徐思奧 胡偉 張道祥
摘 要:本文討論了一類具擴(kuò)散項(xiàng)的傳染病生態(tài)模型的空間斑圖動(dòng)力學(xué)問題。利用線性穩(wěn)定性理論確定Turing不穩(wěn)定和Hopf 分支發(fā)生的條件,得到了Turing斑圖的存在區(qū)域。通過數(shù)值模擬,得到了不同類型的Turing斑圖,比如點(diǎn)狀斑圖、條狀斑圖以及點(diǎn)條混合斑圖。結(jié)果表明疾病接觸率對(duì)空間斑圖的形成具有重要影響,這幫助我們更好的理解在真實(shí)環(huán)境中傳染病的動(dòng)力學(xué)過程。
關(guān)鍵詞:傳染病模型 負(fù)交叉擴(kuò)散 Turing斑圖
中圖分類號(hào):O175.1 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2018)04(b)-0226-03
Abstract: In this paper, we discuss the dynamics of the spatial pattern of the epidemic model with diffusion. Firstly, we determine the conditions of Turing instibility and Hopf bifurcation through the linear stability theorem. And then we obtain the region of Turing pattern. Secondly, some numerical simulations are given to certify different types of Turing patterns, such as spot, stripe and mixture of spot-stripe patterns. The obtained results show negative cross diffusion has great influence on the spatial pattern formation. It helps us better understand the dynamic processes of epidemic in real environment.
Key Words:Epidemic model;Negative cross-diffusion;Turing pattern
為了更好的反映傳染病的傳播規(guī)律, 在研究某些生物系統(tǒng)時(shí), 必須考慮傳染病模型在空間作用下的演化問題, 因此傳染病的空間斑圖需要重點(diǎn)研究。本文將探討一類具有負(fù)交叉擴(kuò)散效應(yīng)的傳染病模型的空間動(dòng)力學(xué)問題, 得到了系統(tǒng)具有點(diǎn)狀和條狀類型的Turing斑圖。
1 Turing空間的確定
2 數(shù)值模擬
3 結(jié)語
本文研究了在Neumann邊界條件下, 接觸率β對(duì)具有負(fù)交叉擴(kuò)散效應(yīng)的傳染病模型的影響; 以單位時(shí)間提供的最大醫(yī)療資源量β為參數(shù), 討論了Hopf 分支和Turing 分支, 并獲得Turing 區(qū)域, 所得結(jié)果表明:參數(shù)β能夠?qū)魅静∧P偷目臻g斑圖產(chǎn)生影響, 隨著β在臨界處的細(xì)微改變, 染病者在空間分布上發(fā)生巨大的動(dòng)力學(xué)變化。
參考文獻(xiàn)
[1] Li Jinhui,Teng Zhidong,Wang Guangqing,et al.Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment[J].Chaos,Solitons,F(xiàn)ractals,2017,99:63-71.
[2] Zheng Qianqian,Shen Jianwei.Pattern formation in the FitzHugh-Nagumo model[J].Computers & Mathematics with Applications,2015,70(5):1082-1097.
[3] 歐陽頎.非線性科學(xué)和斑圖動(dòng)力學(xué)導(dǎo)論[M].北京:北京大學(xué)出版社,2010.
[4] T.D.Frank.Formal derivation of Lotka-Volterra-Haken amplitude equations of Task-Related brain activity in multiple[J].International Journal of Bifurcation and Chaos,2016,26(10):265-274.
[5] Zhao Hongyong,Zhang Xuebing,Huang Xuanxuan.Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion[J].Elsevier Science Inc,2015,266(C):462-480.