吳珺華,周曉宇,林 輝,鄧一超,艾建凌,戴 駿
?
不同斥水劑作用下土壤斥水度測定及其變化規(guī)律
吳珺華,周曉宇,林 輝,鄧一超,艾建凌,戴 駿
(南昌航空大學土木建筑學院,南昌 330063)
為獲得不同斥水劑作用下土壤斥水度的變化規(guī)律,分別采用十二烷基硫酸鈉、硅烷偶聯(lián)劑KH-550與二氯二甲基硅烷改性砂土和十八烷基伯胺改性黏土,獲得了不同斥水程度的改性土壤,并采用滴水穿透時間法、酒精溶液入滲法和接觸角測定法獲得了改性后土壤的斥水度及其隨時間變化規(guī)律。結(jié)果表明:1)二氯二甲基硅烷改性砂土表現(xiàn)為極度斥水等級,且斥水性長期穩(wěn)定,可作為制備斥水砂土的優(yōu)選;硅烷偶聯(lián)劑改性砂土的斥水性初期不明顯,隨著時間增長明顯增強,最終可達極度斥水等級;但此類改性砂土易結(jié)塊,均勻性及分散性較差,不推薦作為制備斥水砂土的優(yōu)選;十二烷基硫酸鈉改性砂土的斥水性不明顯,且改性方法復雜耗時,不宜用來制備斥水砂土。2)當十八胺含量分別為0.2%、0.3%和0.6%時,改性黏土分別可達中等、嚴重和極度斥水等級,斥水性長期穩(wěn)定,可作為制備斥水黏土的優(yōu)選。3)將十八胺含量為0.5%的改性黏土摻入天然砂土混合制得的改性混合土,亦有不同程度的斥水性。當改性黏土含量為1%~3%時,改性混合土尚無明顯斥水性;當改性黏土含量為3%~10%時,改性混合土斥水等級為中度;當改性黏土含量為10%~50%時,改性混合土斥水等級可達到嚴重。該成果可為深入研究土壤斥水性及其工程應用提供參考。
土壤;接觸角;土壤改性試驗;斥水劑;斥水度
非飽和土由土顆粒、孔隙水和孔隙氣組成[1]。土顆粒表面可以被水濕潤,宏觀上表現(xiàn)為親水;土顆粒表面難以被水濕潤,宏觀上表現(xiàn)為斥水[2]。在土壤學和農(nóng)業(yè)科學領域,土壤斥水性對地表徑流、地表水入滲和蒸發(fā)、包氣帶內(nèi)水氣運移、植被根系水溶液吸附、地下水環(huán)境等均具有重要影響[3-4]。土壤斥水性的存在往往不利于農(nóng)業(yè)生產(chǎn)的可持續(xù)性發(fā)展,并引發(fā)了很多土地利用問題。具有斥水性的土壤,其導水率和入滲率比親水性土壤的要小,入滲能力降低[5];地表更易積水,產(chǎn)生地表徑流,加速土壤侵蝕過程[6];水流易借助于大孔隙、裂隙、動物洞穴等通道形成優(yōu)先流,導致養(yǎng)分流失,加速了化學物質(zhì)的淋洗,加大了地下水污染的風險[7]。目前關(guān)于土壤斥水性的研究成果主要集中在土壤學和農(nóng)業(yè)科學等領域,研究對象為天然斥水性的土壤,重點研究如何減小和消除天然土壤的斥水性,增強土壤的親水性。然而由于學科的特殊性,很少涉及到重塑土的斥水性的研究。
自然界中的土大都表現(xiàn)為親水性,在土木工程領域,由土的親水性引起的工程問題不勝枚舉[8-10]。水流過親水性土中孔隙的現(xiàn)象稱為滲流,水在水頭差的作用下流經(jīng)土中孔隙產(chǎn)生滲透力,易出現(xiàn)管涌、流土等滲透破壞現(xiàn)象[11];孔隙水的排出和流入導致土壤孔隙重新分布,產(chǎn)生滲透變形,土壤內(nèi)部應力重新調(diào)整,易出現(xiàn)地面變形[12]、邊坡失穩(wěn)[13]等工程災害;擋水工程中水的滲流會造成水量損失[14];濱海地區(qū)開采地下水導致海水入侵現(xiàn)象[15];污水滲流會引起地表水和地下水的污染[16]等。這些都是由于土壤具有親水性,在水頭差作用下水能夠在土中孔隙內(nèi)自由流動,亦對工程設施帶來嚴重破壞,而且具有長期性。目前常用防水措施只是將部分土壤與水隔離,并未改變土壤親水性的內(nèi)在本質(zhì),防滲性無法長期保證。一旦水進入土壤內(nèi)部并長期反復作用,那么看似穩(wěn)定的工程仍有可能再次失穩(wěn)。如果能夠采用技術(shù)手段對土顆粒進行處理,使其由親水性變?yōu)槌馑?,那么水分就無法輕易滲入土壤孔隙內(nèi)部,滲流也就不易發(fā)生,進而由滲流引起的工程問題就不易出現(xiàn),部分防滲措施可不必采用,降低工程造價;其次,通過上述技術(shù)手段對其表面進行處理后,使其表面具有斥水性,可直接作為一種防滲材料應用于工程。此外,斥水性土壤可采用部分工程棄土重新利用,使其成為再生資源,同時亦可減小環(huán)境污染和堆積占地問題等[17]。
綜上所述,本文分別采用十二烷基硫酸鈉[18]、二氯二甲基硅烷[19]、硅烷偶聯(lián)劑KH-550[20]等來制備不同斥水性砂土,采用十八烷基伯胺[21-22]來制備不同斥水性黏土[23]及混合土[24]。然后采用滴水穿透時間法[25-26]和酒精溶液入滲法[27-28]測定不同斥水劑和改性方法作用下土壤斥水度。同時采用接觸角測定法[29-30]測定改性砂土的表觀接觸角,以獲得改性前后土壤斥水度及其變化規(guī)律,為斥水性土壤的工程應用提供試驗基礎。
1)試驗用土
試驗用土取自南昌市某工程現(xiàn)場,風干碾碎過2.36 mm篩后備用。本文分別選取了砂土及黏土,基本參數(shù)為:1)砂土:相對密度2.66,最大干密度1.65 g/cm3,最小干密度1.35 g/cm3,飽和含水率42.3%,天然孔隙比0.45,其粒徑級配曲線見圖1;2)黏土:相對密度2.72,最大干密度1.81 g/cm3,最優(yōu)含水率19.5%,塑限20.8%,液限41.6%,塑性指數(shù)20.8。
圖1 砂土顆粒級配曲線
2)試驗材料和輔助設備
為研究不同斥水劑對土壤的改性效果,分別采用十二烷基硫酸鈉(C12H25-OSO3Na)、硅烷偶聯(lián)劑KH-550(H2N(CH2)3Si(OCH2CH3)3)和二氯二甲基硅烷((CH3)2SiCl2)對砂土改性,采用十八胺(CH3(CH2)16CH2NH2)對黏土進行改性。輔助試劑有:正丁醇(CH3(CH2)3OH)、丙酮(CH3COCH3)和去離子水;輔助設備有:恒溫水浴鍋、電烘箱、燒杯、攪拌器、滴定管及防護材料等。
取天然砂土用清水沖洗烘干后獲得的砂土定名為S①號砂土(圖2a)。后續(xù)改性砂土均為不同斥水劑與S①號砂土按一定方式制備而成。具體如下:
1)十二烷基硫酸鈉(SDS)改性
按1 g:10 mL的比例配制十二烷基硫酸鈉和丙酮分析純的混合液,在混合液中多次少量添加去離子水,攪拌至十二烷基硫酸鈉完全溶解。將混合溶液與S①號砂土按10 mL:20 g的比例混合置于50 ℃恒溫水浴鍋中水浴8 h。然后用去離子水清洗烘干,即制得十二烷基硫酸鈉改性砂土(圖2b,S②號砂土)。
2)硅烷偶聯(lián)劑KH-550(SCA KH-550)改性
將硅烷偶聯(lián)劑KH-550、乙醇、去離子水按3:15:2的體積比配制成偶聯(lián)劑混合液,按100 g砂:25 mL偶聯(lián)劑溶液的比例稱取S①號砂土置于偶聯(lián)劑混合液并恒溫水浴攪拌15 min,待自然冷卻后浸泡于去離子水中24 h后烘干,即得硅烷偶聯(lián)劑KH-550改性砂土(圖2c,S③號砂土)。
3)二氯二甲基硅烷(DCDMS)改性
稱取S①號砂土于塑料容器中,以二氯二甲基硅烷與砂土按3 mL:100 g的比例加入硅烷后密封混合均勻至少2 h,即得二氯二甲基硅烷改性砂土(圖2d,S④號砂土)。
注:S①,天然砂土;S②,十二烷基硫酸鈉改性砂土;S③,硅烷偶聯(lián)劑KH-550改性砂土;S④,二氯二甲基硅烷改性砂土。下同。
將十八胺(OCT)與天然黏土分別按不同質(zhì)量比混合加去離子水攪拌均勻后烘干碾碎并過2 mm篩,即得十八胺改性黏土(圖3)。同時將改性黏土與S①號砂土按不同質(zhì)量比配制攪拌制成改性混合土,無需加水,直接攪拌即可。
注:數(shù)字為十八胺與黏土質(zhì)量之比。
前期試驗過程中,筆者均采用了上述4種斥水劑進行改性砂土和黏土的配制,發(fā)現(xiàn)存在如下現(xiàn)象:
砂土中加入十八胺后,其斥水性很不明顯,改性前后基本相同;采用十二烷基硫酸鈉、硅烷偶聯(lián)劑KH-550、二氯二甲基硅烷等三種斥水劑可得到性質(zhì)均勻的砂土,斥水性有明顯變化。故采用了十二烷基硫酸鈉、硅烷偶聯(lián)劑KH-550、二氯二甲基硅烷等3種斥水劑來改性砂土。
十二烷基硫酸鈉、硅烷偶聯(lián)劑KH-550、二氯二甲基硅烷等三種斥水劑改性得到的黏土均成團塊狀,斥水程度離散性大,無法獲得均勻試樣。采用十八胺改性后的黏土具有顯著斥水性,故只采用了十八胺來改性黏土。
改性混合土是用改性黏土和普通砂土混合制成,主要是考慮改性黏土的配制過程相比改性砂土而言更為簡單,且十八胺的性價比要明顯優(yōu)于其他3種斥水劑,因此從工程實用化角度出發(fā),本文的改性混合土選用改性黏土和普通砂土配制而成。
基于上述制備步驟,本文分別制取了4種改性砂土、10種改性黏土和10種改性混合土,并分別采用滴水穿透時間法(WDPT)和酒精溶液入滲法(MED)來測定相應的土壤斥水等級,相應的標準見表1和表2[31]。改性砂土中,S②號斥水劑與純土的配比為1 g:20 g;S③號斥水劑與純土的配比為3mL:80g;S④號斥水劑與純土的配比為3 mL:100 g。改性黏土為N①號黏土與不同十八胺含量配制而成,改性混合土為N⑤號改性黏土與S①號砂土配制而成。具體試驗方案見表3和表4。
表1 斥水等級分類標準—滴水穿透時間法
表2 斥水等級分類標準—酒精溶液入滲法
表3 改性黏土制備方案
表4 改性混合土制備方案
接觸角是反映土壤親斥水程度的量化指標,從根本上體現(xiàn)了土壤與水分的相互關(guān)系。由于土壤顆粒表面呈現(xiàn)出不均勻性,因此很難確定其本質(zhì)接觸角,只能得到表觀接觸角。毛細管上升法測得的土壤接觸角通常為表觀接觸角[32],因此本文采用毛細管上升法對改性砂土接觸角進行測量。筆者亦嘗試采用毛細管上升法開展改性黏土的接觸角測定試驗。試驗中發(fā)現(xiàn),改性黏土和改性混合土難以均勻置于毛細管內(nèi),且液體上升高度小,濕潤面不明顯,尤其是十八胺質(zhì)量分數(shù)超過0.3%的改性黏土。因此針對改性黏土和改性混合土未能直接測定其表觀接觸角。液體采用正己烷,其表面張力為18.44 mN/m,黏度系數(shù)為0.294 mPa·s。改性砂土干密度為1.4 g/cm3。把裝有改性砂土的玻璃管垂直浸入正己烷中并固定,浸入深度1cm。每隔一段時間記錄液面上升高度,連續(xù)觀察圖5d。對同一土壤而言與為常數(shù),故可用正己烷確定不同改性土壤的與值,進而獲得相應的接觸角。試樣與液體的接觸角由Lucas-Washburn方程確定(式(1))。
式中為時刻時液體在試樣中的濕潤高度,mm;為液體表面張力,mN/m;為土柱有效毛細管半徑,mm;為液體黏度,mPa·s;為接觸角;為常數(shù);為時間,s。作2-圖即可求得改性砂土的接觸角。
圖4為S①至S④號改性砂土表面水滴形態(tài)。為了減小砂樣不均勻性的影響,在砂樣表面選取3處(正三角形分布,間距4 cm)測定滴水穿透時間,將3處測試的平均值作為該砂樣最終結(jié)果。采用WDPT法和MED法測定改性砂土的斥水等級結(jié)果見表5。結(jié)果表明,S①號砂土的水滴入滲時間不足1 s,入滲濕潤面迅速呈散開狀,表明S①號砂土表現(xiàn)為親水性;S②號砂土一開始表現(xiàn)為輕微斥水,隨著時間推移,其斥水性逐漸消散,最終呈現(xiàn)為親水性;S③號砂土初期無明顯斥水性,但隨時間推移斥水性增強較為明顯,第5天入滲時間已超過3 600 s,達到極度斥水等級,并穩(wěn)定不變,水滴呈半橢球狀;S④號砂土的滴水入滲時間始終超過3 600 s,呈現(xiàn)出極度斥水狀態(tài),并穩(wěn)定不變,水滴呈近似半球狀。
注:黑圈內(nèi)為水滴形態(tài)。 Note: Water shapes in black areas.
和WDPT法測定結(jié)果類似,MED法測定結(jié)果表明,S①號砂土始終表現(xiàn)為親水性;初期S②號砂土較S③號砂土斥水性要強,但與S④號相比要弱。隨著時間推移,S②號砂土斥水強度逐步減弱,到第5天變?yōu)橛H水性砂土;S③號砂土斥水性增長趨勢與時間成正比,初期表現(xiàn)為親水性,第5天后達到嚴重斥水等級,并持續(xù)穩(wěn)定;S④號砂土始終呈現(xiàn)極度程度斥水,在現(xiàn)有評價精度范圍里,尚無法確定是否會增強。這表明,采用二氯二甲基硅烷改性砂土具有顯著斥水性,且無需對砂土進行前期處理,持續(xù)時間穩(wěn)定,可作為制備斥水砂土的優(yōu)選;硅烷偶聯(lián)劑改性砂土雖具有較好斥水性,但砂樣易結(jié)塊,均勻性及分散性較差,不推薦用來制備斥水砂土;十二烷基硫酸鈉改性砂土與改性前相比變化不大,且改性步驟復雜,所需材料較多,不宜用來制備斥水砂土。
表5 滴水穿透時間法和酒精溶液入滲法測定改性砂土斥水等級
圖5為采用毛細管上升法測定改性砂土接觸角的2-關(guān)系曲線,代入式(1)可計算出各類改性砂土的表觀接觸角。計算結(jié)果表明,S①號砂土測得的接觸角為23.22°,濕潤性很好;S②號砂土測得的接觸角為35.50°,濕潤性較好;S③號砂土測得的接觸角為65.99°,濕潤性一般;S④號砂土測得的接觸角為78.33°,已達到亞臨界斥水狀態(tài)。這與前述斥水度檢測結(jié)果基本一致,表明硅烷偶聯(lián)劑KH-550改性砂土和二氯二甲基硅烷改性砂土能達到較好斥水效果,而十二烷基硫酸鈉改性砂土幾乎無斥水效果。
圖5 改性砂土在正己烷中測得的h2-t關(guān)系曲線
圖6為十八胺質(zhì)量分數(shù)分別為0%和1.2%時的改性黏土表面水滴形態(tài)。可以看出,當液滴滴入普通黏土時,液體立刻呈圓形滲入土壤,呈現(xiàn)出典型的親水性;滴入摻有十八胺的黏土時,液滴長時間停留在土壤表面,呈半橢球狀,表明該土壤已具有一定斥水性。
試驗表明,除N②號改性黏土外,其余改性黏土采用WDPT法的測定時間均超過3 600 s,為極度斥水等級;而采用MED法對改性黏土斥水性的測定結(jié)果更為精確,相應的測試結(jié)果見表6。可以看出,當十八胺含量達0.2%時,改性黏土可達中等斥水等級;當十八胺含量為0.3%時,改性黏土可達嚴重斥水等級;而當十八胺含量達0.6%時,改性黏土已達到極度斥水等級。十八胺含量的繼續(xù)增加對改性黏土的斥水性沒有影響,始終保持極度斥水等級。從經(jīng)濟合理的角度上看,即其質(zhì)量分數(shù)達到某一值后,改性黏土既具有較好的斥水性能,又能經(jīng)濟效益最大化。根據(jù)本文試驗結(jié)果,筆者建議十八胺含量為0.5%時即可滿足上述要求。這為十八胺改性黏土的工程實用化提供了研究基礎。
圖6 不同十八胺含量的改性黏土入滲效果
表6 酒精溶液入滲法測定改性黏土斥水等級
此外在試驗中還發(fā)現(xiàn),若直接在天然黏土中加入十八胺混合均勻放置一段時間,其斥水效果與加水混合均勻后再烘干制得的改性黏土相比有較大差異,遠不如后者的斥水程度,且與十八胺的質(zhì)量分數(shù)密切相關(guān)。十八胺含量為0.5%時的斥水程度僅為微弱等級,而十八胺含量為1%時的斥水程度可達嚴重等級。這表明,將十八胺與黏土加水混合均勻再烘干后制得的改性黏土,其斥水程度明顯優(yōu)于直接將十八胺添加至黏土而獲得的改性黏土。這對今后提高黏土斥水性提供了重要試驗依據(jù)。
筆者將不同十八胺含量的改性黏土與普通砂土混合均勻后制得改性混合土。結(jié)果表明,當十八胺含量為0.5%的改性黏土與普通砂土混合制得的改性混合土,表現(xiàn)出較強的斥水特性。十八胺含量越大,斥水性越明顯。圖7為0.5%十八胺含量的改性混合土的入滲效果。當斥水黏土含量為1%時,液滴滴入后迅速下滲,液面迅速擴散;當斥水黏土含量為5%時,液滴可停留在土壤表面,呈現(xiàn)出斥水性。由于改性黏土顆粒較細,易充填在砂土顆粒之間的空隙內(nèi),使砂土顆粒滲透性大大降低,加上十八胺的斥水作用,使得混合土表現(xiàn)出明顯的斥水性。
注:數(shù)字為N⑤號黏土與S①砂土的質(zhì)量比。
筆者亦采用了WDPT法和MED法測定了改性混合土斥水等級,結(jié)果見表7。結(jié)果表明,隨著改性黏土含量的增加,改性混合土逐漸表現(xiàn)出斥水性,且斥水性越強烈。WDPT法與MED法對改性混合土斥水等級的測試結(jié)果基本一致,從測試精度上來看,MED法更適用于測試改性混合土的斥水等級。當改性黏土含量低于3%時,尚無明顯斥水性,但相對于普通砂土而言,液滴入滲時間較長,濕潤面較小,說明斥水黏土發(fā)揮了一定作用;當改性黏土含量為3%~10%時,改性混合土斥水等級為中度;當改性黏土含量為10%~50%時,改性混合土斥水等級可達到嚴重。當斥水黏土含量達到一定值時,黏土顆粒能較大范圍地充填至砂土顆粒之間的空隙,液體入滲通道受到擠壓,同時黏土顆粒具有的斥水性進一步阻礙了液滴入滲,宏觀上即表現(xiàn)為斥水特征。當改性黏土含量達到100%時,混合土壤斥水等級為極度,此時空隙基本被黏土充滿,液滴在短時間內(nèi)難以入滲土壤而長期停留,表現(xiàn)出較好的斥水特性。
表7 滴水穿透時間法和酒精溶液入滲法測定改性混合土斥水等級
1)砂土改性中,二氯二甲基硅烷改性砂土制備簡單方便,制備時間短,斥水效果最優(yōu),屬于極度斥水,且斥水性穩(wěn)定,且無需對砂土進行前期雜質(zhì)處理,可作為制備斥水砂土的優(yōu)選;硅烷偶聯(lián)劑改性砂土制備方便,但砂土顆粒易結(jié)塊,均勻性及分散性較差,其斥水效果隨著時間推移逐漸增長,最后保持穩(wěn)定,其斥水性低于二氯二甲基硅烷改性砂土的斥水性,不推薦用以制備斥水砂土;十二烷基硫酸鈉改性砂土的斥水性較前兩者較弱,改性過程繁瑣,所需試劑種類多,對試驗環(huán)境要求高,斥水性隨時間的增加而降低,甚至消失,不適合用以制備斥水砂土。
2)黏土改性中,在黏土中摻入十八胺后加水攪拌均勻并烘干后的改性黏土,其斥水效果要明顯優(yōu)于直接將十八胺摻入黏土所制得的改性黏土。十八胺含量越高,改性黏土斥水等級越高,十八胺質(zhì)量分數(shù)達到0.3%時的改性黏土即可達到嚴重斥水等級,斥水性能長期保持穩(wěn)定,且十八胺對環(huán)境和人體影響很小,可作為制備斥水黏土的優(yōu)選。十八胺含量的繼續(xù)增加對改性黏土的斥水性沒有影響,始終保持極度斥水等級。從經(jīng)濟合理的角度上看,即其質(zhì)量分數(shù)達到某一值后,改性黏土既具有較好的斥水性能,又能經(jīng)濟效益最大化。本文建議十八胺含量為0.5%時即可滿足上述要求。
3)隨著改性黏土含量的增加,改性混合土逐漸表現(xiàn)出斥水性,且斥水程度越高。當改性黏土含量低于3%時,尚無明顯斥水性,但相對于普通砂土而言,液滴入滲時間較長,說明斥水黏土發(fā)揮了一定作用;當改性黏土含量為3%~10%時,改性混合土斥水等級為中度;當改性黏土含量為10%~50%時,改性混合土斥水等級可達到嚴重,其斥水效果與直接改性砂土的效果基本相同,可為制備斥水砂土提供新的思路。
[1] Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical Engineering Division, 1977, 103: 447-466.
[2] 王中平,孫振平,金明. 表面物理化學[M]. 上海:同濟大學出版社,2015:23-42.
[3] 李毅,商艷玲,李振華,等. 土壤斥水性研究進展[J]. 農(nóng)業(yè)機械學報,2012,43(1):68-75.
Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 68-75. (in Chinese with English abstract)
[4] Debano L F.Water repellency in soils: A historical overview[J]. Journal of Hydrology, 2000, 231: 4-32.
[5] Doerr S H, Shakesby R A, Walsh R P D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance[J]. Earth-Science Reviews, 2000, 51(1): 33-65.
[6] Doerr S H, Ferreira A J D, Walsh R P D , et al. Soil water repellency as a potential parameter in rainfall-runoff modeling: Experimental evidence at point to catchment scales from portugal[J]. Hydrological Process, 2003, 17(2): 363-377.
[7] Bauters T W J , Dicarlo D A , Steenhuis T S , et al. Preferential flow in water-repellent sands[J]. Soil Science Society of America Journal, 1998, 62(5): 1185-1190.
[8] Robichaud P R, Wagenbrenner J W, Pierson F B, et al. Infiltraion and interrill erosion rates after a wildfire in western Montana, USA[J]. Catena, 2016, 142: 77-88.
[9] Doerr S H. On standardizing the water drop penetration time and the molarity of an ethanol droplet techniques to classify soil hydrophobicity: A case study using medium textured soils[J]. Earth Surface Processes & Landfroms, 2015, 23(7): 663-668.
[10] Liu H, Ju Z, Bachmann J, et al. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves[J]. Soil Science Society of America Journal , 2012, 76(2): 342-349.
[11] Toll D G. Rainfall-induced landslides in Singapore[J]. Proceedings of theInstitution of Civil Engineers: Geotechnical Engineering, 2001, 149(4): 211-216.
[12] 陳建斌,孔令偉,趙艷林,等. 蒸發(fā)蒸騰作用下非飽和土的吸力和變形影響因素分析[J]. 巖土力學,2007,28(9):1967-1773. Chen Jianbin, Kong Lingwei, Zhao Yanlin, et al. On influence factors of suction and deformation of unsaturated soil under evaporation and transpiration effect[J]. Rock and Soil Mechanics, 2007, 28(9): 1967-1773. (in Chinese with English abstract)
[13] 李雄威,孔令偉,郭愛國. 膨脹土塹坡雨水入滲速率的影響因素與相關(guān)性分析[J]. 巖土力學,2009,30(5):1291-1296. Li Xiongwei, Kong Lingwei, Guo Aiguo. Effects and correlation analysis of infiltration velocity of expansive soil cut slope Rock and Soil Mechanics, 2009, 30(5): 1291-1296. (in Chinese with English abstract)
[14] 陳俊英,劉暢,張林,等. 斥水程度對脫水土壤水分特征曲線的影響[J]. 農(nóng)業(yè)工程學報,2017,33(21):188-193. Chen Junying, Liu Chang, Zhang Lin, et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 188-193. (in Chinese with English abstract)
[15] 陳俊英,張智韜,汪志農(nóng),等. 土壤斥水性影響因素及改良措施的研究進展[J]. 農(nóng)業(yè)機械學報,2010,41(7):84-89. Chen Junying, Zhang Zhitao, Wang Zhinong, et al. Influencing factors and amelioration of soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 84-89. (in Chinese with English abstract)
[16] Durner W, Iden S C. Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation[J]. Water Resources Research, 2011, 47(8): 427-438.
[17] Dekker L W, Ritsema C J. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency[J]. Water Resources Research, 1994, 30(9): 2507-2517.
[18] 劉春成,李毅,任鑫,等. 四種入滲模型對斥水土壤入滲規(guī)律的適用性[J]. 農(nóng)業(yè)工程學報,2011,27(5):62-67. Liu Chuncheng, Li Yi, Ren Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 62-67. (in Chinese with English abstract)
[19] 楊松,龔愛民,吳珺華,等. 接觸角對非飽和土中基質(zhì)吸力的影響[J]. 巖土力學,2015,36(3):674-678. Yang Song, Gong Aimin, Wu Junhua, et al. Effect of contact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678. (in Chinese with English abstract)
[20] 包彩霞,常青,未碧貴. 石英砂濾料表面潤濕改性[J]. 環(huán)境工程學報,2014,8(5):1915-1920. Bao Caixia, Chang Qing, Wei Bigui. Surface modification of quartz sand filter for wetting property[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1915-1920.(in Chinese with English abstract)
[21] 楊松,吳珺華,黃劍峰. 表面張力與接觸角對膨脹土干縮開裂影響的試驗研究[J]. 巖土工程學報,2017,39(9):1645-1652. Yang Song, Wu Junhua, Huang Jianfeng. Effects of pore water surface tension and contact angle on dry-shrinkage cracking of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1645-1652. (in Chinese with English abstract)
[22] 劉世賓,李毅,Robert Horton. 斥水土壤的水力參數(shù)及水平吸滲規(guī)律[J]. 排灌機械工程學報,2013,31(11):1000-1006. Liu Shibin, Li Yi, Robert Horton. Hydraulic parameters and horizontal infiltration characteristics of hydrophobic soils[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(11): 1000-1006. (in Chinese with English abstract)
[23] 成娟,李玲,劉科. 液體表面張力系數(shù)與濃度的關(guān)系實驗研究[J]. 中國測試,2014,40(3):32-34. Cheng Juan, Li Ling, Liu Ke. Study on the relationship between liquid surface tension and concentration[J]. China Measurement & Teat, 2014, 40(3): 32-34. (in Chinese with English abstract)
[24] 葛勇,常傳利,楊文萃,等. 常用無機鹽對溶液表面張力及混凝土性能的影響[J]. 混凝土,2007 (6):7-9. Ge Yong, Chang Chuanli, Yang Wencui, et al. Effect of inorganic salts on surface tension of solutions and properties of concrete[J]. Concrete, 2007(6): 7-9. (in Chinese with English abstract)
[25] Franco C M M, Tate M E, Oades J. M. Studies on non-wetting sands: I. The role of intrinsic particulate organic matter in the development of water repellency in non-wetting sands[J]. Australian Journal of Soil Research, 1995, 33(2): 253-263.
[26] BDV Woudt. Particle coatings affecting the wettability of soils[J]. Journal of Geophysical Research Atmospheres, 1959, 64(2): 263-267.
[27] Watson C L, Letey J. Indices for characterizing soil water repellency based upon contact angle-surface tension relationships[J]. Soil Science Society of America, 1970, 34(6): 841-844.
[28] 吳延磊,李子忠,龔元石. 兩種常用方法測定土壤斥水性結(jié)果的相關(guān)性研究[J]. 農(nóng)業(yè)工程學報,2007,23(7):8-13. Wu Yanlei, Li Zizhong, Gong Yuanshi. Correlation of soil water repellency measurements from two typical methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 8-13. (in Chinese with English abstract)
[29] Wang Z, Wu L, Wu Q J. Water-entryvalue as an alternative indicator of soil water-repellency and wettability[J]. Journal of Hydrology, 2000, 231(6): 76-83.
[30] 趙亞溥. 表面與界面物理力學[M]. 北京:科學出版社,2012:156-198.
[31] 陳俊英. 污灌土壤斥水性的機理研究[D]. 楊凌:西北農(nóng)林科技大學,2010. Chen Junying. Mechanism Research on Water Repellency of Sewage Irrigation Soil[D].Yangling: Northwest Agriculture & Forestry University, 2010.
[32] Latey J, Osborn J, Pelishek R E. Measurement of liquid-soild contact angles in soil and sand[J]. Soil Science, 1962, 93: 149-153.
Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents
Wu Junhua, Zhou Xiaoyu, Lin Hui, Deng Yichao, Ai Jianling, Dai Jun
(,,330063,)
In order to analyze the change rule of hydrophobic degree of soils with the addition of different hydrophobic agents, the sandy soils hydrophobized by sodium lauryl sulfate (SDS), silane coupling agent KH-550 (SCA KH-550) and dichlorodimethylsilane (DCDMS) were prepared respectively along with the clays hydrophobized by octadecylamine (OCT) for the soil test in this study. The hydrophobic degree of different hydrophobized soils and the relevant change laws were obtained by water drop penetration time (WDPT), the molarity of an ethanol droplet technique (MED) and the contact angle measurement method (CAM) respectively. The mixtures of sandy soils and DCDMS according to the proportion of 100 g: 3 mL were obtained, which showed an extreme hydrophobicity. The contact angle of these mixed soils was 78.33°, which reached to subcritical hydrophobicity and it can be kept stable for a long time. This modification method can be an optimal way for preparing the hydrophobized sandy soils. A mixed liquid of SCA KH-550, ethanol and deionized water with the volume ratio of 3:15:2 were obtained firstly. Then the mixtures of natural sandy soils and this mixed liquid with the proportion of 100 g: 25 mL were obtained finally. The hydrophobicity of mixed soils was small initially, then was enhanced with the time increasing and reached to the highest finally. The contact angle of these mixed soils was 65.99°. However, these mixed soils were easy to clump and showed a poor uniformity and dispersibility. That meant this modification method was not recommended for preparing the hydrophobized soils. A mixed liquid of SDS and pure acetone with the proportion of 1 g: 10 mL were obtained firstly. Then the mixtures of sandy soils and the liquid with the proportion of 100 g: 50 mL were obtained finally. These mixed soils showed little hydrophobicity all the time. The contact angle of mixed soils was 35.5°. Moreover, the process of modification was complicated and time-consuming. Thus, this modification method was not suitable for preparing the hydrophobized sandy soils. The mixtures of clays and OCT in different ratios were prepared with deionized water together firstly. Then the hydrophobized clays were obtained finally by drying, pulverizing and sifting in an order of particle sizes. The severity ratings of hydrophobized clays were moderate, severe and extreme with 0.2%, 0.3% and 0.6% OCT contents, respectively, and all of them can be kept stable in hydrophobicity all the time. Moreover, the severity ratings of hydrophobized clays can be still high with the increasing of OCT contents. That meant the hydrophobized clays do not need high OCT content and a best content of it was 0.5% content in our test. Besides, OCT had little effect on both environment and humans. It was seen that this modification method can be used as an optimal way for preparing the hydrophobized clays. The mixtures of modified clays with 0.5% OCT content and natural sandy soils in different ratios were prepared. No hydrophobicity was shown in the mixture with less than 3% hydrophobized clays content. However, its penetration time was longer than the natural sandy soils’. That meant the hydrophobized clays played a role in hydrophobicity. The severity ratings of mixtures were moderate with 3% - 10% hydrophobized clays content and severe with 10% - 50% hydrophobized clays content. The results can provide a reference for the further analysis on hydrophobized soil and its application in engineering.
soils; contact angle; soil modification tests; hydrophobic agents; hydrophobic degree
10.11975/j.issn.1002-6819.2018.17.015
S152.7
A
1002-6819(2018)-17-0109-07
2018-03-18
2018-07-09
國家自然科學基金資助項目(51408291,41662021);江西省自然科學基金資助項目(S2018QNJJB0057)。
吳珺華,江西吉安人,副教授,博士,主要從事非飽和土基本性質(zhì)研究。Email:wjhnchu0791@126.com
吳珺華,周曉宇,林 輝,鄧一超,艾建凌,戴 駿. 不同斥水劑作用下土壤斥水度測定及其變化規(guī)律[J]. 農(nóng)業(yè)工程學報,2018,34(17):109-115. doi:10.11975/j.issn.1002-6819.2018.17.015 http://www.tcsae.org
Wu Junhua, Zhou Xiaoyu, Lin Hui, Deng Yichao, Ai Jianling, Dai Jun. Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 109-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.015 http://www.tcsae.org