機(jī)制。
[1]Sato M, Kimura T, Kurokawa K, et al.Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells.Mech Dev, 2002, 113(1)∶ 91-94.
[2]McGrath J, Solter D.Completion of mouse embryogenesis requires both the maternal and paternal genomes.Cell, 1984,37(1)∶ 179-183.
[3]Payer B, Saitou M, Barton SC, et al.Stella is a maternal effect gene required for normal early development in mice.Curr Biol, 2003, 13(23)∶ 2110-2117.
[4]Arima T, Hiura H, Okae H, et al.Genomic imprinting and carcinogenesis.Gan To Kagaku Ryoho, 2011, 38(11)∶ 1745-1749.
[5]Silva D, Venihaki M, Guo WH, et al.Lopez.Igf2 deficiency results in delayed lung development at the end of gestation.Endocrinology, 2006, 147(12)∶ 5584-5591.
[6]Ribarska T, Bastian KM, Koch A, et al.Specific changes in the expression of imprinted genes in prostate cancer--implications for cancer progression and epigenetic regulation.Asian J Androl, 2012, 14(3)∶ 436-450.
[7]Nakamura T, Liu YJ, Nakashima H, et al.PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.Nature, 2012, 486(7403)∶ 415-419.
[8]Ferry L, Fournier A, Tsusaka T, et al.Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation.Mol Cell, 2017, 67(4)∶550-565.e5.
[9]Maenohara S, Unoki M, Toh H, et al.Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos.PLoS Genet, 2017,13(10)∶ e1007042.
[10]Liu H, Zhang L, Wei Q, et al.Comprehensive Proteomic Analysis of PGC7-Interacting Proteins.J Proteome Res,2017, 16(9)∶ 3113-3123.
[11]Miura M, Watanabe H, Sasaki T, et al.Dynamic changes in subnuclear NP95 location during the cell cycle and its spatial relationship with DNA replication foci.Exp Cell Res, 2001,263(2)∶ 202-208.
[12]Nakashima H, Kimura T, Kaga Y, et al.Effects of dppa3 on DNA methylation dynamics during primordial germ cell development in mice.Biol Reprod, 2013, 88(5)∶ 125.
[13]Podlesny-Drabiniok A, Sobska J, de Lera AR, et al.Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons.Sci Rep, 2017, 7(1)∶ 13671.
[14]Babak T, DeVeale B, Tsang EK, et al.Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse.Nat Genet, 2015, 47(5)∶ 544-549.
[15]Kim Y, Lee HM, Xiong Y, et al.Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome.Nat Med, 2017, 23(2)∶ 213-222.
[16]Langouet M, Glatt-Deeley HR, Chung MS, et al.Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons.Hum Mol Genet, 2018,27(3)∶ 505-515.
[17]Tian F, Tang Z, Song G, et al.Loss of imprinting of IGF2 correlates with hypomethylation of the H19 differentially methylated region in the tumor tissue of colorectal cancer patients.Mol Med Rep, 2012, 5(6)∶ 1536-1540.
[18]Jelinic P, Shaw P.Loss of imprinting and cancer.J Pathol,2007, 211(3)∶ 261-268.
[19]Paulsen M, Ferguson-Smith AC.DNA methylation in genomic imprinting, development, and disease.J Pathol, 2001,195(1)∶ 97-110.
[20]Ashraf W, Ibrahim A, Alhosin M, et al.The epigenetic integrator UHRF1∶ on the road to become a universal biomarker for cancer.Oncotarget, 2017, 8(31)∶ 51946-51962.
[21]Sidhu H, Capalash N.UHRF1∶ The key regulator of epigenetics and molecular target for cancer therapeutics.Tumour Biol, 2017, 39(2)∶ 1010428317692205.
[22]Bashtrykov P, Jankevicius G, Jurkowska RZ, et al.The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism.J Biol Chem, 2014, 289(7)∶ 4106-4115.
[23]Berkyurek AC, Suetake I, Arita K, et al.The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA.J Biol Chem, 2014, 289(1)∶ 379-386.
[24]Jia Y, Li P, Fang L, et al.Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer.Cell Discov, 2016, 2∶ 16007.
[25]Nakamura K, Baba Y, Kosumi K, et al.UHRF1 regulates global DNA hypomethylation and is associated with poor prognosis in esophageal squamous cell carcinoma.Oncotarget, 2016, 7(36)∶ 57821-57831.
[26]Mudbhary R, Hoshida Y, Chernyavskaya Y, et al.UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma.Cancer Cell, 2014, 25(2)∶ 196-209.