付苗
摘 要:基于彈塑性力學和有限元基本理論,針對一150m高聳鋼筋混凝土結構煙囪定向爆破拆除工程,研究了該煙囪爆破拆除的力學條件、煙囪爆破傾覆時間、煙囪爆破傾覆時的支座內(nèi)力以及煙囪爆破傾覆時的本構關系;采用有限元分析軟件ANSYS/LS-DYNA,通過分離式共節(jié)點建模,建立了高聳鋼筋混凝土煙囪有限元模型,并對煙囪爆破拆除過程進行了有限元模擬。研究結果表明,論文提出的煙囪爆破傾覆歷程的本構關系符合實際;論文建立的高聳鋼筋混凝土煙囪有限元爆破拆除分析模型合理;實際煙囪傾覆歷程、傾覆方位、傾覆長度與有限元數(shù)值模擬結果吻合較好。
關鍵詞:高聳鋼筋混凝土結構煙囪;爆破拆除;數(shù)值模擬;本構關系;有限元模型
Towering Reinforced Concrete Chimney by Directional Blasting Numerical simulation of overturning course
Fu Miao,Wu Chang-chang
(Department of Civil Engineering, Yunnan University, Kunming 650000)
Abstract: Based on the elastic-plastic finite element mechanics and basic theory, for a 150m tall reinforced concrete structure Chimney demolition, Demolition of the chimney studied mechanical condition, Chimney overturning time, Chimney overturning the bearing forces and chimney blasting overturning the constitutive; using finite element analysis software ANSYS/LS-DYNA, a total of nodes through separate modeling of reinforced concrete chimneys towering established finite element model, and the chimney blasting process by finite element simulation. The results show that, the paper proposed Chimney overturning realistic constitutive process; paper reinforced concrete chimneys towering established finite element analysis model Demolition reasonable; actual chimney overturning history, overturning position, overturning length and finite element numerical simulation results agree better.
Keywords: reinforced concrete structure towering chimneys; Blasting; numerical simulation; constitutive; finite element model
1.引言
隨著城市化進程和產(chǎn)業(yè)升級的不斷推進,在城市建設和企業(yè)技術改造中,經(jīng)常要開展煙囪、水塔等廢棄高聳建筑物的控制性拆除爆破工作。拆除爆破既要達到預定拆除目的,又必須有效控制爆破振動影響、飛石拋擲距離和破壞范圍等,以保障周圍環(huán)境安全[1]。目前,國內(nèi)外已廣泛應用爆破方法拆除高聳建筑物,定向爆破拆除煙囪的高度已達210米[2]。
本文基于彈塑性力學和有限元基本理論,針對一150m高聳鋼筋混凝土結構煙囪定向爆破拆除工程,對該煙囪爆破拆除的力學條件、煙囪爆破傾覆時間、煙囪爆破傾覆時的支座內(nèi)力以及煙囪爆破傾覆時的本構關系進行研究,并采用有限元分析軟件ANSYS/LS-DYNA,通過分離式共節(jié)點建模,建立高聳鋼筋混凝土煙囪有限元模型,對煙囪爆破拆除過程進行了有限元模擬。
2.爆破拆除方案
煙囪爆破拆除的原理是在煙囪傾倒一側的煙囪支承筒壁底部炸開一個爆破缺口,破壞煙囪結構穩(wěn)定性,導致整個結構失穩(wěn)和重心外移,使煙囪在自重作用下形成傾覆力矩,進而使煙囪按預定方向傾倒。若煙囪爆破缺口長度過短,上部結構產(chǎn)生的傾覆力矩可能小于下部支撐結構可以承受的彎矩,爆破時結構不易發(fā)生破壞;若煙囪爆破缺口尺寸過長,下部支撐結構不能承受上部結構的自重,上部結構將直接壓塌下部結構,影響煙囪倒塌方向,產(chǎn)生嚴重后果。因此煙囪爆破缺口尺寸對煙囪控制爆破拆除至關重要。
某電廠一個150m高度的鋼筋混凝土結構煙囪,煙囪底部壁厚400mm,外徑為5.83m、內(nèi)徑為5.43m;110m高度處煙囪璧厚為180mm,外徑為3.68m、內(nèi)徑為3.5m;煙囪頂部壁厚200mm,外徑為2.905m、內(nèi)徑為2.705m;煙囪體積為1299.87m3,質量為3.37966×106Kg,煙囪自重為33121KN。圖1為該電廠150m高度的鋼筋混凝土煙囪。
在爆破缺口中部長度7.5m范圍內(nèi),采用137發(fā)瞬發(fā)導爆管雷管,總裝藥量8.22kg;第二段起爆雷管布置在爆破缺口余下的炮孔,采用140發(fā)導爆管毫秒延期雷管,總裝藥量8.4kg。此外,為保證煙囪順利倒塌,在煙囪爆破缺口兩端各開設了1個高1.46m、長4m的三角形作為定向窗。
3.煙囪爆破傾覆時間歷程
煙囪爆破傾覆時間是煙囪爆破過程控制的一個重要因素,煙囪爆破傾覆時間可由煙囪傾覆過程的角加速度ε與煙囪傾覆過程的角速度求得,即:
4.煙囪爆破拆除過程有限元模擬
4.1有限元模型
鑒于鋼筋混凝土煙囪由鋼筋和混凝土兩種不同性能的材料組成,采用分離式共節(jié)點有限元建模,可事先分別計算混凝土和鋼筋的單元剛度矩陣,然后統(tǒng)一集成到結構整體剛度矩陣中,可按實際配筋劃分單元,并可在鋼筋混凝土之間嵌入粘結單元。因此,論文針對該150m高度鋼筋混凝土結構煙囪,基于ANSYS/LS-DYNA有限元分析軟件[11],采用分離式有限元建模方法建立鋼筋混凝土煙囪有限元模型。論文建立的煙囪有限元整體模型如圖3所示。
建模過程時,為模擬煙囪傾覆過程,通過在特定時間定義爆破缺口處材料失效的方法來模擬爆破缺口的形成。筒體之間以及筒體與地面之間采用自動單面接觸,鋼筋與地面之間采用點面接觸模擬煙囪傾覆觸地。其中在ANSYS/LS-DYNA有限元分析軟件環(huán)境下可通過在K文件中加入使材料失效的命令流來模擬爆破形成缺口,并可修改K文件使煙囪筒體和缺口處的材料具有失效準則功能。
4.2數(shù)值模擬結果
圖4為煙囪爆破傾覆歷程數(shù)值模擬結果,圖5為實際煙囪爆破傾覆歷程圖,圖6和圖7為有限元計算得到的煙囪頂部、質心及缺口等不同部位在爆破傾覆過程中的位移、運動速度隨時間的變化曲線,圖8為有限元計算得到的煙囪爆破傾覆歷程不同時刻的煙囪等效應力場分布圖。
由圖4和圖5可知,煙囪爆破傾覆歷程數(shù)值模擬結果與實際煙囪爆破傾覆過程吻合較好。由圖6和圖7可知,計算得到的煙囪頂部、質心及缺口等不同部位在爆破傾覆過程中的位移、運動速度隨時間的變化情況較符合實際。圖7中煙囪頂部、質心及缺口部位在爆破傾覆過程中的運動速度隨時間變化出現(xiàn)振動是因為爆破傾覆初期煙囪筒體出現(xiàn)晃動,圖7中煙囪頂部、質心及缺口部位運動速度在5.8秒出現(xiàn)突變是因為煙囪爆破傾覆過程中爆破缺口發(fā)生閉合,圖7中煙囪頂部、質心及缺口部位運動速度在5.8秒出現(xiàn)躍變是因為煙囪爆破傾覆觸地造成的。
5.結論
(1)采用數(shù)值模擬方法對煙囪爆破拆除過程進行模擬分析,可較全面地研究煙囪傾覆歷程、煙囪傾覆歷程的應力、位移、煙囪傾覆時間和速度、煙囪爆破傾覆時的支座內(nèi)力等,可開展煙囪模擬爆破拆除實驗,以指導煙囪爆破拆除設計。
(2)采用有限元分析軟件ANSYS/LS-DYNA可模擬煙囪控制爆破拆除過程,采用分離式共節(jié)點有限元建模方法建模,實際煙囪傾覆歷程、傾覆方位、傾覆長度與有限元數(shù)值模擬結果吻合較好。
(3)論文提出的煙囪爆破傾覆歷程的本構關系符合實際;論文采用的材料塑性隨動硬化模型以及可Cowper-Symonds材料應變率模型可較好地反應煙囪爆破傾覆過程的鋼筋及混凝土材料力學性能。
(4)數(shù)值模擬結果與理論計算結果存在一定差別的主要原因是理論計算所采用的模型沒有考慮煙囪爆破過程形成的塑性鉸對煙囪傾覆運動的影響作用。數(shù)值模擬結果與實際煙囪爆破傾覆過程存在一定差別的主要原因是數(shù)值模擬所用材料參數(shù)與實際煙囪爆破傾覆過程材料力學性能存在偏差。
參考文獻
[1] 張成化、羅惠敏、謝斌等.城市改造建設中拆除爆破安全管理的幾點做法[J].采礦技術,2001.11(5):178-179.
[2] 王希之、謝興博、譚雪剛等.210m高煙囪爆破拆除技術.工程爆破,2011.17(2):53-55.
[3] 汪浩、鄭炳旭.拆除爆破綜合技術[J].工程爆破,2003.9(1):27-31.
[4] 葉海旺、薛江波、房澤法.基于LS-DYNA的磚煙囪爆破拆除模擬研究[J].爆破,2008.25(2):39-42.
[5] 言志信、葉振輝、劉培林、曹小紅.鋼筋混凝土高煙囪定向爆破拆除倒塌過程研究[J].振動與沖擊,2011.30(9):197-210.
[6] 王斌、趙伏軍、林大能、谷建新.筒形薄壁建筑物爆破切口形狀的的有限元分析[J].采礦技術,2005.9:95-97.123.
[7] 趙根、張文煊、李永池.鋼筋混凝土定向爆破參數(shù)與效果的DAA模擬[J].工程爆破,2006.12(3):19-21.49.
[8] 孫金山、盧文波、謝先啟.框架結構建筑物拆除爆破模擬技術研究[J].工程爆破,2004,10(4):1-4.
[9] 王澤鵬、胡仁喜、康士廷.ANSYS13.0LS-DYNA非線性有限元分析實例指導過程[M].北京.機械工業(yè)出版社,2011.9.