国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

海帶渣與養(yǎng)殖固體廢棄物混合發(fā)酵產沼氣試驗

2018-10-10 06:49李秀辰張國琛楊福利
農業(yè)工程學報 2018年18期
關鍵詞:厭氧發(fā)酵丙酸產氣

李秀辰,李 豐,張國琛,張 倩,楊福利,母 剛

?

海帶渣與養(yǎng)殖固體廢棄物混合發(fā)酵產沼氣試驗

李秀辰,李 豐,張國琛,張 倩,楊福利,母 剛

(大連海洋大學遼寧省漁業(yè)裝備工程技術研究中心,大連,116023)

廢棄物的高效和資源化利用是現代漁業(yè)發(fā)展面臨的重要課題。該文以海帶渣和養(yǎng)殖固廢為原料開展了兩相發(fā)酵產沼氣效果試驗研究,探討了中溫條件下(35±1℃)料液TS濃度和接種率對混合水解酸化特性以及厭氧發(fā)酵產沼氣效果的影響。結果表明,海帶渣與養(yǎng)殖固廢混合水解酸化過程啟動很快,第2天乙酸濃度即達到峰值,5 d后丙酸和丁酸濃度增幅較快,水解酸化過程中甲酸產量相對較低。不同TS濃度(6%、8%和10%)和不同接種率(10%、20%和30%)的料液水解3 d,乙酸的酸化度分別為42.6%、50.0%、49.8%和50.7%、44.3%、40.3%;主要有機酸(乙酸+丁酸+甲酸)的酸化度分別達到61.7%、68.7%、62.2%和69.4%、57.5%、58.0%。料液TS濃度為8%~10%、接種率為10%~20%和pH值為6.0~7.0時,海帶渣與養(yǎng)殖固廢在中溫條件下混合水解2~3 d,即可獲得后期發(fā)酵產沼氣所需的酸化料液。此外,發(fā)酵產沼氣結果表明,每天按與產沼氣接種污泥質量比為1:7~1:9的比例添加酸化料液,在pH值為7.0~8.0和35±1 ℃的條件下厭氧發(fā)酵產沼氣,產氣系統(tǒng)啟動很快,而且8~13 d即進入穩(wěn)定產氣階段,產氣率保持在489.4~581.5 mL/gVS,所產沼氣中的甲烷體積分數達到82.7%~84.9%,而且料液不會出現酸化現象。海帶渣與養(yǎng)殖固廢混合水解酸化、批量填料發(fā)酵產沼氣工藝明顯提高了產氣效率和系統(tǒng)穩(wěn)定性。

沼氣;甲烷;發(fā)酵;混合水解酸化;批量填料發(fā)酵;海帶渣;養(yǎng)殖固廢

0 引 言

海帶是大型海洋經濟藻類,中國海帶養(yǎng)殖年產量近150萬t,占世界海帶總產量的80%以上[1-2]。海帶除直接食用外,亦是重要的工業(yè)原料[3-6],目前被廣泛用于提取多糖、褐藻酸和碘等高附加值物質[7-9]。由于海帶在深加工過程中的利用率只有30%左右,超過50%的殘留物為海帶渣[10],而這些殘渣中仍含有較高的糖類、纖維素和蛋白質等物質[10-12],因此海帶渣的資源化利用仍具有重要價值。目前已有利用海帶渣提取膳食纖維、制備飼料、肥料和油污吸附材料等的研究探索[13-16];另有利用海帶渣發(fā)酵制備生物乙醇的研究報道,如明凱利等[17]探討了干海帶渣經過120℃酸、堿處理,在酵母作用下發(fā)酵產乙醇的特性,認為比秸稈發(fā)酵產乙醇更具優(yōu)勢;Jin等[18]開展了干海帶渣發(fā)酵產乙醇試驗研究,發(fā)現經過酸預處理和酶水解,可提高海帶渣發(fā)酵產乙醇的效率。然而,上述方法仍存在加工成本高、工序復雜、占地空間大和二次污染等局限性,因此,目前大量海帶渣仍被作為工業(yè)垃圾直接填埋或隨加工廢水一起排掉。另一方面,隨著中國工業(yè)化水產養(yǎng)殖的快速發(fā)展,大量養(yǎng)殖固廢(占投餌量的25%~40%[19])的資源化利用問題,亦成為降低環(huán)境污染和環(huán)境增值能源開發(fā)的重要選擇[20-24]。李豐等[25]曾開展了海帶渣與養(yǎng)殖固廢厭氧發(fā)酵產沼氣試驗探索,發(fā)現利用海帶渣發(fā)酵產沼氣具有一定的潛力,而且添加一定比例的養(yǎng)殖固廢,可明顯提高產效率;但同時發(fā)現,海帶渣與養(yǎng)殖固廢水解較快,采用單相發(fā)酵產氣容易出現料液過度酸化問題,從而影響產氣量和系統(tǒng)穩(wěn)定性。本文在前期研究的基礎上,擬開展海帶渣與養(yǎng)殖固廢兩相厭氧發(fā)酵產沼氣效果試驗研究,探討料液TS(total solids)濃度和接種率等對海帶渣與養(yǎng)殖固廢混合水解酸化特性的影響規(guī)律以及利用酸化料液發(fā)酵產沼氣的效果。提出海帶渣與養(yǎng)殖固廢兩相發(fā)酵產沼氣的合理條件,以期為中國漁業(yè)廢棄物的低成本和資源化利用提供相關技術參考。

1 材料與方法

1.1 試驗材料

海帶渣:海帶提取巖藻聚糖硫酸酯后的殘渣。海帶提取多糖過程為:粉碎→酶解(果膠酶和纖維素酶)→浸泡提取→剩余海帶渣。將新鮮海帶渣封袋包裝,保存在-18℃的冰箱中備用。

種污泥:取自大連東泰產業(yè)廢棄物處理有限公司的餐廚垃圾厭氧發(fā)酵產沼氣系統(tǒng),系統(tǒng)發(fā)酵溫度為35±1℃,pH值為7.5±2。種污泥用棕色玻璃容器密封保存于4℃的冰箱中備用。

養(yǎng)殖固廢:取自大連市某石斑魚循環(huán)水養(yǎng)殖系統(tǒng)中沉淀池的底部,清除石塊等異物,用棕色玻璃容器密封保存于4℃的冰箱中備用。

海帶渣、種污泥和養(yǎng)殖固廢的主要特性指標分別見表1。

表1 海帶渣、種污泥和養(yǎng)殖固廢的主要成分

1.2 試驗儀器與設備

試驗系統(tǒng):海帶渣與養(yǎng)殖固廢混合水解酸化和厭氧發(fā)酵產沼氣系統(tǒng)同文獻[26]。

其他儀器設備:紫外可見分光光度計(UV-7504)、氣相色譜儀(GC9890)、高效液相色譜儀(日立L-2000)、臺式高速冷凍離心機(TGL-16M)、電熱鼓風干燥箱(101A-3)、箱式電阻爐(SX2-4-10)、精密電子天平(MP1100b)和pH計(PHS-3E)等。

1.3 試驗方法

1.3.1 接種污泥馴化

水解酸化接種污泥馴化:取種污泥于發(fā)酵瓶中,按種污泥質量分數的30%加入海帶渣和養(yǎng)殖固廢,其中海帶渣與養(yǎng)殖固廢的混合質量比為4:3(前期試驗結果),用1~3 mol/L的HCl調節(jié)pH值至5.0~7.0,在溫度為(35±1)℃的條件下培養(yǎng)馴化,直到系統(tǒng)不產氣為止,制得水解酸化接種污泥。

產甲烷接種污泥馴化:取種污泥于發(fā)酵瓶中,按種污泥質量分數的1%加入海帶渣與養(yǎng)殖固廢(二者質量比同上),用1 mol/L的NaHCO3調節(jié)pH值至7.0~8.0,每天按照上述質量比連續(xù)添加海帶渣和養(yǎng)殖固廢,在溫度為(35±1)℃的條件下馴化20 d,制得產甲烷接種菌種。

1.3.2 厭氧水解酸化試驗

1)不同料液TS濃度水解酸化試驗:將海帶渣與養(yǎng)殖固廢按照質量比4:3混合,加蒸餾水調節(jié)料液TS濃度分別為6%、8%和10%,按與海帶渣質量比1:10的比例加入水解酸化接種污泥,用1 mol/L的HCl和NaOH將料液的pH值調至7.0,在溫度為(35±1)℃條件下水解酸化。每個試驗組設置2個平行樣,每24 h取樣測定VFA(volatile fatty acids)及其主要組分的濃度、料液pH值和SCOD(soluble chemical oxygen demand)濃度等指標,試驗持續(xù)8 d。

2)不同接種率水解酸化試驗:將海帶渣與養(yǎng)殖固廢按照質量比4:3混合,加蒸餾水調節(jié)料液TS濃度為8%,分別按與海帶渣質量分數為10%、20%和30%的比例加入水解酸化接種污泥。其他方法同上。

1.3.3厭氧發(fā)酵產氣試驗

取水解酸化料液30g,分別按酸化料液與接種污泥質量比為1:5、1:7和1:9的比例加入產甲烷接種污泥,混合混勻,用1~3 mol/L的NaOH和HCI將混合液的pH值調至7.0~8.0,在溫度為(35±1)℃條件下進行厭氧發(fā)酵產沼氣試驗。每24 h取樣測定系統(tǒng)產氣量、生物氣體中甲烷含量、料液pH值和COD濃度等指標,同時每天定量添加水解酸化料液30 g,進行批量填料發(fā)酵產氣試驗。

1.4 指標測定方法

料液TS和VS分別用稱質量法測定[27];SCOD濃度和pH值分別用重鉻酸鉀法和酸度計測定[28];VFA濃度和VFA主要組分濃度測定分別用比色法和高效液相色譜分析法測定[28];沼氣中的甲烷體積分數采用GC9890氣相色譜測定。

2 結果與分析

2.1 混合水解酸化

圖1為不同TS濃度條件下,海帶渣與養(yǎng)殖固廢混合水解酸化試驗結果。由圖1可知,水解前期,3種TS濃度的料液中均有少量甲酸產生,5 d后甲酸產量增加較明顯,分別在第6~7天達到峰值1 536.8、1 335.0和2 174.2 mg/L。料液TS濃度越高,甲酸濃度相對較高,但是與同條件下的乙酸濃度比較,3種TS濃度的料液中甲酸產量明顯較低。另由圖1可知,水解開始后,各料液中的乙酸濃度均顯著增加,第2天分別達到5 910.5、7 533.5和8 720.6 mg/L的峰值,4 d后乙酸濃度明顯下降,第8天時分別降至1 642.0、1 892.9和2 069.2 mg/L。水解過程中,料液TS濃度高,乙酸產亦比較高。由圖1還可看出,TS濃度為6%和8%的料液在水解開始后均有一定量的丁酸產生,而TS濃度為10%的料液水解第2天后有少量丁酸產生,5 d后各料液中的丁酸濃度明顯增加,第6~7天峰值分別達到5 517.3、3 757.9和5 030.5 mg/L。此外,水解開始后,各料液中均有少量的丙酸產生,5 d后丙酸濃度增幅明顯(見圖1),第8天時分別達到3 730.9、4 993.0和6 367.3 mg/L,料液TS濃度高,丙酸產量相對較高。

分析試驗結果,海帶渣與養(yǎng)殖固廢混合水解酸化過程啟動很快,前3 d乙酸是主要的VFA組分,后期丙酸和丁酸產量較高,水解酸化過程中甲酸濃度相對較低。因為在水解前期,料液的pH值相對較高(見圖1d),有利于產乙酸微生物的代謝[29-30],料液中的有機質被迅速水解轉化成乙酸;但是隨著酸化時間延長,其他酸化菌將乙酸轉化成H2和CO2(結果未示出)和甲酸等[31],致使乙酸濃度隨之降低;另一方面,由于水解初期料液中H2的分壓力較低,產生的丙酸相對容易轉化為乙酸[31],而隨著H2的分壓力升高,丙酸轉化為乙酸的難度加大,同時隨著水解后期有機酸的積累,料液pH值降低(見圖1d),產丙酸菌活性增加[30-32],致使丙酸產量提高;此外,水解后期偏酸性的料液(pH值為5.48~5.95)使丁酸濃度增加,這與張波等[30]的研究結果基本一致。

另由試驗結果發(fā)現,料液TS濃度對海帶渣與養(yǎng)殖固廢混合水解有機酸產量及其組分等有較大影響。水解過程中,TS濃度為6%的料液有機酸產量明顯低于其他2種料液;水解后期,TS濃度高的料液丙酸產量越高;水解3 d中,3種TS濃度的料液中乙酸的平均酸化度(乙酸濃度/SCOD濃度)[33]分別為42.6%、50.0%和49.8%;對后期厭氧發(fā)酵產沼氣比較有利的3種有機酸(乙酸+丁酸+甲酸)的酸化度分別達到61.7%、68.7%和62.2%。綜合考慮水解VFA組分特性與產量以及料液pH值波動等因素,選取料液TS濃度為8%~10%,pH值為6.0~7.0,在中溫條件下水解2~3 d, 對海帶藻渣和養(yǎng)殖固廢混合水解酸化和保證后期發(fā)酵產沼氣比較有利。

注:甲乙丁/SCOD 為甲酸、乙酸和丙酸的總酸化度,即:水解酸化料液中甲酸、乙酸和丁酸的質量和與SCOD質量之比;乙/SCOD 為乙酸的酸化度,即:水解酸化料液中乙酸的質量與SCOD的質量比。

圖2 接種率對混合水解酸化特性及pH值的影響

圖2為不同接種率條件下,海帶渣與養(yǎng)殖固廢混合水解試驗結果。由圖2看出,水解期間,3種料液均有一定量的甲酸產生,但是甲酸濃度比較低,水解8d,甲酸的平均濃度分別為1 059.6、1 122.3和1 170.6 mg/L。另由圖2可知,水解開始后,不同接種率的料液中乙酸濃度均顯著增加,第2天分別達到峰值(7 533.5、7 052.5和6 840.4 mg/L),之后出現不同幅度的下降,其中接種率為30%的料液乙酸產量下降最為明顯,第3天時該料液中乙酸濃度已降至2 762.8 mg/L,可見接種率愈高,乙酸產量較低。由圖2還可看出,接種率為10%的料液在水解開始后即有丁酸產生(見圖2a),第7天達到峰值(3 757.9 mg/L);而接種率為20%和30%的料液,水解3 d后丁酸濃度增加比較顯著,分別在第6天達到峰值(4 018.8和4 543.9 mg/L)。此外,在水解前期,各料液中均有一定的丙酸產生,5 d后丙酸產量明顯增加,水解期間各料液中的丙酸平均濃度分別為2 651.0、2 752.4和2 819.0 mg/L,接種率越高,丙酸產量相對較高。

由圖2d結果看出,水解酸化第1天,不同接種率的料液的pH值迅速降至5.91~6.04,這是因為海帶渣和養(yǎng)殖固廢顆粒迅速水解酸化產生了大量有機酸,導致pH值迅速降低。另外,水解酸化1~4 d中,接種率為10%的料液pH值波動較小,期間乙酸產量也較高,之后pH值出現波動性降低,料液中的丙酸和丁酸濃度隨之增加。此外,水解酸化2 d后,接種率為20%和30%的料液的pH值出現顯著下降,其中后者下降更加明顯,期間乙酸濃度降幅也最大;第4~6天2種料液的pH值一直維持在較低水平(5.69~5.72),該階段料液中的丙酸和丁酸濃度明顯增加??梢?,接種率越高,水解過程中pH值下降越快,因為接種率高,菌種含量多,酸化底物的酸化速率越大[33]。

結果表明,不同接種率條件下,海帶渣和養(yǎng)殖固廢混合水解前期均屬乙酸型水解過程,后期為丁酸和丙酸型水解,而且接種率越高,水解乙酸產量越低,產丁酸和丙酸優(yōu)勢更明顯。因為水解酸化是一個微生物生長代謝的過程,接種微生物的含量直接決定水解酸化原料的降解速率和酸化產物的種類[31-33]。在本試驗條件下,水解酸化3 d,3種料液中乙酸的平均酸化度分別為50.7%、44.3%和40.3%;3酸(乙酸+丁酸+甲酸)的平均酸化度分別為69.4%、57.5%和58.0%。綜合考慮水解產酸特性,海帶渣和養(yǎng)殖固廢混合水解酸化時,當接種率為10%~20%,料液pH值為6.0~7.0,水解2~3 d,可獲得后期發(fā)酵產沼氣所需的酸化料液。

2.2 厭氧發(fā)酵產沼氣試驗

圖3為海帶渣與養(yǎng)殖固廢的混合水解酸化料液厭氧發(fā)酵產沼氣的試驗結果。由圖3a看出,厭氧發(fā)酵產氣系統(tǒng)啟動后,不同接種比例的料液日產氣量均呈上升趨勢,其中接種比例為1:9的料液日產氣量增幅最為明顯,第8天時達到峰值730 mL/d, 之后日產氣量保持在625~690 mL/d之間;接種比例為1:5和1:7的料液分別在第17和13天達到產氣高峰(690 和685 mL/d)。可見接種比例越高,產氣系統(tǒng)啟動越快,而且達到產氣高峰的時間越短。由圖3a還可看出,系統(tǒng)運行13 d后,3種料液均進入穩(wěn)定產氣階段,而且日產氣量非常接近。表明在該階段,接種比例對日產氣量的影響不顯著。

由圖3b可知,產氣系統(tǒng)啟動后,不同接種比例的料液的累積產氣量幾乎均呈線性遞增趨勢,而且7 d后累積產氣量增幅更為明顯,系統(tǒng)運行18 d時,3種料液的累積產氣量分別為8 960、9 565和11 020 mL,平均VS產氣率分別達到470.6、489.4和581.5 mL/g??梢?,接種比例高的料液,累積產氣量和產氣率均相對較高。

此外發(fā)現,系統(tǒng)啟動后,3種料液所產生沼氣的甲烷含量均呈遞增趨勢(見圖3c)。第13天時,甲烷體積分數分別由第2天的12.4%、20.8%和24.8%增至74.0%、82.4%和83.3%,之后各試驗組甲烷含量趨于穩(wěn)定,平均體積分數分別為77.1%、82.6%和84.9%,表明在該階段甲烷菌已很好地適應了發(fā)酵料液環(huán)境,并且進入穩(wěn)定生長時期,其中接種量分別為1:7和1:9的發(fā)酵料液所產生物氣體中甲烷含量較高。

圖3 水解酸化料液批量填料發(fā)酵產氣特性

由圖3d還可看出,系統(tǒng)啟動5 d中,3種料液的pH值呈現波動性增加趨勢,分別由初始的7.31、7.36和7.52,增至第5天的7.60、7.63和7.67,這與該階段產氣細菌處于適應期,系統(tǒng)產氣相對不穩(wěn)定有關;系統(tǒng)運行第6~11天中,各料液pH值相對比較穩(wěn)定,其中接種量為1:9的料液pH值相對較高,與該階段料液的產氣量比較一致;系統(tǒng)運行11~12 d期間,接種比例為1:5和1:7的料液的pH值出現了一定下降,但是進入穩(wěn)定產氣階段后,各料液的pH值均趨于穩(wěn)定,分別保持在7.56、7.53和7.57左右,對甲烷菌生長比較有利[34]。系統(tǒng)運行期間,3種料液均未出現酸化現象。

3 結 論

1)水解酸化結果表明,海帶渣與養(yǎng)殖固廢混合水解酸化過程啟動很快,第2天乙酸濃度即達到峰值,5 d后丙酸和丁酸濃度增幅較快,水解酸化過程中甲酸產量相對較低。水解3 d,乙酸和主要有機酸的酸化度分別達到40.3%~50.7%和57.5%~69.4%。當料液TS濃度為8%~10%、污泥接種率在10%~20%、料液pH值為6.0~7.0時,在(35±1)℃的條件下水解酸化2~3 d,即可獲得后期厭氧發(fā)酵產沼氣所需要的水解酸化料液。

2)厭氧發(fā)酵產沼氣結果證明,水解酸化料液厭氧發(fā)酵產沼氣系統(tǒng)啟動后,日產氣量和生物氣體中甲烷含量提升很快,且接種比例高的料液,產氣效率較高,進入穩(wěn)定產氣所需的時間也較短;13 d后接種比例對產氣效果的影響已不顯著。當接種比例為1:7~1:9、料液pH值為7.0~8.0,在(35±1)℃的條件下,批量填料發(fā)酵產沼氣時,8~13 d可進入穩(wěn)定產氣階段,產氣率達到489.4~581.5 mL/g,所產生物氣體中甲烷體積分數在80%以上,且系統(tǒng)可保持持續(xù)穩(wěn)定產氣。

3)試驗結果顯示,海帶渣與養(yǎng)殖固廢兩相厭氧發(fā)酵系統(tǒng)的日產氣量和甲烷含量高于單相厭氧發(fā)酵系統(tǒng)。因此,海帶渣與養(yǎng)殖固廢混合水解酸化、批量填料厭氧發(fā)酵產沼氣的工藝模式,明顯提高了產氣效率和系統(tǒng)穩(wěn)定性。

[1] 農業(yè)部漁業(yè)漁政管理局. 中國漁業(yè)統(tǒng)計年鑒[M].北京:中國農業(yè)出版社,2017.

[2] 岳昊,孫英澤,胡婧,等.中國海帶產業(yè)及國際貿易情況分析[J]. 農業(yè)貿易展望,2013(9):65-74.Yue Hao, Sun Yingze, Hu Jing, et al. Industry and international trade ofin China[J]. Agricultural Outlook, 2013(9): 65-74. (in Chinese with English abstract).

[3] 宋武林. 海帶的主要功能及加工利用研究現狀[J]. 漁業(yè)研究,2016,38(1):81-86.Song Wulin. Research on the primary functions and utilization of[J]. Journal of Fisheries Research, 2016,38(1): 81-86. (in Chinese with English abstract).

[4] Anbuchezhian R, Karuppiah V, Li Z. Prospect of Marine Algae for Production of Industrially Important Chemicals[M]. In: Das D. (eds) Algal Biorefinery: An Integrated Approach. Cham: Springer International Publishing, 2015.

[5] Stefan Kraan. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1): 27-46.

[6] Adams J M M, Bleathman G,Thomas D, et al. The effect of mechanical pre-processing and different drying methodologies on bioethanol production using the brown macroalga(Hudson) JV[J]. Journal of Applied Phycology, 2017, 29(5): 2463-2469.

[7] 任丹丹,李景娟,李佰磊,等. 海帶巖藻黃素對油脂氧化的抑制作用研究[J],大連海洋大學學報,2012,27(6):564-566.Ren Dandan, Li Jingjuan, Li Bailei, et al. Antioxidative activity to lipids by fucoxanthin from kelp[J]. Journal of Dalian Ocean University, 2012, 27(6): 564-566. (in Chinese with English abstract).

[8] 劉淇,孫霞,趙玲. 鮮海帶加工中甘露醇、碘及主要金屬元素含量變化[J].海洋漁業(yè),2014,36(1):73-77.Liu Qi, Sun Xia, Zhao Ling. The content changes of mannitoliodine and main metal elements in the fresh Laminaria japonica processing[J]. Marine Fisheries, 2014, 36(1): 73-77. (in Chinese with English abstract).

[9] Bernd H A, Rehm M, Fata M. Alginate production from marine macroalgae, with emphasis on kelp farming[J]. Alginates and Their Biomedical Applications. In Springer Series in Biomaterials Science and Engineering, 2018(11) 27-66.

[10] 張俊杰,段蕊,許可,等. 海帶工業(yè)中海帶渣應用的研究及展望[J]. 水產科學,2010,29(10):620-623.Zhang Junjie, Duan Rui, Xu Ke, et al. Status and development of dealginate residues in kelp industry[J], Fisheries Science, 2010, 29(10): 620-623. (in Chinese with English abstract).

[11] Feng X, Meng X, Zhao J,et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: Structures and morphological characterization[J]. Cellulose, 2015, 22(3): 1763-1772.

[12] 盧茳虹,林宗毅,崔春,等. 檸檬酸提取海帶渣中多糖及其抗氧化活性與結構的研究[J].食品工業(yè)科技,2012,33(23):93-96.Lu Jianghong,Lin Zongyi,Cui Chun, et al. The extraction of polysaccharide from Laminaria japonica residue by citric acid and study on antioxidant activitiesand structural characteristics[J]. Science and Technology in Food Industry, 2012, 33(23):93-96. (in Chinese with English abstract).

[13] 周楠,馬杰,張淑平,等. 海帶渣生產有機肥的工藝研究[J]. 化學工程與裝備. 2011(3):11-13.Zhou Nan, Ma Jie, Zhang Shuping, et al. Study on the technology of kelp residue in organic fertilizer production[J]. Chemical Engineering& Equipment, 2011 (3): 11-13. (in Chinese with English abstract).

[14] 彭素曉,常志強,馬驪,等. 海帶渣添加比例及其酶解產物對凡納濱對蝦生長、消化和非特異性免疫力的影響[J]. 動物營養(yǎng)學報,2017,29(7):2587-2596.Peng Suxiao, Chang Zhiqiang, Ma Li, et alEffects of kelp meal adding proportion and its enzymatic hydrolysates on growth digestion and non-specific immunity of[J]. Chinese Journal of Animal Nutrition, 2017, 29(7): 2587-2596. (in Chinese with English abstract).

[15] 李莎,張國琛,李秀辰,等. 擠壓膨化與改性處理海帶渣的油污吸附特性試驗[J].大連海洋大學學報,2014,29(4):413-419. Li Sha,Zhang Guochen, Li Xiuchen, et al. Oilabsorbing property of kelpresidues extruded and modifiedby stearic acid[J]. Journal of Dalian Ocean University, 2014, 29(4): 413-419. (in Chinese with English abstract).

[16] Yu L L , Browning J F, Burdette C Q, et al. Development of a kelp powder () Standard Reference Material[J]. Analytical and Bioanalytical Chemistry, 2018, 410(4): 1265-127.

[17] 明凱利,張梅,王樹春,等. 利用海帶渣生產燃料乙醇的初步研究[J]. 化工進展,2013,32(3):570-574.Ming Kaili, Zhang Mei, Wang Shuchun, et al. A preliminary study on production of fuel ethanol from kelp residue [J]. Chemical Industry and Engineering Progress, 2013, 32(3): 570-574. (in Chinese with English abstract).

[18] Jin T, Wang H, Wang J, et al.Ethanol production from kelp slag hydrolysates using genetically engineered. Journal of Applied Phycology, 2015, 27(3): 1327-1336.

[19] Timmons M B, Ebeling J M, Wheaton F W. Recirculating Aquaculture System[M]. New York: USDA-CSREES NRAC Publication, 2001.

[20] 李秀辰,李俐俐,張國琛,等.養(yǎng)殖固體廢棄物作碳源的海水養(yǎng)殖廢水反硝化凈化效果[J].農業(yè)工程學報,2010,26(4):275-279.Li Xiuchen, Li Lili, Zhang Guochen, et al. Denitrification of wastewater with external carbon source of solid wastes in recirculating marine culture system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 275-279. (in Chinese with English abstract).

[21] 李平,羅國芝,譚洪新. 循環(huán)水養(yǎng)殖系統(tǒng)固體廢棄物厭氧消化處理技術與分析[J]. 漁業(yè)現代化,2009,36(6):16-19. Li Ping,Luo Guozhi, Tan Hongxin. Analysis of anaerobic digestion of waste solids derived from recirculating aquaculture system[J]. Fishery Modernization,2009, 36(6): 16-19. (in Chinese with English abstract).

[22] Lanari D, Franci C. Biogas production from solid wastes removed from fish farm effluents[J]. Aquatic Living Resources, 1998, 11(4): 289-295.

[23] Gebauer R. Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production[J]. Bioresource Technology, 2004, 93(2): 155-167.

[24] Gebauer R, Ekebrokk B. Mesophilic anaerobic treatment of sludge from salmon smolthatching[J]. Bioresource Technology, 2006 (97): 2389-2401.

[25] 李豐. 海帶藻渣與養(yǎng)殖固廢聯(lián)合厭氧發(fā)酵制取沼氣主要工藝試驗研究[D]. 大連:大連海洋大學,2013.Li Feng. Study on the Technology and Process of Biogas Production by Kelp Residue and Aquaculture WasteCombined Anaerobic Fermentation[D]. Dalian: Dalian Ocean University, 2013. (in Chinese with English abstract).

[26] 李秀辰,張國琛,孫文,等. 不同預處理和發(fā)酵條件對滸苔沼氣產率的影響[J].農業(yè)工程學報,2012,28(19):200-206.Li Xiuchen, Zhang Guochen, Sun Wen, et al. Biogas yield ofunder different pretreatment and anaerobicfermentation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 200-206. (in Chinese with English abstract).

[27] 袁振宏,吳創(chuàng)之,馬隆龍. 生物質能利用原理與技術[M].北京:化學工業(yè)出版社,2005.

[28] 任南琪,王愛杰. 厭氧生物技術原理與應用[M]. 北京:化學工業(yè)出版社,2004.

[29] 王忠江,李文哲,石鐵,等. 溫度和料液濃度對牛糞高濃度厭氧水解酸化的影響[J]. 農業(yè)工程學報,2008,24(11):212-216.Wang Zhongjiang, Li Wenzhe, Shi Tie, et al. Effects of temperature and liquor concentration on the high-concentration anaerobic hydrolysis and acidogenesis of dairy manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2008, 24(11): 212-216. (in Chinese with English abstract).

[30] 張波,史紅鉆,張麗麗. pH對廚余廢物兩相厭氧消化中水解和酸化過程的影響[J].環(huán)境科學學報,2005,25(5):665-669.Zhang Bo, Shi Hongzuan, Zhang Lili. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion[J]. ActaScientiae Circumstantiae, 2005, 25(5): 665-669. (in Chinese with English abstract).

[31] 任南琪,王愛杰,馬放.產酸發(fā)酵微生物生理生態(tài)學[M].北京:科學出版社,2005.

[32] 賀靜,鄧雅月,李凜,等. 廢棄食用油脂兩相厭氧發(fā)酵酸化條件優(yōu)化[J]. 農業(yè)工程學報,2015, 31(19): 247-253.He Jing, Deng Yayue, Li Lin, et al. Process optimization of wasted edible oil hydrolytic acidification in two-phase anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 247-253. (in Chinese with English abstract).

[33] 譚文英,許勇. 餐廚垃圾水解酸化性能的研究[J]. 安徽農業(yè)科學,2014,42(33):11832-11835,11838.Tan wenying,Xu Yong. Research on hydrolysis and acidification performance of food waste[J]. Journal of Anhui Agr. Sci. 2014, 42(33): 11832-11835,11838. (in Chinese with English abstract).

[34] 泮進明,張瑜,朱寶寧,等. 食品廢物兩相高溫半干法厭氧發(fā)酵生產沼氣初步研究[J]. 農業(yè)工程學報,2008,24(7):199-203. Pan Jinming, Zhang Yu, Zhu Baoning, et al. Biogas production from food waste by two-stage semi-dry-thermophilic anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 199-203. (in Chinese with English abstract).

Biogas yield by mixed anaerobic fermentation of kelp residue and aquaculture solid waste

Li Xiuchen, Li Feng, Zhang Guochen, Zhang Qian, Yang Fuli, Mu Gang

(116023,)

Above50% of kelp in weight is left as residue during kelp processing, and 25%-40% of the feed in aquaculture is converted to solid waste. Efficient and cost-effective utilization of kelp residue and aquaculture solid waste is vital for sustainable development of modern fisheries. Experimental studies on biogas yield from two-phase fermentation of kelp residue and aquaculture solid waste were carried out in the condition of (35±1) ℃ medium temperature. The effects of TS concentration and inoculation rate on mixing hydrolytic acidification characteristics of kelp residue and aquaculture solid waste were studied, and sequentially the biogas yield property from acidified liquor in a batch-adding manner was studied as well. Concentrations of VFA (volatile fatty acids) and their main components, COD (chemical oxygen demand), pH value, and so on were measured during mixing hydrolytic acidification process. Accordingly, the items including daily biogas yield, methane content in the biogas, and pH value were recorded during the fermentation process. Results showed that the mixing hydrolytic acidification process of kelp residue and aquaculture solid waste was fast. The highest concentration of acetic acid was measured on the 2ndday of hydrolyzing, while the concentration of propionate acid and butyric acid increased relatively quickly after 5 days’ hydrolyzing. Formicacid production during the mixing hydrolytic acidification process was relatively lower. With TS concentration of 6%, 8% and 10%, the acidifying degree of acetic acid and main organic acids (acetic acid + butyric acid + formicacid) reached 42.6%, 50.0%, 49.8% and 61.7%, 68.7%, 62.2%, respectively. Additionally, with inoculation rate of 10%, 20% and 30% for mixing hydrolytic acidification, the acidifying degree of the acetic acid and main organic acids were 50.7%, 44.3%, 40.3% and 69.4%, 57.5%, 58.0%, respectively, after 3 days’ hydrolyzing. It was accordingly known that desired acidified liquor could be obtained for further fermentation and biogas production by mixing hydrolytic acidification of kelp residue and aquaculture solid waste at (35±1) ℃ in 2-3 d if TS concentration, inoculation rate and pH value were kept at 8%-10%, 10%-20%, and 7.0-8.0, respectively. Furthermore, the fermentation of acidified liquor demonstrated that the biogas production process started quickly and kept an increasing biogas yield and methane content by batch-adding of acidified liquor and with the quantity ratios of acidified liquor to the inoculation methanogenic sludge of 1:5, 1:7 and 1:9. There was a measureable increase in pH value of liquor during the first 5 days and a little fluctuation in pH value in the ratios of 1:5 and 1:7 during the 11th-12thday, but stable pH value was found after 13 days. Relatively higher daily biogas yield and earlier peak of biogas yield were measured in the liquor of 1:9, followed by the liquor of 1:7 and 1:5. After the fermentation of 13 days, the quantity ratio of acidified liquor to the inoculation methanogenic sludge had no significant influence on the daily biogas yield and methane content in the biogas. Comparatively, with the quantity ratios of acidified liquor to the inoculation methanogenic sludge of 1:7 and 1:9, the biogas production efficiency could reach 489.4-581.5 mL/gVS and the methane content in the biogas reached 82.7%-84.9% after 8-13 days fermentation at (35±1) ℃ and pH value of 6.0-7.0. No excessive accumulation of VFA was observed during the fermentation process of the acidified liquor. Therefore higher efficiency and stability of biogas production may be achieved by mixing hydrolytic acidification and batch-adding fermentation of kelp residue and aquaculture solid waste.

biogas; methane; fermentation; co-hydrolytic acidification; batch-adding fermentation; kelp residue; aquaculture solid waste.

10.11975/j.issn.1002-6819.2018.18.028

X512

A

1002-6819(2018)-18-0228-07

2018-05-16

2018-07-12

遼寧省創(chuàng)新團隊項目(LT2016018);遼寧省科技攻關項目(201304)

李秀辰,博士,教授,主要從事漁業(yè)節(jié)能減排技術研究。

Email:lxc@dlou.edu.cn

李秀辰,李 豐,張國琛,張 倩,楊福利,母 剛. 海帶渣與養(yǎng)殖固體廢棄物混合發(fā)酵產沼氣試驗[J]. 農業(yè)工程學報,2018,34(18):228-234. doi:10.11975/j.issn.1002-6819.2018.18.028 http://www.tcsae.org

Li Xiuchen, Li Feng, Zhang Guochen, Zhang Qian, Yang Fuli, Mu Gang. Biogas yield by mixed anaerobic fermentation of kelp residue and aquaculture solid waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 228-234. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.18.028 http://www.tcsae.org

猜你喜歡
厭氧發(fā)酵丙酸產氣
丙酸氟替卡松、孟魯司特、地氯雷他定治療咳嗽變異性哮喘的臨床研究
餐廚垃圾厭氧發(fā)酵熱電氣聯(lián)供系統(tǒng)優(yōu)化
濕垃圾與病死豬混合厭氧消化產氣性能研究
厭氧發(fā)酵技術處理畜禽養(yǎng)殖廢水的研究進展
正丁醇/丙酸與腐殖酸相互作用的NMR研究
飼料中丙酸、丙酸鹽的測定方法改進研究*
羊毒素型產氣莢膜梭菌臨床癥狀及病理變化
加溫加堿預處理對污泥厭氧消化產氣量影響研究
Meso-mechanical model of concrete under a penetration load
食醋固態(tài)發(fā)酵中丙酸含量變化及生成機理研究