謝 晶,柳雨嫣,王金鋒
?
噴嘴結(jié)構(gòu)對(duì)氣流沖擊式速凍機(jī)鋼帶表面換熱特性的影響
謝 晶1,2,3,4※,柳雨嫣2,4,王金鋒1,2,3,4
(1. 上海水產(chǎn)品加工及貯藏工程技術(shù)研究中心,上海 201306;2. 上海冷鏈裝備性能與節(jié)能評(píng)價(jià)專業(yè)技術(shù)服務(wù)平臺(tái),上海 201306;3. 食品科學(xué)與工程國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心(上海海洋大學(xué)),上海 201306;4. 上海海洋大學(xué)食品學(xué)院,上海 201306)
噴嘴;數(shù)值模擬;傳熱;努塞爾數(shù);射流沖擊;速凍機(jī)
除了目標(biāo)表面的外,傳熱均勻度也是衡量沖擊射流傳熱特性的一個(gè)重要指標(biāo)[10-11]。若食品在凍結(jié)過(guò)程中受冷不均勻,會(huì)直接影響凍結(jié)時(shí)間和凍品品質(zhì)[12-13]。Wen等[14]進(jìn)行了飛行器地面降溫模擬試驗(yàn),研究了噴嘴數(shù)量、噴嘴高度等因素對(duì)陣列空氣射流傳熱均勻性的影響規(guī)律,通過(guò)正交試驗(yàn)獲得了研究范圍內(nèi)傳熱均勻性最優(yōu)的參數(shù)匹配方案,得出相應(yīng)的表面對(duì)流傳熱系數(shù)的不均勻系數(shù)為0.20;通過(guò)添加擋板改變出口形式,不均勻系數(shù)減小了39.70%,試件局部表面?zhèn)鳠峋鶆蛐缘玫搅舜蠓岣?。王金鋒等[15]以速凍機(jī)中V型條縫噴嘴與平直條縫孔板為研究對(duì)象,發(fā)現(xiàn)V型條縫噴嘴在鋼帶表面的換熱強(qiáng)度更強(qiáng),換熱均勻性更高。
已有的文獻(xiàn)主要研究了不同噴嘴結(jié)構(gòu)的目標(biāo)表面的變化,僅有少量文獻(xiàn)涉及傳熱均勻性的研究。本文以沖擊式速凍試驗(yàn)臺(tái)為依托,提出了一種其他文獻(xiàn)未涉及的新噴嘴結(jié)構(gòu)即圓漏斗噴嘴,對(duì)比了圓孔和圓漏斗噴嘴結(jié)構(gòu)的速凍設(shè)備內(nèi)部流場(chǎng)的分布,從鋼帶表面和傳熱均勻度2個(gè)角度全面分析了2種噴嘴的優(yōu)缺點(diǎn),并對(duì)圓孔噴嘴出口處方向的速度分布進(jìn)行了試驗(yàn)驗(yàn)證,以期為氣流沖擊式速凍機(jī)的優(yōu)化設(shè)計(jì)提供理論依據(jù)。
圖1a為沖擊式速凍試驗(yàn)臺(tái)模型,由離心風(fēng)機(jī)帶動(dòng)冷卻空氣進(jìn)入沖擊式速凍試驗(yàn)臺(tái)靜壓箱內(nèi),通過(guò)孔板直接噴射至鋼帶表面,在限定的矩形通道內(nèi)流動(dòng)并由最末端的出口排出。
a. 沖擊式速凍試驗(yàn)臺(tái)模型
a. Model of impacting freezing test bench
b. 圓孔噴嘴模型
b Model of circular orifice nozzle
c. 圓漏斗噴嘴模型
c. Circular funnel nozzle model
d. 圓漏斗噴嘴結(jié)構(gòu)
經(jīng)與南通四方冷鏈裝備股份有限公司的沖擊式隧道速凍裝置實(shí)測(cè)數(shù)據(jù)比對(duì)得出本模型靜壓箱尺寸為300 mm×300 mm×500 mm,孔板尺寸為300 mm×300 mm×2 mm,此結(jié)構(gòu)尺寸下沖擊式速凍試驗(yàn)臺(tái)內(nèi)部流場(chǎng)變化與氣流沖擊式速凍機(jī)內(nèi)流場(chǎng)變化一致。為了合理分布噴嘴結(jié)構(gòu),清晰的觀察到?jīng)_擊式速凍試驗(yàn)臺(tái)內(nèi)部流場(chǎng)的變化趨勢(shì),本文在對(duì)沖擊式速凍試驗(yàn)臺(tái)進(jìn)行數(shù)值模擬研究時(shí),等比例增大了靜壓箱和孔板的尺寸[16],分別為600 mm×600 mm×500 mm和600 mm×600 mm×2 mm,此模型結(jié)構(gòu)上下對(duì)稱,故只采用1/2模型進(jìn)行計(jì)算。在此模型尺寸下,圓孔和圓漏斗噴嘴的具體結(jié)構(gòu)參數(shù)如表1所示。
表1 噴嘴結(jié)構(gòu)參數(shù)
1.2.2 網(wǎng)格劃分
將物理模型導(dǎo)入ANSYS15.0軟件中,進(jìn)行計(jì)算區(qū)域的離散化處理,將噴嘴周圍的網(wǎng)格適當(dāng)進(jìn)行加密處理[17-18],對(duì)于圓孔噴嘴,噴嘴處加密網(wǎng)格最小尺寸為0.517 9 mm,整個(gè)計(jì)算域節(jié)點(diǎn)個(gè)數(shù)為634 363,網(wǎng)格單元數(shù)為2 224 215,如圖2所示。
圖2 網(wǎng)格劃分
1.2.3 模擬參數(shù)設(shè)置
由于本文模擬的流體為空氣,為了方便模擬計(jì)算,進(jìn)行了下列假設(shè):(1)空氣為不可壓縮流體[19-20];(2)模型在正常運(yùn)行過(guò)程中,沖擊式速凍試驗(yàn)臺(tái)內(nèi)部的流場(chǎng)視為穩(wěn)態(tài)[21];(3)靜壓箱壁面視為絕熱[22]。
本模型內(nèi)部為有限空間的強(qiáng)制對(duì)流換熱,流體的雷諾數(shù)Re>106,流體完全處于湍流狀態(tài),因此,本模型采用湍流模型,由于在沖擊過(guò)程中有溫度的變化,故使用能量方程[23-24]。參考王金鋒等[15]的試驗(yàn)方法并稍作修改,冷卻空氣入口壓力in=250 Pa,冷卻空氣出口壓力out=0 Pa。凍結(jié)區(qū)域冷卻空氣入口溫度設(shè)置為230 K,冷卻空氣出口溫度為235 K。冷卻空氣入口處質(zhì)量流量為0.064 4 kg/s。沖擊表面為鋼帶,設(shè)置為壁面,其熱導(dǎo)率為16.3W/(m·℃)[15]。
為了驗(yàn)證數(shù)值模擬的可靠性,本文進(jìn)行了驗(yàn)證試驗(yàn)(圖3)。試驗(yàn)測(cè)量的儀器設(shè)備包括TESTO-510型德圖空氣差壓儀和TESTO-425型德圖熱線式風(fēng)速儀(表2)。
圖3 驗(yàn)證試驗(yàn)
表2 測(cè)試儀器的技術(shù)參數(shù)
1.3.1 試驗(yàn)方法
1.3.2 試驗(yàn)結(jié)果
將試驗(yàn)測(cè)量結(jié)果與數(shù)值模擬結(jié)果進(jìn)行比較,如表3所示。
表3 各列圓孔噴嘴出口處Z方向氣流速度
由表3可見(jiàn),數(shù)值模擬結(jié)果與試驗(yàn)測(cè)量結(jié)果的變化趨勢(shì)是相同的,即沿孔板方向,隨著圓孔噴嘴的列數(shù)增加,噴嘴出口處方向氣流速度增加,數(shù)值模擬結(jié)果與試驗(yàn)測(cè)量結(jié)果的相對(duì)誤差在1.24%~6.90%以內(nèi),因此可以確定對(duì)沖擊式速凍試驗(yàn)臺(tái)的數(shù)值模擬可靠[25]。因后續(xù)的數(shù)值模擬僅對(duì)模型尺寸等比例放大,其他模擬條件設(shè)置不變,因此后續(xù)可以采用相同的數(shù)值模擬條件對(duì)速凍機(jī)的噴嘴設(shè)計(jì)方案進(jìn)行分析和優(yōu)化[16]。
本研究在改變噴嘴到鋼帶的距離與出口直徑的比值/D條件下,從鋼帶表面和傳熱均勻度2個(gè)方面出發(fā),分析2種噴嘴結(jié)構(gòu)的鋼帶表面的換熱特性。參考Attalla等[26]的試驗(yàn)方法并稍作修改,在鋼帶表面上取線A和線B(見(jiàn)圖1b)來(lái)具體分析鋼帶各個(gè)位置的換熱特性,線A對(duì)應(yīng)每排噴嘴中心正下方,噴嘴排數(shù)為7,因此分別為線A1,A2,···,A7,線B對(duì)應(yīng)每2排噴嘴間隙的中心線正下方,噴嘴間隙數(shù)為6,因此分別為線B1,B2,···,B6[26]。線A和線B上的平均努塞爾數(shù)為
圖4顯示了冷卻空氣入口壓力為in=250 Pa,冷卻空氣出口壓力out=0 Pa,凍結(jié)區(qū)域冷卻空氣入口溫度設(shè)置為230 K,出口溫度為235 K,冷卻空氣入口處質(zhì)量流量為0.064 4 kg/s時(shí),不同的噴嘴到鋼帶距離與出口直徑比值H/D的圓孔和圓漏斗2種噴嘴結(jié)構(gòu)的鋼帶表面分布。由圖4可知,當(dāng)H/D值一定時(shí),圓漏斗噴嘴結(jié)構(gòu)的鋼帶表面值均比圓孔結(jié)構(gòu)的鋼帶表面值高。隨著H/D的增加,射流直接沖擊到鋼帶表面的速度減小,因此鋼帶表面減小。
圖5為2種噴嘴在不同H/D的線A和線B局部分布。由圖5可知,對(duì)于線A,當(dāng)H/D=2和6時(shí),圓孔噴嘴的局部較高,但圓孔噴嘴的局部的最大值與最小值之差(即極差)分別為470.80和117.19,圓漏斗噴嘴的局部極差分別為343.67和99.69,圓漏斗噴嘴的局部極差比圓孔噴嘴的低27.01%,說(shuō)明圓漏斗噴嘴結(jié)構(gòu)的鋼帶表面局部分布更均勻;當(dāng)H/D=8和12時(shí),圓孔噴嘴的局部極差分別為53.04和25. 21,圓漏斗噴嘴的局部極差分別為50.19和20.43,2種噴嘴結(jié)構(gòu)的鋼帶表面局部極差相差不大,說(shuō)明2種噴嘴結(jié)構(gòu)的鋼帶表面局部分布均勻程度相差不大,但圓漏斗噴嘴結(jié)構(gòu)的鋼帶表面局部較高。對(duì)于線B,當(dāng)H/D=2、6、8和12時(shí),圓漏斗噴嘴結(jié)構(gòu)的鋼帶表面局部都較高,說(shuō)明圓漏斗噴嘴結(jié)構(gòu)的線B上的換熱強(qiáng)度較高。
注:冷卻空氣入口壓力為Pin=250 Pa,冷卻空氣出口壓力Pout=0 Pa,凍結(jié)區(qū)域冷卻空氣入口溫度設(shè)置為230 K,出口溫度為235 K,冷卻空氣入口處質(zhì)量流量為0.064 4 kg/s。H為噴嘴到鋼帶的距離,mm;DE為噴嘴出口直徑,mm。下同。
圖5 不同H/DE值的線A和線B局部Nu分布
圖6 不同H/DE的線A和線B的
圖7 不同H/DE的鋼帶表面
圖8 鋼帶表面?zhèn)鳠岬木鶆蛐灾笜?biāo)η隨H/DE值的變化
從圖9還可以看出,當(dāng)H/D值在2~12范圍內(nèi)時(shí),圓漏斗噴嘴結(jié)構(gòu)的橫流風(fēng)速始終低于圓孔噴嘴的橫流風(fēng)速,低4.89%~12.46%。說(shuō)明圓漏斗噴嘴結(jié)構(gòu)的橫流效應(yīng)對(duì)沖擊射流的影響較弱,因此鋼帶表面換熱強(qiáng)度比圓孔噴嘴結(jié)構(gòu)的換熱強(qiáng)度高。
圖9 鋼帶上方10 mm處橫流風(fēng)速分布
圖10 不同H/DE的線A和線B上方10 mm處Z方向絕對(duì)速度
圖11 噴嘴出口氣流矢量圖
本文以沖擊式速凍試驗(yàn)臺(tái)的噴嘴為研究對(duì)象,對(duì)比了圓孔和圓漏斗噴嘴在冷卻空氣入口處質(zhì)量流量相同的情況下,改變噴嘴到鋼帶的距離對(duì)鋼帶表面換熱特性的影響,得到以下結(jié)論:
2)當(dāng)H/D值在2~12范圍時(shí),2種噴嘴結(jié)構(gòu)的鋼帶表面的變化均受H/D值的影響較大,受橫流影響較小。
3)當(dāng)H/D值在2~12范圍時(shí),圓漏斗噴嘴結(jié)構(gòu)的鋼帶表面?zhèn)鳠峋鶆蛐灾笜?biāo)值比圓孔噴嘴結(jié)構(gòu)的值低7.06%~34.52%。隨著H/D值的增加,2種噴嘴結(jié)構(gòu)的差值逐漸縮小。圓漏斗噴嘴結(jié)構(gòu)的值較低,即設(shè)備內(nèi)部氣流較為均勻,這有利于保證凍結(jié)的均勻性,提高食品的凍結(jié)品質(zhì)。
[1] Huan Z, Ma Y, He S. Airflow blockage and guide technology on energy saving for spiral quick-freezer[J]. International Journal of Refrigeration, 2003, 26(6): 644-651.
[2] Shaikh N I, Prabhu V. Mathematical modeling and simulation of cryogenic tunnel freezers[J]. Journal of Food Engineering, 2007, 80(2): 701-710.
[3] Yang B, Chang S, Wu H, et al. Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface[J]. Applied Thermal Engineering, 2017, 127(25): 473-483.
[4] Kumar K. Flow and heat transfer characteristics of confined noncircular turbulent impinging jets[J]. Drying Technology, 2004, 22(9): 2027-2049.
[5] Vinze R, Chandel S, M.D. Limaye, et al. Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets[J]. International Journal of Thermal Sciences, 2016, 99: 136-151.
[6] Nuntadusit C, Wae-Hayee M, Tekasakul P, et al. Local heat transfer characteristics of array impinging jets from elongated orifices[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1154-1164.
[7] Dano B P E, Liburdy J A, Kanokjaruvijit K. Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry[J]. International Journal of Heat and Mass Transfer, 2005, 48(3): 691-701.
[8] Martin R H, Buchlin J M. Jet impingement heat transfer from lobed nozzles[J]. International Journal of Thermal Sciences, 2011, 50(7):1199-1206.
[9] Mangate L D, Chaudhari M B. Heat transfer and acoustic study of impinging synthetic jet using diamond and oval shape orifice[J]. International Journal of Thermal Sciences, 2015, 89: 100-109.
[10] Ianiro A, Cardone G. Heat transfer rate and uniformity in multichannel swirling impinging jets[J]. Applied Thermal Engineering, 2012, 49(1): 89-98.
[11] Yu P, Zhu K, Sun T, et al. Heat transfer rate and uniformity of mist flow jet impingement for glass tempering[J]. International Journal of Heat and Mass Transfer, 2017, 115: 368-378.
[12] Yulin L, Feng L, Juming T, et al. Radio frequency tempering uniformity investigation of frozen beef with various shapes and sizes[J].Innovative Food Science and Emerging Technologies, 2018, 48: 42-55.
[13] Li D, Zhu Z, Sun D W. Effects of freezing on cell structure of fresh cellular food materials: A review[J]. Trends in Food Science and Technology, 2018, 75:46-55.
[14] Wen Z X, He Y L, Ma Z. Effects of nozzle arrangement on uniformity of multiple impinging jets heat transfer in a fast cooling simulation device[J]. Computers and Fluids, 2018, 164(15): 83-93.
[15] 王金鋒,李文俊,謝晶,等. 兩種噴嘴結(jié)構(gòu)對(duì)沖擊式速凍機(jī)流場(chǎng)及換熱特征的影響[J]. 食品與機(jī)械,2017,33(12):80-85+90. Wang Jinfeng, Li Wwenjun, Xie Jing, et al. Influence of two ddifferent nnozzle fforms on the flow field and heat transferring characteristics[J]. Food and Machinery, 2017, 33(12): 80-85+90.
[16] 聞建龍. 工程流體力學(xué)[M]. 北京:機(jī)械工業(yè)出版社,2011.55-65.
[17] Xu L, Jin L, Ma Y, et al. Numerical study on heat transfer by swirling impinging jets issuing from a screw-thread nozzle[J]. International Journal of Heat and Mass Transfer, 2017, 115: 232-237.
[18] Guan T, Zhang J Z, Shan Y. Convective heat transfer by a row of tab-excited impinging jets on a wedge-shaped concave surface[J]. International Journal of Thermal Sciences, 2016, 100: 37-53.
[19] Zhu X W, Zhu L, Zhao J Q. An in-depth analysis of conjugate heat transfer process of impingement jet[J]. International Journal of Heat and Mass Transfer, 2017, 104: 1259-1267.
[20] Singh D, Premachandran B, Kohli S. Effect of nozzle shape on jet impingement heat transfer from a circular cylinder[J]. International Journal of Thermal Sciences, 2015, 96: 45-69.
[21] Li Y, Li B, Qi F, et al. Flow and heat transfer of parallel multiple jets obliquely impinging on a flat surface[J]. Applied Thermal Engineering, 2018, 133(25): 588-603.
[22] Lingling C, Robin B, Bernhard W, et al. Experimental and numerical heat transfer investigation of an impingement jet array with V-ribs on the target plate and on the impingement plate[J]. International Journal of Heat and Fluid Flow, 2017, 68: 126-138.
[23] Hosain M L, Fdhila R B, Daneryd A. Heat transfer by liquid jets impinging on a hot flat surface[J]. Applied Energy, 2016, 164(15): 934-943.
[24] Hou Y, Tao Y, Huai X, et al. Numerical simulation of multi-nozzle spray cooling heat transfer[J]. International Journal of Thermal Sciences, 2018, 125: 81-88.
[25] 陳黎卿,張棟,陳無(wú)畏. 基于流固耦合的分動(dòng)器齒輪兩相流動(dòng)數(shù)值模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(4):54-61. Chen Liqing, Zhang Dong, Chen Wuwei. Numerical simulation and test on two-phase flow inside shell of transfer case based on fluid-structure interaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 54-61.
[26] Attalla M, Maghrabie H M, Qayyum A, et al. Influence of the nozzle shape on heat transfer uniformity for in-line array of impinging air jets[J]. Applied Thermal Engineering, 2017, 120(25): 160-169.
[27] 馬朝,嚴(yán)超,曹學(xué)偉,等. 陣列空氣射流傳熱均勻性問(wèn)題的數(shù)值研究[J]. 工程熱物理學(xué)報(bào),2016,37(11):2378-2384. Ma Cao, Yan Cao, Cao Xuewei, et al. Numerical Study on Array Air jet heat transfer uniformity[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2378-2384.
[28] 葛茂生,吳普特,朱德蘭,等. 卷盤式噴灌機(jī)移動(dòng)噴灑均勻度計(jì)算模型構(gòu)建與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):13-137.Ge Maosheng, Wu Pute, Zhu Ddlan, et al. Construction and application of mobile spraying uniformity model of hard hose traveler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 130-137.
[29] 張珍,謝晶. 帶有上下均風(fēng)孔板的速凍裝置中流場(chǎng)及溫度場(chǎng)的數(shù)值模擬[J]. 制冷學(xué)報(bào),2009,30(05):36-40.
Zhang Zhen, Xie Jing. Numerical simulation on flow and temperature fields in quick freezer with perforated plates[J]. Journal of Refrigeration, 2009, 30(05):36-40.
[30] Meena H C, Reodikar S A, Vinze R, et al. Influence of the shape of the orifice on the local heat transfer distribution between smooth flat surface and impinging incompressible air jet[J]. Experimental Thermal & Fluid Science, 2016, 70: 292-306.
[31] Vinze R, Chandel S, M.D. Limaye, et al. Effect of compressibility and nozzle configuration on heat transfer by impinging air jet over a smooth plate[J]. Applied Thermal Engineering, 2016, 101: 293-307.
[32] Katti V, Prabhu S V. Influence of streamwise pitch on local heat transfer distribution for in-line arrays of circular jets with spent air flow in two opposite directions[J]. Experimental Heat Transfer, 2009, 22(4): 228-256.
Effects of nozzle structures of air impinging freezer on heat transfer characteristics of steel strip surface
Xie Jing1,2,3,4※, Liu Yuyan2,4, Wang Jinfeng1,2,3,4
(1.201306,; 2.,201306;3.,201306,; 4,,201306,)
In view of the low efficiency and high energy consumption of air impinging freezer, 2 kinds of nozzle structures were compared in this paper in order to find out the best structure and improve the Nusselt number and heat transfer uniformity. Based on the impinging freezing test bench, the performance of 2 kinds of nozzle was analyzed and compared by using computational fluid dynamics (CFD) Numerical simulation technology. Theturbulence model was used. Since there was a temperature change during the jet impinging, the energy equation was selected. The cooling air inlet and outlet pressure were 250 Pa(P) and 0 Pa(P) respectively. For the frozen area, the cooling air inlet temperature was set to 230 K and outlet temperature was 235 K. The mass flow rate at the cooling air inlet is 0.064 4kg/s. The thermal conductivity of steel strip was 16.3 W/(m.°C). In order to verify the reliability of numerical simulation, experimental verification was carried out.Taking the circular orifice nozzle as an example, the outlet diameter of circular orifice nozzle wasD=10 mm, nozzle spacing was=34 mm, nozzle number was 64(8 rows×8 ranks), and the ratio between nozzle-to-strip distances and outlet diameters wasH/D=2.The absolute velocity of steel strip surface in vertical direction at the outlet nozzle (direction) was measured.The error between simulation value and test value was 1.24%6.90%, thus it could be concluded that the numerical simulation of the impinging freezing test bench was reliable. Based on the Nusselt number distribution and heat transfer uniformity on steel strip, the heat transfer characteristics on steel strip surface under the circular orifice nozzles and circular funnel nozzles at the different ratio between nozzle-to-strip distances and outlet diameters were analyzed. The results showed that when theH/Dwas in the range of 2-12, the average Nusselt number on steel strip surface under the circular funnel nozzle was about 5.41%-15.10% higher than that under the circular orifice nozzle. The change of the Nusselt number on steel strip surface under both 2 kinds of nozzle structures were greatly influenced by theH/Dand was less affected by the cross flow. The heat transfer uniformityon steel strip surface under the circular funnel nozzle was about 7.06%-34.52% lower than that of the circular orifice nozzle. As theH/Dincreasing, thedifference between the 2 kinds of nozzle structures was gradually decreased. This was because that for the circular funnel nozzle, the “convex” region which was formed between 2 kinds of nozzle structures could form a cross flow buffer zone. On the one hand, the flow direction of the cross flow was changed, so the cross flow velocity in the channel was decreased, and the adverse effect of cross flow was reduced. The average Nusselt number on steel strip surface under the circular funnel nozzle was higher, so that the heat transfer characteristics on steel strip surface was higher. On the other hand, the large vortex formed on the left side of the circular funnel nozzle enhanced the line B above the steel strip surface. The velocity indirection increased the Nusselt number on the line B, so thevalue of the steel strip surface was decreased, so that the airflow in the air impinging freezer was relatively uniformity. By comparing the structures of the 2 nozzles, it is recommended to use a circular funnel nozzle in the case of the same air supply volume to reduce the freezing time, increase the output of the air impinging freezer, and improve the quality of the frozen food.
nozzles; numerical simulation; heat transfer; nusselt number; jet impingement; freezer
10.11975/j.issn.1002-6819.2018.18.036
TP391.4; S431.9
A
1002-6819(2018)-18-0292-07
2018-05-03
2018-08-17
國(guó)家“十三五”重點(diǎn)研發(fā)項(xiàng)目課題(2016YFD0400303);上海市科委平臺(tái)能力建設(shè)項(xiàng)目(16DZ2280300);上海市科委公共服務(wù)平臺(tái)建設(shè)項(xiàng)目(17DZ2293400);上海高校青年教師培養(yǎng)資助計(jì)劃(ZZSHOU16013);上海海洋大學(xué)科技發(fā)展專項(xiàng)基金(A2-0203-17-100207);上海海洋大學(xué)博士科研啟動(dòng)基金(A2-0203-17-100317)
謝 晶,女(漢族),教授,博士,博士生導(dǎo)師,主要從事制冷工程研究。Email:jxie@shou.edu.cn
謝 晶,柳雨嫣,王金鋒. 噴嘴結(jié)構(gòu)對(duì)氣流沖擊式速凍機(jī)鋼帶表面換熱特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):292-298. doi:10.11975/j.issn.1002-6819.2018.18.036 http://www.tcsae.org
Xie Jing, Liu Yuyan, Wang Jinfeng. Effects of nozzle structures of air impinging freezer on heat transfer characteristics of steel strip surface[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 292-298. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.18.036 http://www.tcsae.org