趙睿,譚星,李元健,賀玉成,李春國(guó)
?
全雙工加擾的非可信中繼系統(tǒng)的漸近性能分析
趙睿1,譚星1,李元健1,賀玉成1,李春國(guó)2
(1. 華僑大學(xué)廈門市移動(dòng)多媒體通信重點(diǎn)實(shí)驗(yàn)室,福建 廈門 361021;2. 東南大學(xué)信息科學(xué)與工程學(xué)院,江蘇 南京 210096)
在物理層安全領(lǐng)域,協(xié)作中繼技術(shù)因具備提升網(wǎng)絡(luò)容量和擴(kuò)展網(wǎng)絡(luò)覆蓋范圍等優(yōu)點(diǎn),受到學(xué)術(shù)界廣泛關(guān)注。但是,協(xié)作中繼在某些時(shí)候可能存在非可信情形?;诖?,在瑞利衰落信道下,為提升非可信中繼系統(tǒng)安全性能,提出一種多天線全雙工目的節(jié)點(diǎn)加擾(FDJ, full-duplex destination jamming)策略。為最大化系統(tǒng)安全容量,針對(duì)多天線目的節(jié)點(diǎn)提出一種切換分離式最優(yōu)天線選擇(OAS, optimal antenna selection)方案,并設(shè)計(jì)出信源和目的節(jié)點(diǎn)功率分配優(yōu)化方案,給出相應(yīng)的安全性能指標(biāo)閉合表達(dá)式。在大規(guī)模天線下,推導(dǎo)出FDJ-OAS策略的遍歷可達(dá)安全速率和瞬時(shí)安全容量下最優(yōu)功率分配因子閉合表達(dá)式。在不同的漸近條件下,推導(dǎo)出FDJ-OAS策略的安全中斷概率的漸近線閉合表達(dá)式。仿真結(jié)果顯示,理論分析與蒙特卡洛仿真曲線十分吻合,F(xiàn)DJ-OAS策略的安全分集階數(shù)與天線數(shù)呈正比,可實(shí)現(xiàn)天線全分集,凸顯了FDJ-OAS策略的性能優(yōu)越性。
物理層安全;全雙工目的節(jié)點(diǎn)加擾;最優(yōu)天線選擇;遍歷可達(dá)安全速率;安全中斷概率
無(wú)線協(xié)作中繼網(wǎng)絡(luò)技術(shù)不僅能提升系統(tǒng)容量、增大信號(hào)覆蓋范圍,還能充分利用無(wú)線信道空間和時(shí)變特性,從物理層保證安全通信[1-3]。但是,實(shí)際中的中繼不總是有利于安全通信的,有時(shí)可能存在不可信中繼場(chǎng)景,即中繼在輔助轉(zhuǎn)發(fā)信源信息時(shí),也扮演著一個(gè)被動(dòng)的竊聽(tīng)者的角色[4-11],這導(dǎo)致通信內(nèi)部存在安全隱患。而且,當(dāng)信源與信宿較遠(yuǎn)且中繼節(jié)點(diǎn)使用解碼轉(zhuǎn)發(fā)(DF, decode and forward)時(shí),中繼會(huì)比目的節(jié)點(diǎn)獲得更多的保密信息。因此在非可信中繼網(wǎng)絡(luò)中,研究者們通常使用放大轉(zhuǎn)發(fā)(AF, amplify and forward)協(xié)議轉(zhuǎn)發(fā)信息[5]。
在非可信中繼網(wǎng)絡(luò)系統(tǒng)中,為提升安全速率和防止內(nèi)部竊聽(tīng)保密信息,研究者們探索出各種安全傳輸策略,例如,目的節(jié)點(diǎn)加擾(DBJ, destination based jamming)[5-8]、多天線選擇[6]、協(xié)作最優(yōu)中繼選擇(ORS, optimal relay selection)[5,7]、最優(yōu)功率分配(OPA, optimal power allocation)[10-11]等策略。文獻(xiàn)[5]提出了DBJ策略,即目的節(jié)點(diǎn)發(fā)送噪聲信號(hào)干擾中繼竊聽(tīng),以保證獲得正安全容量。文獻(xiàn)[6]針對(duì)多天線中繼系統(tǒng),采用天線選擇和最大比合并技術(shù)分析安全中斷概率(SOP, secrecy outage probability)指標(biāo),得出中繼的天線數(shù)越多系統(tǒng)安全性能越差的結(jié)論。文獻(xiàn)[7]分析了多個(gè)非可信中繼網(wǎng)絡(luò)的漸近安全性能,推導(dǎo)了分布式波束成形和ORS這2種策略的上下界平均安全容量計(jì)算式,并進(jìn)一步分析了安全分集階數(shù)(SDO, secrecy diversity order)。文獻(xiàn)[8]探索能量采集技術(shù)下的非可信中繼網(wǎng)絡(luò),中繼將接收到的有用信息和噪聲信息的一部分轉(zhuǎn)換成能量,用于轉(zhuǎn)發(fā)信息所需的能量。文獻(xiàn)[9]針對(duì)3種不同信道狀態(tài)信息下的用戶選擇準(zhǔn)則,推導(dǎo)了其SOP的閉合表達(dá)式和漸近表達(dá)式。為最大化系統(tǒng)的安全容量,文獻(xiàn)[10-11]在大規(guī)模多輸入多輸出(MIMO, multiple input and multiple output)系統(tǒng)下推導(dǎo)出瞬時(shí)安全速率下的最優(yōu)功率分配因子,并根據(jù)OPA策略去分析遍歷安全容量和SOP。針對(duì)MIMO系統(tǒng),文獻(xiàn)[12-13]運(yùn)用大數(shù)定理的極限形式近似各信道參數(shù),簡(jiǎn)化分析AF和DF協(xié)議下的SOP;文獻(xiàn)[14]運(yùn)用最大值定理的極限形式分析了系統(tǒng)的吞吐量漸近表達(dá)式。
全雙工(FD, full duplex)技術(shù)以同時(shí)收發(fā)信息來(lái)成倍提升安全速率和頻譜效率,并已廣泛地運(yùn)用于下一代通信系統(tǒng)中。當(dāng)FD技術(shù)與目的節(jié)點(diǎn)加擾技術(shù)相結(jié)合時(shí),稱之為全雙工目的節(jié)點(diǎn)加擾(FDJ, full-duplex destination jamming)策略,并在文獻(xiàn)[15-17]中已應(yīng)用。例如,在二層分散的無(wú)線異構(gòu)網(wǎng)絡(luò)中,文獻(xiàn)[15]研究了FDJ策略在物理層安全領(lǐng)域具備一定優(yōu)勢(shì);在多竊聽(tīng)MIMO信道中,分布有多個(gè)全雙工目的節(jié)點(diǎn)和竊聽(tīng)節(jié)點(diǎn),文獻(xiàn)[16]研究了聯(lián)合信源和信宿人工噪聲預(yù)編碼算法來(lái)優(yōu)化系統(tǒng)的瞬時(shí)安全容量;文獻(xiàn)[17]針對(duì)目的節(jié)點(diǎn)已知瞬時(shí)竊聽(tīng)信道狀態(tài)信息(ECSI, eavesdropping channel state information)和統(tǒng)計(jì)ECSI這2種情況,提出了全雙工目的節(jié)點(diǎn)加擾的收發(fā)天線模式自適應(yīng)切換算法,從而優(yōu)化安全速率。然而,在非可信中繼網(wǎng)絡(luò)中,目前存在的DBJ僅僅運(yùn)用在半雙工(HD, half duplex)模式下,且不考慮直達(dá)路徑的理想情況。針對(duì)此問(wèn)題,本文考慮更為實(shí)際的情形,即信源與目的節(jié)點(diǎn)之間存在直達(dá)路徑、目的節(jié)點(diǎn)分配多根天線且工作于FDJ模式下[15],采用自由切換分離式天線選擇技術(shù)選擇收發(fā)天線[18-19],并通過(guò)信源和目的節(jié)點(diǎn)的總功率合理分配來(lái)分析安全通信問(wèn)題。
針對(duì)上述討論,本文研究了一種最優(yōu)天線選擇(OAS, optimal antenna selection)策略下的FDJ的非可信中繼系統(tǒng)。為了對(duì)比分析,還研究了與OAS策略結(jié)合的2種HD策略,即半雙工目的節(jié)點(diǎn)加擾(HDJ, half-duplex destination jamming)和無(wú)加擾(NJ, non-jamming)。本文主要貢獻(xiàn)有以下3點(diǎn).
1) 推導(dǎo)出大規(guī)模天線數(shù)下3種策略的近似遍歷可達(dá)安全速率(EASR, ergodic achievable secrecy rate)閉合表達(dá)式,并通過(guò)Matlab仿真對(duì)比分析2種半雙工策略以及全雙工自干擾(SI, self-interference)的影響、文獻(xiàn)[20]中的信源節(jié)點(diǎn)加擾(SBJ, source- based jamming)策略和文獻(xiàn)[21]中的全雙工中繼傳輸策略的系統(tǒng)性能,得出FDJ-OAS策略的性能優(yōu)越性。
2) 通過(guò)合理的近似化簡(jiǎn),推導(dǎo)出大規(guī)模天線下FDJ-OAS策略瞬時(shí)安全容量的OPA方案,并進(jìn)一步分析了高信噪比下的OPA方案。
3) 在3種不同的漸近條件下,推導(dǎo)出3種策略的SOP漸近線閉合表達(dá)式,并分析了3種策略的SDO和安全陣列增益。
本節(jié)詳細(xì)地介紹了非可信中繼網(wǎng)絡(luò)模型以及FDJ和最優(yōu)天線選擇策略。
非可信中繼系統(tǒng)模型架構(gòu)如圖1所示。
圖1 非可信中繼系統(tǒng)模型架構(gòu)
針對(duì)FDJ策略模型,由于中繼為非可信中繼,則系統(tǒng)的瞬時(shí)安全容量可表示為
根據(jù)文獻(xiàn)[29-30]的描述,將遍歷安全容量(ESC, ergodic secrecy capacity)定義為可達(dá)平均通信速率的最大值。在非可信中繼系統(tǒng)中可表示為
在瑞利衰落信道中,各信道參數(shù)均服從指數(shù)分布,根據(jù)前面的天線選擇方案,它們的累積分布函數(shù)和概率分布函數(shù)可以分別寫為
利用式(11)和式(12),并引用文獻(xiàn)[31]中的式(4.337.1)和式(4.337.2),通過(guò)簡(jiǎn)單的數(shù)學(xué)積分,求得式(15)和式(16)的閉合解,分別為
證畢。
根據(jù)上述定理,在高下給出簡(jiǎn)化的FDJ-OAS的OPA因子。
證畢。
在非可信中繼網(wǎng)絡(luò)中,為解釋天線選擇是否對(duì)系統(tǒng)有利,并參考文獻(xiàn)[6-7]的分析,本文給出了3種策略下3種情形的漸近性能分析。
對(duì)于NJ-OAS而言,其的閉合表達(dá)式如下。
引理3 根據(jù)式(22),可得NJ-OAS的為
證明略。
證明過(guò)程詳見(jiàn)文獻(xiàn)[6]中引理1的證明。
證明略。
同理,運(yùn)用式(8)和式(22),HDJ-OAS的漸近線閉合表達(dá)式為
引用式(23),可得NJ-OAS的可化簡(jiǎn)為
證明略。
圖2 3個(gè)節(jié)點(diǎn)位置變化拓?fù)浣Y(jié)構(gòu)
圖3 5種策略下EASR隨著功率P的變化曲線
圖4 3種策略下EASR隨N的變化趨勢(shì)
圖5 不同PA方案下EASR隨N的變化趨勢(shì)
圖6 在不同的和下3種策略的SOP曲線變化
圖7 FDJ-OAS策略EASR在不同的P和dSR下的曲線
圖8 3種策略的SOP隨著dRD的曲線變化
[1] DONG L, HAN Z, PETROPULU A P, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1875-1888.
[2] ZHAO R, HUANG Y, WANG W, et al. Ergodic achievable secrecy rate of multiple antenna relay systems with cooperative jamming[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2537-2551.
[3] ZHAO R, YUAN Y, FAN L, et al. Secrecy performance analysis of cognitive decode and-forward relay networks in nakagami fading channels[J]. IEEE Transactions on Communications, 2017, 65(2): 549-563.
[4] JEONG C, KIM I M, KIM D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 310-325.
[5] SUN L, ZHANG T, LI Y, et al. Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3801-3807.
[6] HUANG J, MUKHERJEE A, SWIND L A L. Secure communication via an untrusted non-regenerative relay in fading channels[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2536-2550.
[7] KIM J B, LIM J, CIOFFI J M. Capacity scaling and diversity order for secure cooperative relaying with untrustworthy relays[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3866-3876.
[8] KALAMKAR S S, BANERJEE A. Secure communication via a wireless energy harvesting untrusted relay[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2199-2213.
[9] 鄧單, 周雯. 不可信無(wú)線中繼網(wǎng)絡(luò)中基于用戶選擇的安全通信研究[J]. 電子學(xué)報(bào), 2017, 45(7): 1593-1600.
DENG D, ZHOU W. Secure selection for decode-and-forward cooperative networks with untrusted relay[J]. Acta Electronica Sinica, 2017, 45(7): 1593-1600.
[10] KUHESTANI A, MOHAMMADI A. Destination-based cooperative jamming in untrusted amplify-and-forward relay networks: resource allocation and performance study[J]. IET Communications, 2016, 10(1): 17-23.
[11] WANG L, ELKASHLAN M, HUANG J, et al. Secure transmission with optimal power allocation in untrusted relay networks[J]. IEEE Wireless Communications Letters, 2014, 3(3): 289-292.
[12] CHEN X, CHEN J, LIU T. Secure transmission in wireless powered massive MIMO relaying systems: performance analysis and optimization[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 8025-8035.
[13] CHEN X, LEI L, ZHANG H, et al. Large-scale MIMO relaying techniques for physical layer security: AF or DF[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5135-5146.
[14] SHARIF M, HASSIBI B. On the capacity of MIMO broadcast channels with partial side information[J]. IEEE Transactions on Information Theory, 2005, 51(2): 506-522.
[15] ZHENG T X, WANG H M, YANG Q, et al. Safeguarding decentralized wireless networks using full-duplex jamming receivers[J]. IEEE Transactions on Wireless Communications, 2017, 16(1): 278-292.
[16] MASOOD M, GHRAYEB A, BABU P, et al. A minorization-maximization algorithm for maximizing the secrecy rate of the MIMOME wiretap channel[J]. IEEE Communications Letters, 2017, 21(3): 520-523.
[17] LI Y, ZHAO R, FAN L, et al. Antenna mode switching for full-duplex destination-based jamming secure transmission[J]. IEEE Access, 2018, 6: 9442-9453.
[18] YANG K, CUI H, SONG L, et al. Efficient full-duplex relaying with joint antenna-relay selection and self-interference suppression[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3991-4005.
[19] ZHOU M, SONG L, LI Y, et al. Simultaneous bidirectional link selection in full duplex MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 4052-4062.
[20] LV L, CHEN J, YANG L, et al. Improving physical layer security in untrusted relay networks: cooperative jamming and power allocation[J]. IET Communications, 2017, 11(3): 393-399.
[21] 李博輪, 梁濤, 鮑麗娜. 基于全雙工非可信中繼的物理層安全性能分析[J]. 軍事通信技術(shù), 2016, 37(4): 29-33.
LI B L, LIANG T, BAO L N. Analysis of physical layer secure scheme for untrusted full-duplex relay system[J]. Military Communications Technology, 2016, 37(4): 29-33.
[22] LI C G, ZHANG S, LIU P, et al. Overhearing protocol design exploiting intercell interference in cooperative green networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 441-446.
[23] 吳飛, 邵士海, 唐友喜. 一種基于多天線波束成形的全雙工自干擾抵消算法[J]. 電子學(xué)報(bào), 2017, 45(1): 8-15.
WU F, SHAO S H, TANG Y X. A novel self-interference cancellation algorithm using multi-antenna beamforming in full-duplex system[J]. Acta Electronica Sinica, 2017, 45(1): 8-15.
[24] ZHANG Z, CHAI X, LONG K, et al. Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection[J]. IEEE Communications Magazine, 2015, 53(5): 128-137.
[25] GUO T, WANG B, WU W, et al. Secrecy-oriented antenna assignment optimization at full-duplex receiver with self-interference[J]. IEEE Wireless Communications Letters, 2018, PP(99):1.
[26] LI L, CHEN Z, ZHANG D, et al. A full-duplex Bob in the MIMO Gaussian wiretap channel: Scheme and performance[J]. IEEE Signal Processing Letters, 2016, 23(1): 107-111.
[27] CHEN D, CHENG Y, YANG W, et al. Physical layer security in cognitive untrusted relay networks[J]. IEEE Access, 2018, 6: 7055-7065.
[28] CIRIK A C, BISWAS S, VUPPALA S, et al. Beamforming design for full-duplex MIMO interference channels-QoS and energy efficiency considerations[J]. IEEE Transactions on Communications, 2016, 64(11): 4635-4651.
[29] BLOCH M, BARROS J, RODRIGUES M R D, et al. Wireless information-theoretic security[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2515-2534.
[30] ZHAO R, LIN H, HE Y C, et al. Secrecy performance of transmit antenna selection for MIMO relay systems with outdated CSI[J]. IEEE Transactions on Communications, 2018, 66(2): 546-559.
[31] GRADSHTEYN I S, RYZHIK I M. Table of integrals, series, and products[M].Manhattan: Academic Press, 2007.
[32] HUANG J, SWINDLEHURST A L. Cooperative jamming for secure communications in MIMO relay networks[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4871-4884.
[33] 王偉, 安立源, 章國(guó)安, 等. 能量受限全雙工雙向中繼系統(tǒng)的波束成形設(shè)計(jì)[J]. 通信學(xué)報(bào), 2018, 39(2): 43-52.
WANG W, AN L Y, ZHANG G A, et al. Beamforming design for energy-constrained full-duplex two-way relaying system[J]. Journal on Communications, 2018, 39(2):43-52.
[34] WANG R, TAO M, LIU Y. Optimal linear transceiver designs for cognitive two-way relay networks[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 992-1005.
Asymptotic performance analysis of untrusted relay system with full-duplex jamming destination
ZHAO Rui1, TAN Xing1, LI Yuanjian1, HE Yucheng1, LI Chunguo2
1. Xiamen Key Laboratory of Mobile Multimedia Communications, Huaqiao University, Xiamen 361021, China 2. School of Information Science and Engineering, Southeast University, Nanjing 210096, China
The cooperative relay technique in the field of physical layer security is widely concerned by the academic community, due to the advantages of increasing the network capacity and expanding the network coverage. However, cooperative relays may play as untrusted nodes in some certain circumstances. Based on this, to enhance the secrecy performance of untrusted relay systems, a novel full-duplex destination jamming (FDJ) scheme was proposed in the Rayleigh fading channel. In order to maximize the system’s secrecy capacity, a switchable split-optimal antenna selection (OAS) scheme was proposed for a multiple-antenna destination, the power allocation optimization scheme between the source and destination was designed, and the corresponding closed-form expressions of secrecy performance were given. In the large-scale antennas analysis, the closed-form expressions of the ergodic achievable secrecy rate and the optimal power allocation factor of instantaneous secrecy capacity for the FDJ-OAS scheme were derived. Furthermore, based on different asymptotic cases, the asymptotic analyses of secrecy outage probability for the FDJ-OAS scheme were significantly analyzed. Simulation results show that the analytical curves match well with the Monte-Carlo simulation results. It is concluded that the diversity order of the FDJ-OAS scheme is proportional to the number of antennas and antenna diversity can be achieved, which reveals the advantages of the proposed FDJ-OAS scheme.
physical layer security,full-duplex destination jamming, optimal antenna selection, ergodic achievable secrecy rate, secrecy outage probability
TN92
A
10.11959/j.issn.1000?436x.2018155
趙睿(1980?),男,江蘇揚(yáng)州人,博士,華僑大學(xué)教授,主要研究方向?yàn)闊o(wú)線通信信號(hào)處理、協(xié)作通信和物理層安全等。
譚星(1993?),男,重慶人,華僑大學(xué)碩士生,主要研究方向?yàn)槲锢韺影踩夹g(shù)、協(xié)作中繼通信技術(shù)等。
李元?。?993?),男,山東德州人,華僑大學(xué)碩士生,主要研究方向?yàn)闊o(wú)線通信信號(hào)處理、物理層安全技術(shù)等。
賀玉成(1964?),男,山西太原人,博士,華僑大學(xué)教授,主要研究方向?yàn)闊o(wú)線通信信號(hào)處理、深空通信和信道編碼等。
李春國(guó)(1983?),男,山東膠州人,博士,東南大學(xué)教授、博士生導(dǎo)師,主要研究方向?yàn)樾乱淮苿?dòng)通信技術(shù)、MIMO-OFDM技術(shù)、協(xié)作通信和水下無(wú)線通信技術(shù)等。
2018?03?22;
2018?07?15
國(guó)家自然科學(xué)基金資助項(xiàng)目(No.61401165, No.61671144);華僑大學(xué)中青年教師科研提升資助計(jì)劃(No.ZQN-PY407)
The National Natural Science Foundation of China (No.61401165, No.61671144), The Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No.ZQN-PY407)