李鵬飛,孟金柱,景炅婕,畢錫麟,王鍇,朱芷葳,呂麗華
?
轉(zhuǎn)錄組測序篩選牛卵泡發(fā)育相關(guān)基因及其表達差異分析
李鵬飛1,孟金柱2,景炅婕3,畢錫麟3,王鍇3,朱芷葳1,呂麗華3
(1山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,山西太谷 030801;2銅仁學(xué)院烏江學(xué)院,貴州銅仁 554300;3山西農(nóng)業(yè)大學(xué)動物科技學(xué)院,山西太谷 030801)
【目的】通過不同生理狀態(tài)牛卵泡高通量測序篩選與卵泡發(fā)育相關(guān)的基因?!痉椒ā磕概M诎l(fā)情后,B超聲波連續(xù)監(jiān)測并適時采集第一卵泡波出現(xiàn)偏差前的最大卵泡(the largest follicle at predeviation,PDF1)和第二大卵泡(the second largest follicle at predeviation,PDF2),構(gòu)建RNA文庫后Illumina平臺測序,經(jīng)數(shù)據(jù)庫比對,設(shè)定參數(shù)篩選高表達基因、差異表達基因并進行GO分析,Genecards基因功能查詢進一步篩選與卵泡發(fā)育直接相關(guān)的調(diào)控基因,qRT-PCR對篩選的基因進行表達量驗證分析?!窘Y(jié)果】兩個轉(zhuǎn)錄本中共獲得263個差異表達基因;GO功能聚類分析共分為三大類90組:其中生物學(xué)過程占64.4%,細胞組分占17.8%,分子功能占17.8%;獲得一些重要的功能富集通路,如調(diào)控信號轉(zhuǎn)導(dǎo)和細胞因子應(yīng)答的生物途徑;基因表達量分析篩選出10個高表達的上調(diào)和下調(diào)基因,獲得參與雌激素合成和胎兒性別發(fā)育的、參與類固醇激素合成的、細胞發(fā)育過程中調(diào)節(jié)細胞凋亡的以及調(diào)節(jié)ERK和MEK1/2信號通路的。Genecards功能查詢共獲得6個基因與卵泡發(fā)育關(guān)系較為密切,其中上調(diào)基因分別為;下調(diào)基因為和;qRT-PCR結(jié)果顯示,和在DF中的表達量顯著高于SF(<0.05),在SF中的表達量極顯著高于DF(<0.01),和在DF和SF中的表達量不存在顯著差異(>0.05),但其表達變化趨勢與高通量測序結(jié)果相一致。【結(jié)論】轉(zhuǎn)錄組測序結(jié)果真實可靠,和在卵泡發(fā)育過程中發(fā)揮正調(diào)控作用,在卵泡發(fā)育過程中發(fā)揮負調(diào)控作用,獲得的牛卵泡發(fā)育相關(guān)基因和重要調(diào)節(jié)途徑,對后期深入探討卵泡發(fā)育調(diào)控機理的研究具有重要意義。
牛;卵泡;轉(zhuǎn)錄組;PDF1;PDF2;發(fā)育
【研究意義】卵泡發(fā)育是一個復(fù)雜的生理過程,受動物遺傳、體況、內(nèi)分泌激素和卵泡內(nèi)生長因子等多方面因素的綜合調(diào)控。目前,對卵泡發(fā)育影響的研究多集中在單胎動物上,基因組測序技術(shù)的發(fā)展,為其生物學(xué)研究提供了更全面、便利的平臺。本研究通過對不同生理狀態(tài)牛卵泡的高通量測序來篩選與卵泡發(fā)育相關(guān)的基因,對全面分析牛卵泡發(fā)育的關(guān)鍵調(diào)控因子具有重要意義,同時為闡明牛卵泡發(fā)育的調(diào)控機理奠定基礎(chǔ)?!厩叭搜芯窟M展】在卵泡發(fā)育過程中,基因轉(zhuǎn)錄和蛋白表達等一系列關(guān)鍵事件是通過特定基因順序表達基礎(chǔ)上完成的,是調(diào)控卵泡募集、選擇及卵泡細胞凋亡的內(nèi)在因素[1]。因此,研究者通過基因芯片和新一代高通量測序技術(shù)對影響動物卵泡發(fā)育的相關(guān)調(diào)控基因展開了研究,TERENINA等[2]通過基因芯片技術(shù)對豬閉鎖卵泡和健康卵泡顆粒細胞(granulesa cells, GCs)全基因表達譜進行分析,共發(fā)現(xiàn)1 684個差異表達的調(diào)控基因,其中兩個轉(zhuǎn)錄組共有287個高表達基因,有11個差異表達基因(和)可能是卵泡閉鎖的標(biāo)記基因。TICIANELLI等[3]對不同品種牛和不同應(yīng)激溫度處理組卵泡的卵母細胞、卵丘細胞進行轉(zhuǎn)錄組分析,共獲得127個卵泡發(fā)育相關(guān)基因,qRT-PCR檢測發(fā)現(xiàn)在荷斯坦奶牛卵泡細胞中表達顯著上調(diào),促凋亡基因和膜轉(zhuǎn)運基因則顯著下調(diào)。課題組前期也通過Illumina測序平臺對牛第一卵泡波的最大卵泡(PDF1)和出現(xiàn)優(yōu)勢化的最大卵泡ODF1進行轉(zhuǎn)錄組測序,獲得的83個差異表達基因中,有42個屬于上調(diào)基因,41個屬于下調(diào)基因,其中和被認(rèn)為是與牛卵泡發(fā)育密切相關(guān),如和直接參與類固醇激素的生物合成[4]。【本研究切入點】PDF1和第一卵泡波的第二大卵泡(PDF2)是牛卵泡發(fā)育波中具有顯著生理特征的兩個發(fā)育階段,隨著卵泡的進一步發(fā)育,PDF1最終可能出現(xiàn)優(yōu)勢化進而成為優(yōu)勢卵泡(dominant follicles, DF),而PDF2卵泡必將成為從屬卵泡(subordinate follicles, SF),本研究以牛第一卵泡波PDF1和PDF2作為研究對象篩選卵泡發(fā)育相關(guān)基因,并通過qRT-PCR交叉檢測DF和SF中這些基因的表達譜,具有可靠的理論依據(jù)?!緮M解決的關(guān)鍵問題】試驗中運用轉(zhuǎn)錄組測序技術(shù)、qRT-PCR技術(shù)研究影響牛卵泡發(fā)育的調(diào)控基因,并從功能上進行驗證分析,提高了卵泡發(fā)育基因篩選的準(zhǔn)確性。
選取8頭10月齡海福特青年母牛(2013年9月),同期發(fā)情(前列腺素F2α)處理后,B超聲波監(jiān)測并記錄卵泡的生長狀況,山西省文水縣胡蘭鎮(zhèn)肉牛屠宰廠屠宰并采集第一卵泡波優(yōu)勢化前的PDF1(直徑6—8 mm)和PDF2(直徑5—6 mm),該階段的卵泡處于發(fā)情開始5 d內(nèi)[5-6]。qRT-PCR試驗中DF和SF的采集通過卵泡黃體形態(tài)觀察和雌激素/孕酮比值進行確定,具體方法參照課題組前期研究[7]。采集后的雙側(cè)卵巢放入滅菌的DPBS中,實驗室分離GCs。
1.2.1 Illumina平臺測序 分離PDF1和PDF2卵泡GCs,提取總RNA后Illumina平臺對PDF1和PDF2轉(zhuǎn)錄組測序,具體方法參照課題組前期研究[4, 8]。
1.2.2 差異表達基因的篩選及GO分析 參照AUDIC等[9]的算法,將Illumina平臺對PDF1和PDF2測序得到的結(jié)果進行數(shù)據(jù)庫比對,設(shè)定RPKM≥0.5,獲得有意義的表達基因;設(shè)定參數(shù):PDF1 RPKM /PDF2 RPKM>2及PDF2 RPKM /PDF1 RPKM>2,F(xiàn)DR校正的-value<0.05,獲得差異表達基因;應(yīng)用DAVID v6.8對獲得的差異表達基因進行GO(Gene ontology)功能顯著性富集分析(-value<0.05),Excel作圖。
1.2.3 反轉(zhuǎn)錄及引物設(shè)計 提取DF和SF顆粒細胞總RNA,反轉(zhuǎn)錄反應(yīng)條件為:7℃15 min,85℃5 s,-20℃保存;參考NCBI上提交的()各基因的序列,Primer 3.0設(shè)計引物(表1),將作為內(nèi)參基因,引物合成由北京六合華大完成。
表1 熒光定量引物
1.2.4 qRT-PCR檢測 依據(jù)qRT-PCR檢測技術(shù)要求,數(shù)據(jù)需經(jīng)內(nèi)參基因校正、物理校正和重復(fù)校正,擴增前先制作標(biāo)準(zhǔn)曲線。根據(jù)標(biāo)準(zhǔn)曲線和不同基因的擴增條件進行qRT-PCR反應(yīng),構(gòu)建20 μL反應(yīng)體系,試驗流程參照qRT-PCR說明書進行;反應(yīng)條件:95℃變性10 s,95℃5 s,60℃25 s,40個循環(huán)。
采用△△CT法計算各目的基因的相對表達量,各基因的相對表達水平=2–△△CT。結(jié)果采用均值±標(biāo)準(zhǔn)差表示,各基因的表達量經(jīng)內(nèi)參基因0表達量校正,設(shè)定在DF的表達量作為對照組[10],實驗數(shù)據(jù)運用SPSS(V 18.0)統(tǒng)計軟件進行t檢驗分析。
將Illumina平臺對PDF1和PDF2測序得到的結(jié)果進行數(shù)據(jù)庫比對,設(shè)定RPKM≥0.5,共獲得15 760個基因,表2中列出了表達量最高的10個基因,從中可以發(fā)現(xiàn)一些基因是已經(jīng)明確了與卵泡發(fā)育直接相關(guān),如卵泡抑素(follistatin, FST)和抑制素β(inhibin, beta A,INHBA)都屬于負調(diào)控卵泡發(fā)育的因子。
表2 轉(zhuǎn)錄組PDF1和PDF2中表達量最高的10個基因
數(shù)據(jù)庫比對結(jié)果設(shè)定參數(shù):RPKM≥0.5,PDF1-RPKM /PDF2-RPKM>2,F(xiàn)DR校正<0.05,共獲得196差異表達基因,表3列出了前10個高差異上調(diào)基因及其功能;設(shè)定參數(shù)PDF2-RPKM /PDF1-RPKM>2,F(xiàn)DR校正<0.05,共獲得67差異表達基因,表4列出了前10個高差異下調(diào)基因及其功能。應(yīng)用DAVID v6.8對263個篩選出的差異表達基因進行GO功能聚類分析,共分為三大類90組:其中生物學(xué)過程占64.4%,細胞組分占17.8%,分子功能占17.8%(圖1)。
餅狀圖數(shù)字表示基因富集數(shù) The numbers in pie chart represent the numbers of gene enrichment
表3 轉(zhuǎn)錄組PDF1和PDF2中的上調(diào)基因及其功能
表4 轉(zhuǎn)錄組PDF1和PDF2中的下調(diào)基因及其功能
篩選出的263個差異表達基因,經(jīng)Genecards功能查詢分析,共獲得6個基因與卵泡發(fā)育關(guān)系較為密切。其中上調(diào)基因分別為;下調(diào)基因為和(表5)。qRT-PCR分析結(jié)果顯示(圖2),6個基因在DF和SF的表達變化趨勢與高通量測序結(jié)果相一致,其中和在DF中的表達量顯著高于SF(<0.05);CPXM1在SF中的表達量極顯著高于DF(<0.01);和在DF和SF中的表達量不存在顯著差異(>0.05)。
動物卵泡發(fā)育是一個復(fù)雜的生理過程,受到基因、蛋白水平以及內(nèi)分泌激素等多方面調(diào)控,因此,動物卵泡發(fā)育的關(guān)鍵調(diào)控因子及作用機理仍不明確。轉(zhuǎn)錄組水平的研究是對特定組織或細胞在不同生理狀態(tài)下所有RNA轉(zhuǎn)錄集合的全方位分析,其顯著特點是測序通量高,可深度挖掘研究對象中各基因表達的細微變化[11-12]。與基因芯片技術(shù)相比較,新一代測序技術(shù)在基因挖掘、表達靈敏度方面優(yōu)勢明顯;MARIONI等[13]對動物組織采用基因芯片和新一代測序技術(shù)進行了對比研究,發(fā)現(xiàn)在相同的FDR校正下,Illumina技術(shù)獲得的差異表達基因比基因芯片多檢測出30%;同時,Illumina測序結(jié)果重復(fù)性好,技術(shù)誤差也較小[14]。因此,本試驗通過Illumina技術(shù)對牛卵泡轉(zhuǎn)錄組PDF1和PDF2進行深度測序,結(jié)合Genecards功能查詢共篩選出6個差異表達基因與卵泡發(fā)育相關(guān);經(jīng)qRT-PCR檢測確定了各基因差異表達趨勢與轉(zhuǎn)錄組測序結(jié)果相一致,其中和在DF中的表達量顯著高于SF(<0.05),CPXM1在SF中的表達量極顯著高于DF(<0.01)。
表5 PDF1/PDF2和PDF2/PDF1轉(zhuǎn)錄本中篩選卵泡發(fā)育相關(guān)基因
**和*分別表示在顯著水平0.01和0.05的結(jié)果 Superscript ** and * indicate significantly different at the level of 0.05 and 0.01
PRSS35(Serine protease 35)是以絲氨酸為活性中心的蛋白水解酶,在動物體內(nèi)主要通過抑制或激活蛋白酶原,參與蛋白質(zhì)的合成與降解[15]。其生理功能的執(zhí)行主要通過絲氨酸蛋白酶抑制劑(serine protease inhibitor,SPI)的調(diào)節(jié),在病原入侵、細胞分化、組織重建、血管形成和胚胎發(fā)育等過程中都發(fā)揮著重要作用[16]。WAHLBERG等通過基因芯片技術(shù)對參與小鼠排卵期的蛋白酶進行了鑒定,其中,在促性腺激素誘導(dǎo)下表達上調(diào);深入研究促性腺激素誘導(dǎo)的未性成熟的小鼠和假孕小鼠黃體期的表達譜發(fā)現(xiàn),在發(fā)育卵泡的膜細胞層表達,并強烈誘導(dǎo)排卵期前的卵泡GCs表達該基因;同時,在黃體的形成和退化過程中也有表達;這些結(jié)果表明PRSS35可能參與了動物排卵以及黃體的形成和退化[17]。LI等研究也表明PRSS35在排卵期和黃體期存在較高水平的表達,類固醇替代實驗研究表明卵泡破裂之前的mRNA的表達依賴于黃體酮的調(diào)節(jié)[18]。
ARID(AT rich interactive domain)即核苷酸AT富集區(qū)域,主要存在于DNA雙螺旋大溝中,該區(qū)域呈螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu),在生物進化過程中高度保守。該特殊區(qū)域最先在果蠅Dri基因[19]以及鼠特異性轉(zhuǎn)錄因子[20]上發(fā)現(xiàn)。目前,在人和動物中共發(fā)現(xiàn)15個ARID家族基因,7個亞家族之間ARID結(jié)構(gòu)域的核苷酸和氨基酸序列相似性均較低[21]。ARID蛋白家族在動物體內(nèi)執(zhí)行廣泛的生理功能,如在基因表達調(diào)控、細胞分化、增殖和分裂以及染色體重塑過程中發(fā)揮重要作用[22]。ARID4有ARID4A和ARID4B兩個異構(gòu)體,二者氨基酸序列相似性為74%,其顯著特點是二者均包含一個TD(Tudor domain)和CD(Chrome domain)結(jié)構(gòu)域。CAO等研究表明在細胞生長間期,ARID4過表達會引起轉(zhuǎn)錄因子E2F依賴性基因轉(zhuǎn)錄沉默,抑制細胞進入DNA合成期,從而阻礙細胞正常生長,這表明ARID4具有轉(zhuǎn)錄抑制活性[23]。動物正常組織中,ARID4B的表達具有規(guī)律性并受到嚴(yán)格限制,由于其在人癌組織表達豐富,ARID4B通常作為標(biāo)記物用于早期腫瘤檢測[24]。本研究發(fā)現(xiàn),ARID4B在牛第一卵泡波DF顆粒細胞中表達量顯著高于SF(<0.05),而第一卵泡波中的DF最終不排卵,因此,ARID4B可能在DF的生長發(fā)育過程中阻礙顆粒細胞的增殖和雌激素的分泌,從而抑制了排卵。
羧肽酶(carboxypeptidases)是專一性從多肽鏈C-末端逐個降解并釋放游離氨基酸的肽鏈外切酶,在生物體各組織器官中廣泛分布,發(fā)揮重要生理功能[25]。羧肽酶依據(jù)活性中心金屬離子和氨基酸殘基的不同,可分為半胱氨酸羧肽酶、金屬羧肽酶、絲氨酸羧肽酶[26]。編碼金屬羧肽酶蛋白(carboxypeptidase X, Member 1,CPXM1)也稱為CPX1,其氨基酸序列中包含有一個由160個氨基酸構(gòu)成的DSD蛋白結(jié)合后區(qū)域[27]。GO功能聚類分析顯示,CPXM1具有金屬羧肽酶活性并與鋅離子連接有關(guān),其功能是將肽鏈C-末端降解為精氨酸和賴氨酸短肽,選擇性地對肽類激素進行加工和修飾[28]。有研究表明,小鼠通過基因點突變造成機體羧肽酶E缺乏,但小鼠仍具有完整的神經(jīng)內(nèi)分泌調(diào)節(jié)能力,這表明各類羧肽酶之間肽類激素加工及其調(diào)節(jié)存在相互替代的現(xiàn)象;進一步通過原位雜交對小鼠胚胎和胎兒組織研究發(fā)現(xiàn),從頭到胸部CPXM1均有表達,提示神經(jīng)內(nèi)分泌肽可能通過CPXM1的加工,實現(xiàn)對細胞間相互作用的調(diào)節(jié),從而對細胞生長和發(fā)育產(chǎn)生調(diào)控作用[29]。目前對CPXM1功能研究的相關(guān)報道較少,UEHIRO等[30]研究表明,CPXM1的表達受表觀遺傳調(diào)控,在乳腺癌發(fā)展過程中作為腫瘤抑制基因存在。
綜上所述,通過轉(zhuǎn)錄組數(shù)據(jù)分析并結(jié)合Genecards功能查詢篩選調(diào)控卵泡發(fā)育相關(guān)基因,為進一步對影響卵泡發(fā)育各信號通路關(guān)鍵蛋白的功能研究及調(diào)控網(wǎng)絡(luò)基因擾動研究提供了依據(jù),也為深入探討卵泡發(fā)育調(diào)控機理奠定了基礎(chǔ)。
牛第一卵泡波的最大卵泡和第二大卵泡轉(zhuǎn)錄組測序共獲得15 760個轉(zhuǎn)錄本,其中篩選出263個差異表達基因;經(jīng)Genecards基因功能注釋分析,4個上調(diào)基因和2個下調(diào)基因,與卵泡發(fā)育相關(guān);qRT-PCR分析表明,和在優(yōu)勢卵泡和從屬卵泡表達量存在顯著差異,推測在牛卵泡發(fā)育過程中可能參與了卵泡的優(yōu)勢化或閉鎖。
[1] BEG M A, BERGFELT D R, KOT K, GINTHER O J. Follicle selection in cattle: dynamics of follicular fluid factors during development of follicle dominance., 2002, 66(1): 120-126.
[2] TERENINA E, FABRE S, BONNET A, MONNIAUX D, ROBERT- GRANIé C, SANCRISTOBAL M, SARRY J, VIGNOLES F, GONDRET F, MONGET P, TOSSER-KLOPP G. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia., 2017, 49(2):67-80.
[3] TICIANELLI J S, EMANUELLI I P, SATRAPA R A, CASTILHO A C, LOUREIRO B, SUDANO M J, FONTES P K, PINTO R F, RAZZA E M, SURJUS R S, SARTORI R, ASSUMPCAO M E, VISINTIN J A, BARROS C M, PAULA-LOPES F F. Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells., 2016, doi: 10.1071/ RD16154.
[4] LI P, MENG J, LIU W, SMITH G W, YAO J, LYU L. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave., 2016, doi:10.1155/2016/3472748.
[5] SAVIO J D, KEENAN L, BOLAND M P, ROCHE J F. Pattern of growth of dominant follicles during the oestrous cycle of heifers., 1988, 83(2):663-671.
[6] SIROIS J, FORTUNE J E. Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography., 1988, 39(2):308-317.
[7] 李鵬飛,畢錫麟,王鍇,景炅婕,呂麗華. CART在不同發(fā)育階段牛卵泡顆粒細胞中的表達和定位. 中國農(nóng)業(yè)科學(xué),2016, 49(12): 2389-2396.
LI P F, BI X L, WANG K, JING J J, Lü L H. Research on the expression and localization of CART in bovine granulosa cells at different developmental stages., 2016, 49(12):2389-2396. (in Chinese)
[8] 李鵬飛, 孟金柱, 謝建山, 朱芷葳, 劉巖, 姜曉龍, 陳建偉, 姚曉磊, 趙妙妙, 呂麗華. 牛卵泡ODF1 與ODF2 轉(zhuǎn)錄組發(fā)育相關(guān)基因篩選及表達差異分析. 畜牧獸醫(yī)學(xué)報,2015, 46(11):1961-1966.
LI P F, MENG J Z, XIE J S, ZHU Z W, LIU Y, JIANG X L, CHEN J W, YAO X L, ZHAO M M, Lü L H. Screening and analyse study of genes associated with follicular development in bovine ODF1 and ODF2 transcript., 2015, 46(11): 1961-1966. (in Chinese)
[9] AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles., 1997, 7(10):986-995.
[10] 李鵬飛. 牛卵泡可卡因-苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(CART)受體的篩選[D]. 太谷:山西農(nóng)業(yè)大學(xué),2014.
LI P F. Screening of cocaine-and amphetamine-regulated transcript peptide (CART) receptor of cattle follicle [D]. Taigu: Shanxi Agricultural University, 2014. (in Chinese)
[11] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics., 2009, 10(1):57-63.
[12] HAAS B J, ZODY M C. Advancing RNA-Seq analysis., 2010, 28(5):421-423.
[13] MARIONI J C, MASON C E, MANE S M, STEPHENS M, GILAD Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays., 2008, 18(9): 1509-1517.
[14] CROUCHER N J, FOOKES M C, PERKINS T T, TURNER D J, MARGUERAT S B, KEANE T, QUAIL M A, HE M, ASSEFA S, B?HLER J, KINGSLEY R A, PARKHILL J, BENTLEY S D, DOUGAN G, THOMSON N R. A simple method for directional transcriptome sequencing using Illumina technology., 2009, 37(22): e148.
[15] SOON W W, MILLER L D, BLACK M A, DALMASSO C, CHAN X B, PANG B, ONG C W, SALTO-TELLEZ M, DESAI K V, LIU E T. Combined genomic and phenotype screening reveals secretory factor SPINK1 as an invasion and survival factor associated with patient prognosis in breast cancer., 2011, 3(8): 451-464.
[16] DIAO H, XIAO S, LI R, ZHAO F, YE X. Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility., 2013, 8(2):e56757.
[17] WAHLBERG P, NYLANDER A, AHLSKOG N, LIU K, NY T. Expression and localization of the serine proteases high-temperature requirement factor A1, serine protease 23, and serine protease 35 in the mouse ovary., 2008, 149(10):5070-5077.
[18] LI S H, LIN M H, HWU Y M, LU C H, YEH L Y, CHEN Y J, LEE R K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development., 2015, 13:93. doi: 10.1186/s12958-015-0091-3.
[19] KIM S, ZHANG Z, UPCHURCH S, ISERN N, CHEN Y. Structure and DNA-binding sites of the SWII AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition., 2004, 279(16):16670-16676.
[20] HERRSCHER R F, KAPLAN M H, LELSZ D L, DAS C, SCHEUERMANN R, TUCKER P W. The immunoglobulin heavy chain matrix associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family., 1995, 9(24):3067-3082.
[21] WILSKER D, PATSIALOU A, DALLAS P B, MORAN E. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development., 2002, 13(3):95-106.
[22] LAI A, MARCELLUS R C, CORBEIL H B, BRANTON P E. RBP1 induces growth arrest by repression of E2F-dependent transcription., 1999, 18(12):2091-2100.
[23] CAO J, GAO T, STANBRIDGE E J, IRIE R. RBP1L1, a retinoblastoma- binding protein-related gene encoding an antigenic epitope abundantly expressed in human carcinomas and normal testis., 2001, 93(15):1159-1165.
[24] ATEEQ B, TOMLINS S A, LAXMAN B, ASANGANI I A, CAO Q, CAO X, LI Y, WANG X, FENG F Y, PIENTA K J, VARAMBALLY S, CHINNAIYAN A M. Therapeutic targeting of SPINK1-positive prostate cancer., 2011, 3(72): 72ra17.
[25] GHADGE G D, SLUSHER B S, BODNER A, CANTO M D, WOZNIAK K, THOMAS A G, ROJAS C, TSUKAMOTO T, MAJER P, MILLER R J, MONTI A L, ROOS R P. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models., 2003, 100(16):9554-9559.
[26] GOMIS-RüTH F X, COMPANYS V, QIAN Y, FRICKER L D, VENDRELL J, AVILéS F X, COLL M. Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily., 1999, 18(21): 5817-5826.
[27] KIM Y H, O'NEILL H M, WHITEHEAD J P. Carboxypeptidase X-1 (CPX-1) is a secreted collagen-binding glycoprotein., 2015, 468(4):894-899.
[28] CHANG E J, KWAK H B, KIM H, PARK J C, LEE Z H, KIM H H. Elucidation of CPX-1 involvement in RANKL-induced osteoclastogenesis by a proteomics approach., 2004, 564(1/2):166-170.
[29] LEI Y, XIN X, MORGAN D, PINTAR J E, FRICKER L D. Identification of mouse CPX-1, a novel member of the metallocarboxypeptidase gene family with highest similarity to CPX-2., 1999, 18(2):175-185.
[30] UEHIRO N, SATO F, PU F, TANAKA S, KAWASHIMA M, KAWAGUCHI K, SUGIMOTO M, SAJI S, TOI M. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer., 2016, 18(1):129-142.
(責(zé)任編輯 林鑒非)
Follicular Development Related Genes Screening and Differential Expressed Analysis by Transcriptome Sequencing in Bovine Ovary
LI PengFei1, MENG JinZhu2, JING JiongJie3, BI XiLin3, WANG Kai3, ZHU ZhiWei1, Lü LiHua3
(1College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi;2Wujiang College, Tongren University, Tongren 554300, Guizhou;3College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, Shanxi)
【Objective】The study focused on screening some genes involved in follicular development through high- throughput sequencing in bovine follicles at different physiological states. 【Method】Cows were selected for estrus synchronization, and the largest follicle and second largest follicle at predeviation during the first follicle wave were gathered by B-type ultrasonography. Thereafter, the RNA libraries were constructed and RNA sequencing was performed by Illumina platform. Compared with the database, parameters were set to screen high-expressed genes and differentially expressed genes, and then GO analysis was conducted. Further screened regulatory genes directly related to follicular development by Genecards, and qRT-PCR was performed to validate expression of screened genes associated with follicular development. 【Result】Results showed that 263 differentially expressed genes were obtained from the two transcripts, which could be assigned into 90 groups under three categories by GO clustering analysis (biological processes, 64.4%; cell component, 17.8%; molecular function, 17.8%). Some important functional enrichment pathways were obtained, such as regulating signal transduction and cytokine response biological pathways; 10 high-expressed up-regulated and down-regulated genes were selected by gene expression analysis,involved in estrogen synthesis and fetal gender development,participated in steroid hormone synthesis,regulated cell apoptosis in process of cell development, andregulated ERK and MEK1/2 signaling pathways. Six genes were found closely associate with follicular development by Genecards: up-regulated genes includedand, down-regulated genes includedand. qRT-PCR results showed that expression ofandwere significantly higher in DF than in SF (<0.05), andexpression was significantly higher in SF than in DF (<0.01). There was no significant difference in the expression of,andbetween DF and SF (>0.05),however, the expression variation trend was consistent with high-throughput sequencing results. 【Conclusion】The transcriptome sequencing results were accurate,andplayed positive roles andplayed a negative role in regulating follicular development, genes related to bovine follicular development and important regulated pathways, which were of great significance to further study the regulation mechanism of follicular development.
bovine; follicle; transcript; PDF1; PDF2; development
2017-03-28;
2018-07-06
山西省重點研發(fā)計劃(一般)農(nóng)業(yè)項目(201703D221020-1)、山西省國際科技合作項目(201603D421006)、山西省三晉學(xué)者和人才引進項目、山西農(nóng)業(yè)大學(xué)創(chuàng)新基金項目(zdpy201403/201503)、引進人才博士科研啟動基金(2014ZZ04)和青年拔尖創(chuàng)新人才支持計劃(TYIT201403)
李鵬飛,E-mail:adamlpf@126.com。通信作者呂麗華,E-mail:lihualvsxau@126.com
10.3864/j.issn.0578-1752.2018.15.0015