張 強, 王言暢, 王 銳
(1. 哈爾濱工程大學(xué)自動化學(xué)院, 黑龍江省哈爾濱市 150001; 2. 中興通訊股份有限公司, 廣東省深圳市 518001)
在電力系統(tǒng)中為了滿足大容量的需求,經(jīng)常會出現(xiàn)多個電源(包括儲能裝置)并聯(lián)運行的情況。對于這種由多個電源構(gòu)成的電源系統(tǒng),目前大多采用均流控制[1-6]來實現(xiàn)其內(nèi)部多個電源單體間的負荷分配,進而確保電源系統(tǒng)的安全運行。但是電源單體效率特性的差異(例如不同廠家、不同型號的電源,即使設(shè)計參數(shù)、具體結(jié)構(gòu)完全一樣的電源,由于內(nèi)部器件老化、寄生參數(shù)不同等因素的存在,其效率特性也必然存在一定差異)致使均流控制并不能使電源系統(tǒng)的穩(wěn)態(tài)運行效率達到最優(yōu),對于大功率電源系統(tǒng)來說,微小的效率差異都意味著大量能量的浪費。近幾年來,通過合理的負荷分配來優(yōu)化并聯(lián)電源的效率問題已經(jīng)開始引起了研究人員的重視,并進行了相關(guān)研究[7-13]。
文獻[7]針對并聯(lián)變換器系統(tǒng),基于單個變換器的效率曲線,采用窮舉優(yōu)化算法優(yōu)化不同負載功率時各并聯(lián)變換器的最優(yōu)功率分配值,并通過離線優(yōu)化、在線查找方式來提高優(yōu)化速度。但離線優(yōu)化的處理方式限制住了該控制方法的靈活性。
文獻[8]針對并聯(lián)的電源,利用物理關(guān)系建立一系列數(shù)學(xué)模型,并進行參數(shù)辨識,根據(jù)一系列數(shù)學(xué)推導(dǎo)完成對并聯(lián)直流電源系統(tǒng)效率最優(yōu)的負荷分配控制。但是該控制方法存在以下幾個問題:一是建立的數(shù)學(xué)模型過于理想化,只能通過儲能電感串聯(lián)不同電阻來改變電源的效率特性;二是控制系統(tǒng)未加控制器,占空比依靠數(shù)學(xué)計算獲取,若對系統(tǒng)參數(shù)辨識不準(zhǔn)確,必然會導(dǎo)致電源系統(tǒng)的輸出產(chǎn)生誤差。
文獻[9-11]也提出了利用不均流的負荷分配來提升并聯(lián)直流電源效率的控制策略,其思想為:若n個電源并聯(lián),以總的負載電流值以及每個電源模塊在效率最優(yōu)運行時的輸出電流值為依據(jù),令其中m-1個電源模塊工作在各自的效率最優(yōu)運行點,使第m個電源模塊來承擔(dān)剩下的負載電流,而剩下的n-m個電源模塊則不工作,進而實現(xiàn)系統(tǒng)效率最優(yōu)。但是該方法所提出的電源效率數(shù)學(xué)表達式中涉及到電源電路的寄生參數(shù),在實際情況下寄生參數(shù)的獲取相當(dāng)困難,因此相關(guān)研究仍只局限于理論上的分析。
在國內(nèi)的相關(guān)研究中,以文獻[12]的研究成果具有代表性,其利用聯(lián)立方程求解的方法獲得電源的效率特性,并將多電源間的效率優(yōu)化歸納為最小值求解的數(shù)學(xué)問題。但是研究中并沒有涉及在采用效率優(yōu)化控制時,如何解決電源系統(tǒng)動態(tài)調(diào)解過程中的安全性等問題。
針對目前的研究現(xiàn)狀及相關(guān)技術(shù)的不足,結(jié)合直流微網(wǎng)的具體科研項目,本文以兩個直流電源并聯(lián)所構(gòu)成的電源系統(tǒng)為研究對象,針對電源的效率特性分析及其數(shù)學(xué)表達式、尋優(yōu)算法設(shè)計等具體問題展開研究,同時考慮到電源運行過程中存在有動態(tài)和穩(wěn)態(tài)等多種工況,設(shè)計出復(fù)合控制策略,既可以確保動態(tài)過渡過程中每個電源單體的安全性,又可以實現(xiàn)穩(wěn)態(tài)運行時的總體效率最優(yōu)控制。
直流電源電路的形式多種多樣,本文以典型的Buck電路為例進行分析和研究。Buck電路中的損耗主要由電感損耗、電容損耗、功率開關(guān)器件和二極管的導(dǎo)通損耗,以及開關(guān)損耗等組成,在直流電源輸入、輸出電壓不變,并且忽略環(huán)境溫度對電路參數(shù)的影響,以及寄生參數(shù)的非線性特性的前提下,可認為直流電源的功率損耗只與電源的輸出電流有關(guān),即可以將直流電源的效率特性看作是效率關(guān)于其輸出電流的函數(shù)[14-17]。由于大多數(shù)寄生參數(shù)的不可測性,因此無法利用公式直接繪制出電源的實際效率特性曲線,只能在實驗的基礎(chǔ)上,通過數(shù)據(jù)點擬合的方法獲得近似效率特性曲線。
本文為了實現(xiàn)對電源系統(tǒng)總效率的分析,采用利用正交多項式最小二乘法對離散采樣數(shù)據(jù)進行擬合的技術(shù)方案來獲取每一個電源單體的效率特性。為了驗證該方案的效果,本文在仿真環(huán)境下搭建了兩個Buck電路型電源,這兩個電源的Buck電路基本參數(shù)一致:輸入電壓Uin=250 V;輸出電壓Uout=100 V;電感L=15 mH;電容C=250 μF,但是電路中的寄生參數(shù)數(shù)值不同。采用電壓電流雙閉環(huán)控制策略,仿真并記錄了每個電源的7組穩(wěn)態(tài)輸出電流和對應(yīng)的效率數(shù)據(jù),如表1所示。分別采用5次、4次、3次正交多項式最小二乘法進行擬合,得到兩個直流電源的擬合的效率特性曲線如圖1所示。
表1 仿真環(huán)境下效率與輸出電流Table 1 Efficiency and output current in simulation
雖然在仿真模型中,各個器件的寄生參數(shù)可作為已知參數(shù),但是由于效率特性的函數(shù)表達式中包含有占空比D,并且電感電流也不是恒定值,因此仿真中也無法利用函數(shù)表達式直接得到精準(zhǔn)的效率特性曲線,故在圖1中無法給出實際效率特性曲線用于比較。由圖1可以看出,擬合多項式的次數(shù)越多,與實際數(shù)據(jù)的擬合精度就越高,采用5次正交多項式最小二乘擬合時,擬合的效率特性曲線與實際效率運行點具有很好的重合度。因此綜合考慮計算工作量和擬合精度等因素,最終選擇利用5次正交多項式擬合曲線作為直流電源的效率特性,進而分別得到并聯(lián)系統(tǒng)中兩個直流電源單體的效率η1(Io1)和η2(Io2)如式(1)所示:
(1)
式中:mi為電源1效率特性擬合的多項式系數(shù);ni為電源2效率特性擬合的多項式系數(shù);Io1和Io2分別為電源1和電源2的輸出電流,此處與負載電流相等。
圖1 利用正交多項式最小二乘法擬合的效率特性曲線Fig.1 Efficiency characteristic curves fitted by orthogonal polynomial least squares
通過對兩個電源擬合效率特性曲線的對比可以看出,由于寄生參數(shù)的不一致,不同直流電源的最大效率值及其對應(yīng)的工作點都不盡相同。
若直流電源系統(tǒng)由n個電源單體并聯(lián)構(gòu)成,那么并聯(lián)直流電源系統(tǒng)的整體效率η可表示為:
(2)
式中:Pout為并聯(lián)直流電源系統(tǒng)的輸出總功率;Pin為并聯(lián)直流電源系統(tǒng)的輸入總功率;Pout,i為第i(i=1,2,…,n)個電源單體的輸出功率;Pin,i為第i個電源單體的輸入功率;ηi為第i個電源單體的效率。
由于直流電源的效率是關(guān)于輸出電流的函數(shù),那么式(2)中η1,η2,…,ηn可由各個電源的輸出電流表示,因此并聯(lián)直流電源的總體效率也可以用每個電源輸出電流的函數(shù)表示,可將式(2)簡化為:
η=f(Io1,Io2,…,Ion)
(3)
式中:Ioi為第i個電源單體的輸出電流值,i=1,2,…,n。
既然電源系統(tǒng)的效率是一個關(guān)于Io1,Io2,…,Ion的多元多次函數(shù),那么基于效率優(yōu)化的負荷分配就可轉(zhuǎn)化為求解系統(tǒng)效率最大解的問題,即
(4)
式中:Iload為并聯(lián)直流電源系統(tǒng)負載電流值。
考慮到每個電源單體的輸出電流都有一定的范圍,例如電源單體輸出電流的下限可設(shè)為臨界連續(xù)電流值,而電流的上限為電源的額定電流值,并且每個電源單體的上下限幅可能各不相同,但是所有電源單體的輸出電流之和必須等于總負載電流。那么基于效率最優(yōu)的并聯(lián)直流電源負荷分配問題又轉(zhuǎn)化為具有約束條件的效率極大值求解,將約束條件代入式(4)可得:
(5)
式中:i=1,2,…,n;Imin,i為第i個并聯(lián)電源模塊的最小電流值;Imax,i為第i個并聯(lián)電源模塊的額定輸出電流值。
將式(5)中的等式代入效率公式中,可得:
(6)
式中:i=1,2,…,n-1。
因此基于效率最優(yōu)的負荷分配問題最后可以簡化為帶約束條件的n-1元函數(shù)求極大值的求解問題。針對函數(shù)極值的求取,目前常用的算法有爬山法、粒子群算法、神經(jīng)網(wǎng)絡(luò)算法、遺傳算法等。其中遺傳算法對函數(shù)尋優(yōu)是從函數(shù)的隨機解出發(fā)進行尋優(yōu)計算,對函數(shù)沒有連續(xù)性的限定,也不存在對函數(shù)的求導(dǎo)運算,且能夠自適應(yīng)調(diào)整搜索方向,自動獲取優(yōu)化的搜索區(qū)域,可以快速實現(xiàn)收斂運算,尋優(yōu)結(jié)果好。在求解函數(shù)極值的問題上具有很好的魯棒性,并且計算結(jié)果合理。因此本文采用遺傳算法對電源系統(tǒng)進行效率尋優(yōu)計算,制定出電源系統(tǒng)在系統(tǒng)效率最優(yōu)時的負荷分配方案。
基于遺傳算法的效率尋優(yōu)設(shè)計流程如圖2所示。
圖2 基于遺傳算法進行效率尋優(yōu)的流程圖Fig.2 Flow chart of genetic algorithm optimizing
基于遺傳算法的效率尋優(yōu)設(shè)計可分為以下幾個關(guān)鍵步驟。
步驟1: 輸入總的負載電流Iload和并聯(lián)運行的電源個數(shù)n,根據(jù)編碼規(guī)則隨機產(chǎn)生的一個初始種群。這其中涉及編碼與反編碼設(shè)計技術(shù),具體設(shè)計如下。
由式(6)可知,電源系統(tǒng)的效率尋優(yōu)問題是一個關(guān)于n-1個變量的函數(shù)尋優(yōu)問題,因此遺傳算法中的個體x為一維向量[Iref,n-1,…,Iref,2,Iref,1],Iref,i(i=1,2,…,n-1)表示第i個電源分配的負荷電流,個體中變量的數(shù)量為n-1,假設(shè)變量Iref,i的二進制長度設(shè)置為pi,并且對電源電流的精度要求為小數(shù)點后2位,那么pi可表示為:
2pi-1<({Imax,i}A-{Imin,i}A)×102≤2pi-1
(7)
假設(shè)每個電源模塊的最小值均為1 A,電源模塊輸出電流的額定值均為20 A,那么可得210<(20-1)×102=1 900≤211-1,即每個變量的二進制長度為11,那么對個體進行編碼后,每個染色體二進制串的長度為11(n-1),編碼后染色體二進制串從右往左分別代表Iref,1,Iref,2,…,Iref,n-1。
在計算系統(tǒng)效率時,需要對每個染色體進行反編碼,輸出染色體中每個變量的實際值,對染色體進行反編碼的公式為:
(8)
式中:j為染色體的二進制數(shù)的位數(shù),右邊第一位為j=0。
對染色體反編碼后可以得到個體的實際值,即x=[Iref,n-1,…,Iref,2,Iref,1],但是個體只是取了n-1個電源模塊的輸出電流,所以第n的電壓模塊的輸出電流可以用其他n-1個電源模塊的輸出電流表示,即
(9)
步驟2:初始種群產(chǎn)生后,根據(jù)生物遺傳的規(guī)律,在每一代遺傳中,根據(jù)個體的適應(yīng)度大小選擇個體,并且進行交叉、變異操作,若經(jīng)過交叉變異產(chǎn)生的新個體不滿足約束條件,則產(chǎn)生的新個體不進入下一代。再次進行交叉變異操作,直至產(chǎn)生的新個體在約束條件以內(nèi),才進入下一代。這其中涉及適應(yīng)度函數(shù)和遺傳(選擇、交叉、變異)算子的設(shè)計技術(shù),具體設(shè)計如下。
1)適應(yīng)度函數(shù)設(shè)計。由于本文中遺傳算法的目標(biāo)函數(shù)為并聯(lián)直流電源系統(tǒng)的整體效率f(x),其中x=[Io(n-1),…,Io2,Io1],是針對函數(shù)最大值的求解,因此可直接將目標(biāo)函數(shù)作為遺傳算法的適應(yīng)度函數(shù),即Fit(x)=f(x),即目標(biāo)函數(shù)值越大,效率越高,表明個體的適應(yīng)度越強。
2)選擇算子設(shè)計。本文采用了輪盤賭選擇法,即個體被選擇留下來的標(biāo)準(zhǔn)是自身的適應(yīng)度函數(shù)值的大小,每一個個體的適應(yīng)度值與其被保留下來的概率成正比。如果種群大小為N,其中個體xi的適應(yīng)度函數(shù)為Fit(xi),那么經(jīng)過選擇算子,個體xi被保留下來的概率P(xi)如式(10)所示:
(10)
對每一代的種群進行多輪選擇,每一次都隨機產(chǎn)生一個0和1之間的隨機小數(shù),如果產(chǎn)生的隨機
數(shù)大于個體被保留的概率,那么個體被保留,進行多輪選擇后組合成新的種群。
3)交叉算子的設(shè)計。本文中使用的是經(jīng)驗法單點交叉算子。在交叉操作之前,首先對種群中的個體進行隨機配對,對每一對配對好的染色體進行交叉操作時,都先產(chǎn)生一個隨機小數(shù),并與預(yù)先設(shè)定的交叉概率做比較,如果小于設(shè)定的交叉概率,則這一對染色體進行交叉操作,否則不進行交叉操作直接進入子代種群。交叉操作時,由于本文所設(shè)計的染色體長度L=11,因此隨機產(chǎn)生一個介于1和11之間的整數(shù),以確定每一對染色體交叉點的位置,進而實施交叉,產(chǎn)生兩個新的染色體。比較子代和父代的適應(yīng)度值,若子代適應(yīng)度高,則保留子代,但是若交叉后子代的適應(yīng)度不如父代高,那么仍保留父代。采用該交叉算子設(shè)計可以加快遺傳尋優(yōu)的速度。
4)變異算子的設(shè)計。本文中的變異算子也采用經(jīng)驗法變異算子??紤]種群大小和染色體長度,變異概率可在0.001到0.1之間選取。通過隨機產(chǎn)生小數(shù),與變異概率做比較的方法,判斷染色體的每一位基因位是否為變異位,如果隨機產(chǎn)生的小數(shù)小于變異概率,那么該位為變異位,對該位的基因進行取反操作,否則,該位的基因不進行變異取反操作。在變異操作后,通過比較父代和子代的適應(yīng)度值,選擇保留適應(yīng)度高的染色體。
步驟3:最后一代種群中的最優(yōu)個體經(jīng)過解碼操作,輸出最優(yōu)解,最終得到并聯(lián)電源系統(tǒng)整體效率最優(yōu)時的負荷分配情況。
在尋優(yōu)過程中,如果某一個電源被分配的電流超過了其運行極限,即無法滿足式(5)和式(6)中的約束條件,則取其限值作為尋優(yōu)解,并將總負載電流減去該尋優(yōu)解后,在剩余的其他電源中重新優(yōu)化分配。
電源的效率是針對穩(wěn)態(tài)運行工況而言的,在電源的啟動或負載突變等動態(tài)調(diào)節(jié)過程中,由于電路中電感、電容等元件儲能狀態(tài)發(fā)生變化,此時的效率值不具備理論分析和實際參考價值,因此在動態(tài)過程中采用效率優(yōu)化控制毫無意義,甚至可能會影響電源系統(tǒng)的安全性。在動態(tài)過程中,控制策略的選取應(yīng)該是以確保電源系統(tǒng)中各個電源單體的安全運行為核心,因此本文設(shè)計出動態(tài)均流控制與穩(wěn)態(tài)效率優(yōu)化控制相結(jié)合的復(fù)合式控制策略。
采用復(fù)合式控制策略的電源1的控制框圖如圖3所示。圖中,PWM表示脈沖寬度調(diào)制;開關(guān)S有兩種狀態(tài),0表示動態(tài),1表示穩(wěn)態(tài)。
圖3 兩個直流電源并聯(lián)系統(tǒng)負荷分配方式的判斷模型Fig.3 Judgment model of load distribution for two DC power parallel system
均流控制器采用最大電流法設(shè)計完成,負荷分配控制器采用比例控制器。若在連續(xù)的幾個判斷周期內(nèi)總負載電流Iload的幅值沒有明顯變化,可認為電路處于穩(wěn)態(tài)運行工況,啟動效率優(yōu)化負荷分配算法進行尋優(yōu)計算,待尋優(yōu)計算完成后,再將選擇開關(guān)S接通至負荷分配控制器的輸出端,實現(xiàn)對電源系統(tǒng)的效率優(yōu)化控制;反之,將選擇開關(guān)S接通至均流控制器的輸出端,實現(xiàn)電源單體間的均流控制。
在實際應(yīng)用中,即使是各個電源都處于穩(wěn)定運行狀態(tài),由于輸出電流中往往包含有較大的紋波以及各種干擾信號的影響,致使處理器采集到的輸出電流數(shù)據(jù)并不是一個恒定數(shù)值,為了避免出現(xiàn)運行狀態(tài)的誤判而導(dǎo)致控制器頻繁切換情況的發(fā)生,需要在穩(wěn)態(tài)判定環(huán)節(jié)中加入一定的幅值不靈敏區(qū)間以及時滯環(huán)節(jié),即只有在一定的時間段內(nèi)檢測到負載電流Iload連續(xù)發(fā)生較大變化(或近似恒定)時,才對狀態(tài)進行重新判定。在控制過程中,均流控制的優(yōu)先級最高,一旦判定是處于動態(tài)運行工況,則立即中斷當(dāng)前的效率優(yōu)化控制,轉(zhuǎn)為執(zhí)行均流控制,確保電源系統(tǒng)安全運行。
本文以前面效率分析環(huán)節(jié)所建立的兩個Buck型直流電源并聯(lián)系統(tǒng)為仿真對象,對基于遺傳算法的效率優(yōu)化控制策略進行了仿真驗證和分析。
仿真中電源系統(tǒng)的整體效率即為遺傳算法中的目標(biāo)函數(shù);因為只是兩個直流電源并聯(lián),那么個體中變量的數(shù)量為1,令個體x=[Iref,1];兩個直流電源電流最小值均設(shè)為1 A,額定電流均設(shè)為20 A,根據(jù)對編碼與反編碼的設(shè)計可知,染色體的二進制長度為11;種群大小設(shè)置為100;最大遺傳代數(shù)設(shè)置為100;交叉概率為0.7;變異概率為0.05。因為還存在對第二個電源模塊輸出電流的限定,所以遺傳算法中的約束條件為:
{Iload}A-20≤{Iref,1}A≤{Iload}A-1
(11)
當(dāng)負載等效電阻為5 Ω時,電源系統(tǒng)中的兩個電源各自輸出電壓(濾波電容端電壓)、電流的仿真波形如圖4(a)所示。在電源的啟動階段,由于輸出電流在時刻變化,因此在該階段內(nèi)控制器采用的是均流控制策略,從圖中可以看出,電源的輸出電壓在經(jīng)過短暫的動態(tài)調(diào)節(jié)過程后,0.01 s左右達到基準(zhǔn)電壓值100 V,過渡到穩(wěn)定運行階段,在均流策略的控制下,動態(tài)和穩(wěn)態(tài)運行過程中兩個電源的輸出電流幅值基本一致。當(dāng)并聯(lián)的電源系統(tǒng)穩(wěn)定運行一段時間后(該段時間的大小主要取決于遺傳優(yōu)化算法的運行時間),控制器自動切換至基于效率優(yōu)化的負荷分配控制策略,在切換過程中各電源的輸出電壓沒有明顯的幅值波動??刂撇呗郧袚Q后,電源1輸出電流由10 A迅速下降并穩(wěn)定在8 A左右,而電源2的輸出電流由10 A迅速上升并穩(wěn)定在12 A左右。
為了驗證效率優(yōu)化控制策略的有效性,需要對這兩種負荷分配控制方式下并聯(lián)直流電源系統(tǒng)的整體效率進行對比分析。通過改變負載等效電阻值,對并聯(lián)直流電源系統(tǒng)進行了多次仿真分析,分別記錄不同負載時這兩種控制模式下電源系統(tǒng)的整體效率值,并且繪制出系統(tǒng)效率隨負載電流變化的趨勢圖,具體如圖4(b)所示。由圖中可以看出采用效率優(yōu)化的負荷分配控制方法較之傳統(tǒng)的均流控制,并聯(lián)電源系統(tǒng)的整體效率在整個運行區(qū)間內(nèi)均有所提升,效率提升的最大值約為1.2%,充分驗證了所提出的基于效率最優(yōu)的負荷分配控制策略的正確性和有效性。
由圖2可見,標(biāo)記前共有五個連通域,采用這種四連通域標(biāo)記算法,可以把圖像中所有的1都標(biāo)記出來,分別形成不同的連通域,用1、2、3、13、14五個標(biāo)號來代表不同的連通域,效果較好。
電源1分別在這兩種負荷分配控制模式下的總負載電流與其分配到的負荷電流關(guān)系曲線如圖4(c)中所示。由圖4(c)可以看出在總負載電流很小時,基于效率優(yōu)化進行負荷分配控制與均流控制相比,電源1的效率要低,但是當(dāng)總負載電流變大,約大于15 A時,電源1在效率優(yōu)化負荷分配控制下的效率要大于均流控制時的效率。
對電源2的類似分析如圖4(d)所示。電源2在輕載時,采用基于效率優(yōu)化的負荷分配控制的效率要高一些,而當(dāng)總負載電流約大于13 A時,采用均流控制的效率要高一些。
因此基于效率最優(yōu)的負荷分配控制并不是一味地改變其中一個電源的運行點,就可以使效率總是比均流控制模式下要高,而是要綜合改變兩個電源的運行點,來調(diào)節(jié)整個系統(tǒng)的整體效率,使得系統(tǒng)整體效率最優(yōu)。
圖4(e)和(f)給出了并聯(lián)電源系統(tǒng)在負荷突加和負荷突減工況下的仿真波形,在0.2 s時控制器檢測到總負荷電流發(fā)生了變化,迅速切換至均流控制策略,在該策略的控制下完成電源系統(tǒng)工況變化的過渡過程。在新工況下穩(wěn)定運行一段時間后,再切換到效率優(yōu)化控制策略,重新分配負荷電流,實現(xiàn)系統(tǒng)效率最優(yōu)。
圖4 仿真結(jié)果Fig.4 Simulation results
以仿真中所采用的Buck電路設(shè)計參數(shù)為依據(jù),搭建了實驗用并聯(lián)直流電源系統(tǒng)。其中每一個直流電源均采用DSP28335作為控制核心,通過串行總線與上位機(PC機)實現(xiàn)數(shù)據(jù)通信。
在實驗開始前,首先分別對兩個直流電源進行多次實驗調(diào)試,根據(jù)不同負載工況下的穩(wěn)態(tài)輸出電流值與對應(yīng)的效率值,利用正交多項式最小二乘法擬合法,獲得各自的效率特性曲線。將擬合后的兩個電源的效率特性代入遺傳算法的目標(biāo)函數(shù)公式,作為遺傳尋優(yōu)的適應(yīng)度函數(shù),為效率尋優(yōu)過程中的優(yōu)勝劣汰提供判據(jù)。
實驗過程中,每一個電源將采集到的數(shù)據(jù)通過串行總線傳送至上位機,當(dāng)電源輸出電流在一定時間段內(nèi)波動較大時,上位機向電源發(fā)送指令實施均流控制,當(dāng)輸出電流近似于恒定時,上位機利用遺傳優(yōu)化算法求解出每一個電源的負荷電流分配值,傳送至相應(yīng)電源,并切換至基于效率優(yōu)化的負荷分配控制策略。
圖5給出了實驗過程中分別利用不同示波器獲得的部分實驗波形,其中圖(a)為電源1和電源2的輸出電流變化波形,圖(b)為負載處電壓波形。t1時刻之前采用的是均流控制策略,兩個電源的輸出電流基本穩(wěn)定在6 A左右,負載電壓穩(wěn)定在100 V;在t1時刻,控制策略切換為效率優(yōu)化控制,經(jīng)過短暫的電流過渡過程,電源1的電流穩(wěn)定在7.2 A,電源2的電流變?yōu)?.8 A,控制策略切換后,負載處的電壓略有小幅增加,但變化數(shù)值很小,主要是由于電源1為了加大輸出電流而抬升輸出電壓而導(dǎo)致的;在t2時刻發(fā)生了負載突變,控制策略迅速變回均流控制,經(jīng)過一段過渡時間后,兩個電源的輸出電流都穩(wěn)定在4.3 A左右,過渡過程中,負載處電壓發(fā)生了較為明顯的波動,此處波動的產(chǎn)生雖然與控制策略的切換有一定的關(guān)系,但主要是取決于控制器中的比例—積分(PI)參數(shù)設(shè)計和電路中的電感、電容取值,因為即使是單一的均流控制在負載突變的過程中也會產(chǎn)生近似的波動。
圖5 實驗波形Fig.5 Experiment curves
多次改變負載電阻,對并聯(lián)直流電源系統(tǒng)分別進行均流控制和基于效率優(yōu)化的負荷分配控制,由上位機計算總負載電流值和此時系統(tǒng)的整體效率,得到在兩種負荷分配方式下系統(tǒng)的整體效率與總負載電流的對應(yīng)關(guān)系曲線,具體如圖5(c)所示。由圖中可以看出基于效率優(yōu)化的負荷分配控制與均流控制相比,的確提升了并聯(lián)直流電源系統(tǒng)的整體效率,效率提升的最大值約為3.8%。
本文以并聯(lián)直流電源系統(tǒng)的整體效率最優(yōu)為控制目標(biāo),提出了相應(yīng)的負荷分配策略及其實現(xiàn)方法,總結(jié)如下。
1)采用正交多項式最小二乘法擬合法來獲得直流電源單體的效率特性,雖然理論上來講多項式的次數(shù)越高,擬合效果越好,但仿真和實驗表明,5次多項式即可很好地滿足控制需求,為效率特性的獲得提供了簡單而有效的方法。
2)推導(dǎo)出并聯(lián)直流電源系統(tǒng)的效率關(guān)系式,將效率最優(yōu)的負荷分配問題轉(zhuǎn)化為帶約束條件的n-1元函數(shù)求極值的問題,為效率最優(yōu)控制策略的實現(xiàn)提供了數(shù)學(xué)模型。
3)采用遺傳算法實現(xiàn)效率尋優(yōu),并針對效率尋優(yōu)的特點,完成了編碼與反編碼、適應(yīng)度函數(shù)、選擇算子、交叉算子、變異算子等遺傳算法的具體設(shè)計工作,在確保了尋優(yōu)算法的可實施性和結(jié)果的可信性的同時,提高了算法的效率和精度。
4)針對電源的實際運行工況,提出了動態(tài)均流控制與穩(wěn)態(tài)效率最優(yōu)控制相結(jié)合的復(fù)合式控制策略,既可以確保并聯(lián)直流電源系統(tǒng)中每一個電源單體的安全、穩(wěn)定運行,又可以提高系統(tǒng)的整體效率。
5)仿真和實驗驗證了效率最優(yōu)控制策略的有效性和實用性。
6)當(dāng)電源系統(tǒng)滿負荷或接近滿負荷運行時,受約束條件的限制,效率最優(yōu)控制策略與均流控制策略的控制效果相近似。
在實際運行過程中,當(dāng)效率特性不可用時(例如新并入的電源),上位機可直接采用均流控制,通過對多個穩(wěn)態(tài)運行點數(shù)據(jù)的檢測,擬合出相應(yīng)的效率特性曲線后再轉(zhuǎn)為效率優(yōu)化控制。并且隨著電源運行性能的變化,可以利用實時檢測到的穩(wěn)態(tài)運行數(shù)據(jù)對效率特性曲線進行定期的修正,確保效率優(yōu)化的控制效果。
復(fù)合式控制策略雖然既可以實現(xiàn)穩(wěn)態(tài)運行時的效率優(yōu)化,又可以保證動態(tài)調(diào)節(jié)中的運行安全性,但是由于存在有不同控制方法的切換過程,以及尋優(yōu)算法耗時過長、實時性差等缺陷,因此針對負荷頻繁波動、變化的運行工況,該控制策略的控制效果有限,還需從控制方法的原理設(shè)計、實施技術(shù)等方面予以進一步的完善。
張 強(1975—),男,通信作者,博士,教授,主要研究方向:電力變換控制技術(shù)。E-mail: zhangqiang@hrbeu.edu.cn
王言暢(1993—),男,碩士研究生,主要研究方向:新能源發(fā)電系統(tǒng)中的電力變換技術(shù)。E-mail: 844312111@qq.com
王 銳(1991—),女,碩士,主要研究方向:供應(yīng)鏈數(shù)字化系統(tǒng)平臺。E-mail: wangruixuchen@163.com
(編輯魯爾姣)