郭睿,杜宇,熊翠玲,鄭燕珍,付中民,徐國鈞,王海朋,陳華枝,耿四海,周丁丁,石彩云,趙紅霞,陳大福
?
意大利蜜蜂幼蟲腸道發(fā)育過程中的差異表達(dá) microRNA及其調(diào)控網(wǎng)絡(luò)
郭睿1,杜宇1,熊翠玲1,鄭燕珍1,付中民1,徐國鈞1,王海朋1,陳華枝1,耿四海1,周丁丁1,石彩云1,趙紅霞2,陳大福1
(1福建農(nóng)林大學(xué)蜂學(xué)學(xué)院,福州 350002;2廣東省生物資源應(yīng)用研究所,廣州 510260)
【目的】微小RNA(microRNA,miRNA)是一類在轉(zhuǎn)錄后水平對mRNA進(jìn)行負(fù)調(diào)控的關(guān)鍵調(diào)控因子。本研究旨在通過分析意大利蜜蜂(,簡稱意蜂)幼蟲腸道發(fā)育過程中差異表達(dá)miRNA(differentially expressed miRNA,DEmiRNA)及其調(diào)控網(wǎng)絡(luò),提供miRNA的表達(dá)譜和差異表達(dá)信息,揭示DEmiRNA在幼蟲腸道發(fā)育中的作用?!痉椒ā坷胹mall RNA-seq(sRNA-seq)技術(shù)對意蜂4、5和6日齡幼蟲腸道樣品(Am4、Am5和Am6)進(jìn)行測序,將質(zhì)控后的數(shù)據(jù)與西方蜜蜂()參考基因組進(jìn)行比對,然后將比對上的序列標(biāo)簽(tags)注釋到miRBase數(shù)據(jù)庫,并利用TPM(tags per million)算法歸一化處理所得miRNA的表達(dá)量,再通過相關(guān)生物信息學(xué)軟件對miRNA進(jìn)行表達(dá)量聚類、前體二級結(jié)構(gòu)預(yù)測及差異表達(dá)分析。利用TargetFinder軟件預(yù)測DEmiRNA的靶基因,使用Blast軟件對靶基因進(jìn)行GO和KEGG數(shù)據(jù)庫注釋,進(jìn)而通過Cytoscape軟件構(gòu)建miRNA-mRNA的調(diào)控網(wǎng)絡(luò)。采用莖環(huán)實時熒光定量PCR(Stem-loop RT-qPCR)驗證測序數(shù)據(jù)的可靠性?!窘Y(jié)果】意蜂幼蟲腸道樣品的測序分別得到10 841 644、12 037 678和9 230 496條有效序列標(biāo)簽;Am4 vs Am5比較組包含16個上調(diào)和10個下調(diào)miRNA,Am5 vs Am6比較組包含5個上調(diào)和7個下調(diào)miRNA。其中,novel-m0031-3p為兩個比較組所共有,并結(jié)合5個與蛻皮激素誘導(dǎo)蛋白相關(guān)的靶基因;二者的特有DEmiRNA數(shù)分別為25和11個。Am4 vs Am5的26個DEmiRNA結(jié)合5 742個靶基因,其中2 725個靶基因可注釋到GO數(shù)據(jù)庫中的46個GO term,并主要富集在結(jié)合、細(xì)胞進(jìn)程、代謝進(jìn)程和單組織進(jìn)程等;Am5 vs Am6的12個DEmiRNA結(jié)合3 733個靶基因,且其中2 725個靶基因富集在結(jié)合、細(xì)胞進(jìn)程、單組織進(jìn)程和代謝進(jìn)程等41個GO term;此外,兩個比較組中的DEmiRNA分別有1 046和676個靶基因可注釋到116和92條KEGG代謝通路,且Am4 vs Am5比較組的DEmiRNA的靶基因富集在Wnt信號通路、Hippo信號通路、嘌呤代謝和內(nèi)吞作用等通路上的數(shù)量均高于Am5 vs Am6比較組。進(jìn)一步分析結(jié)果顯示Am4 vs Am5中的上調(diào)和下調(diào)miRNA可分別結(jié)合611和85個靶基因,其中ame-miR-6052結(jié)合的靶基因數(shù)最多,可通過結(jié)合5個靶基因,參與對細(xì)胞色素P450的調(diào)控;miR-281-x結(jié)合49個靶基因,并間接調(diào)控組氨酸代謝、TGF-信號通路以及Hippo信號通路;Am5 vs Am6中的上調(diào)和下調(diào)miRNA可分別結(jié)合43和431個靶基因,其中miR-iab-4-x結(jié)合靶基因數(shù)量最多,并廣泛參與調(diào)控背腹軸的形成、Hippo信號通路、Wnt信號通路、FoxO信號通路、Notch信號通路以及mTOR信號通路等與生長發(fā)育相關(guān)的通路。調(diào)控網(wǎng)絡(luò)分析結(jié)果表明,DEmiRNA與靶基因間形成較為復(fù)雜的調(diào)控網(wǎng)絡(luò),DEmiRNA居于調(diào)控網(wǎng)絡(luò)的中心位置,而mRNA位于調(diào)控網(wǎng)絡(luò)的外周。最后,通過莖環(huán)實時熒光定量PCR對隨機(jī)選取的3個DEmiRNA進(jìn)行驗證,結(jié)果證實了測序數(shù)據(jù)的可靠性?!窘Y(jié)論】在全基因組水平對意蜂幼蟲腸道的DEmiRNA及其靶基因進(jìn)行預(yù)測和分析,并對DEmiRNA的調(diào)控網(wǎng)絡(luò)進(jìn)行構(gòu)建及分析,發(fā)現(xiàn)意蜂幼蟲通過調(diào)節(jié)包括ame-miR-6052、miR-iab-4-x、miR-281-x和novel-m0031-3p在內(nèi)的多個miRNA的表達(dá)水平對腸道生長和發(fā)育進(jìn)行調(diào)控,研究結(jié)果不僅提供了意蜂腸道發(fā)育過程的miRNA表達(dá)譜及差異表達(dá)信息,也為闡明意蜂幼蟲腸道的發(fā)育機(jī)理打下基礎(chǔ)。
意大利蜜蜂;幼蟲腸道;發(fā)育;微小RNA;靶基因;調(diào)控網(wǎng)絡(luò)
【研究意義】微小RNA(microRNA,miRNA)是一類長度約為18—25個核苷酸的非編碼RNA(non-coding RNA,ncRNA),通過對mRNA的負(fù)調(diào)控作用而廣泛參與動物[1-2]、植物[3-4]和微生物[5-6]的各類生物學(xué)過程。意大利蜜蜂(,簡稱意蜂)是我國養(yǎng)蜂生產(chǎn)中的主要蜂種,在經(jīng)濟(jì)創(chuàng)收和生態(tài)維持等方面具有重要價值。利用small RNA-seq(sRNA-seq)技術(shù)對意蜂4、5和6日齡幼蟲腸道進(jìn)行測序,通過生物信息學(xué)分析方法對腸道發(fā)育過程中的差異表達(dá)miRNA(differentially expressed miRNA,DEmiRNA)進(jìn)行全面分析,并分別構(gòu)建上調(diào)和下調(diào)miRNA的調(diào)控網(wǎng)絡(luò),對揭示意蜂幼蟲腸道發(fā)育過程中miRNA的差異表達(dá)規(guī)律、腸道發(fā)育相關(guān)關(guān)鍵miRNA的篩選和功能研究以及闡明腸道發(fā)育的機(jī)理具有重要意義。【前人研究進(jìn)展】西方蜜蜂()基因組[7]的公布為其組學(xué)和分子生物學(xué)研究奠定了基礎(chǔ)。此后,隨著高通量測序技術(shù)、生物信息學(xué)分析方法和軟件的革新、融合及應(yīng)用,蜜蜂的轉(zhuǎn)錄組學(xué)研究取得了較大進(jìn)展[8-9]。對蜜蜂的miRNA開展了一些研究,如Ashby等[10]研究發(fā)現(xiàn),miR-184、miR-bantam和miR315參與了蜜蜂的細(xì)胞分化、組織結(jié)構(gòu)重塑以及級型分化;陳曉[11]對蜂王卵巢激活、產(chǎn)卵抑制和產(chǎn)卵恢復(fù)過程中的DEmiRNA進(jìn)行靶基因預(yù)測和分析,發(fā)現(xiàn)多個DEmiRNA與卵巢激活和產(chǎn)卵密切相關(guān);石元元[12]研究發(fā)現(xiàn),ame-bantam、ame-let-7和ame-miR-8參與了東方蜜蜂()4日齡蜂王幼蟲和工蜂幼蟲的Wnt信號通路,并與雌性蜜蜂級型分化的分子機(jī)理密切相關(guān)。此外,蜜蜂腸道不僅是食物消化、營養(yǎng)吸收和利用的主要場所,也是抵御病原入侵的重要免疫器官。前人對蜜蜂腸道的研究主要集中在腸道菌群的群落結(jié)構(gòu)和功能預(yù)測方面[13-14],但有關(guān)蜜蜂及其幼蟲腸道發(fā)育的研究極為滯后,腸道發(fā)育的分子機(jī)理仍不明確。筆者所在課題組前期已在mRNA組學(xué)水平對意蜂幼蟲腸道進(jìn)行了全面的轉(zhuǎn)錄組學(xué)研究,通過差異表達(dá)基因(DEG)和趨勢分析揭示了意蜂幼蟲腸道發(fā)育過程中的基因表達(dá)譜和差異表達(dá)規(guī)律[15],意蜂幼蟲腸道響應(yīng)球囊菌()脅迫的免疫應(yīng)答[16],以及意蜂幼蟲與球囊菌之間的互作[17]?!颈狙芯壳腥朦c】目前為止,意蜂幼蟲腸道發(fā)育過程中的miRNA表達(dá)譜仍然缺失,相關(guān)miRNA在幼蟲腸道發(fā)育過程中的作用還不明確?!緮M解決的關(guān)鍵問題】結(jié)合sRNA-seq技術(shù)對意蜂4、5和6日齡幼蟲腸道樣品進(jìn)行測序和分析,通過DEmiRNA及其靶基因的預(yù)測和分析、調(diào)控網(wǎng)絡(luò)的構(gòu)建和分析,提供意蜂幼蟲腸道發(fā)育過程中的miRNA表達(dá)譜和差異表達(dá)信息,揭示DEmiRNA在腸道發(fā)育中的作用。
試驗于2017年9月至2018年5月在福建農(nóng)林大學(xué)蜂學(xué)學(xué)院蜜蜂保護(hù)實驗室進(jìn)行。
供試意蜂幼蟲取自福建農(nóng)林大學(xué)蜂學(xué)學(xué)院教學(xué)蜂場。
按照王倩等[18]的方法配制幼蟲飼料,從健康意蜂蜂群中提取巢脾,將2日齡幼蟲移至已預(yù)置50 μL飼料的24孔細(xì)胞培養(yǎng)板中,在35℃,相對濕度(RH)為90%的培養(yǎng)箱中飼養(yǎng),每隔24 h更換飼料。分別剖取4、5和6日齡意蜂幼蟲腸道(分別記為Am4、Am5和Am6),裝入EP管后放入液氮速凍,隨后保存在-80℃的超低溫冰箱。進(jìn)行3次生物學(xué)重復(fù)。Am4的3個生物學(xué)重復(fù)分別為Am4-1、Am4-2和Am4-3,Am5的3個生物學(xué)重復(fù)分別為Am5-1、Am5-2和Am5-3,Am6的3個生物學(xué)重復(fù)分別為Am6-1、Am6-2和Am6-3。上述9個腸道樣品委托廣州基迪奧生物科技有限公司對進(jìn)行單端測序,測序平臺為Illumina MiSeq。原始數(shù)據(jù)已上傳NCBI SRA數(shù)據(jù)庫,BioProject號:PRJNA408312。
對原始下機(jī)數(shù)據(jù),利用Perl腳本剔除銜接子(adaptor)、未知堿基N和低質(zhì)量的reads,從而得到高質(zhì)量的序列(clean reads),保證后續(xù)數(shù)據(jù)分析的準(zhǔn)確性。通過Bowite軟件將各樣品的tags序列比對到GenBank及Rfam(11.0)數(shù)據(jù)庫,過濾核糖體RNA(rRNA)、胞質(zhì)小RNA(scRNA)以及核內(nèi)小RNA(snoRNA)等ncRNA和重復(fù)序列,得到miRNA的非注釋標(biāo)簽序列(unannotated tags)。繼而利用Bowit 軟件將非注釋標(biāo)簽序列與西方蜜蜂的參考基因組(assembly Amel 4.5)的序列進(jìn)行比對,得到相關(guān)tags在參考基因組上的位置信息,即為mapped tags。
利用miRDeep2軟件[19]將mapped tags與miRBase數(shù)據(jù)庫中已知miRNA前體序列進(jìn)行比對,從而鑒定已知miRNA的表達(dá),同時得到可能的前體序列。對各樣本中miRNA進(jìn)行表達(dá)量的統(tǒng)計,并通過TPM(tags per million)算法公式(TPM=T×106/N,T表示miRNA的tags,N表示總miRNA的tags)對全部miRNA的表達(dá)量進(jìn)行歸一化處理。利用R軟件計算各樣品之間的相關(guān)性系數(shù)。DEmiRNA(Am4 vs Am5、Am5 vs Am6和Am4 vs Am6)的篩選標(biāo)準(zhǔn)為-value≤0.05且|log2Fold change|≥1。
根據(jù)DEmiRNA與對應(yīng)物種的基因序列信息,利用TargetFinder軟件[20]進(jìn)行靶基因預(yù)測,并利用Blast軟件將預(yù)測靶基因序列與GO(Gene Ontology)、KEGG數(shù)據(jù)庫比對,獲得靶基因的注釋信息。利用RNAhybrid、TargetScan和Miranda軟件預(yù)測DEmiRNA結(jié)合的靶基因,根據(jù)上述靶向結(jié)合關(guān)系構(gòu)建miRNA-mRNA的調(diào)控網(wǎng)絡(luò)并通過Cytoscape軟件[21]將其可視化。
為了驗證sRNA-seq數(shù)據(jù)的可靠性,隨機(jī)選取3個DEmiRNA(miR-7964-y、miR-8516-x和miR-3747-x)進(jìn)行Stem-loop RT-qPCR驗證。根據(jù)所選DEmiRNA的序列,參照Chen等[22]的方法,利用DNAMAN軟件(Lynnon Biosoft公司,美國)設(shè)計特異性的Stem-loop引物、上游引物和下游引物,委托上海生工生物工程有限公司進(jìn)行引物合成。選擇snRNA U6作為內(nèi)參。利用RNA抽提試劑盒(Axygen公司,美國)分別提取Am4、Am5和Am6的總RNA,利用Stem-loop引物進(jìn)行反轉(zhuǎn)錄得到相應(yīng)的cDNA,作為模板進(jìn)行qPCR。反應(yīng)體系(20 μL)中含有SYBR Green Dye 10 μL,上下游引物各1 μL,cDNA模板DNA 1 μL,Rox 0.44 μL,DEPC水補至20 μL。在ABI 7500熒光定量PCR儀(ABI公司,美國)中進(jìn)行反應(yīng),反應(yīng)條件:95℃預(yù)變性1 min,95℃變性15 s,48℃延伸30 s,共40個循環(huán),最后72℃延伸45 s。所選miRNA的相對表達(dá)量采用2-△△Ct法計算。每個反應(yīng)進(jìn)行3個生物學(xué)重復(fù)和3次平行重復(fù)。
本研究中,3個幼蟲腸道樣品的sRNA-seq分別產(chǎn)生13 186 921、14 255 967和10 921 897條clean reads,經(jīng)嚴(yán)格過濾后得到的clean tags數(shù)分別為10 841 644(82.22%)、12 037 678(84.44%)和9 230 496(84.51%)條(表1)。Am4、Am5和Am6組內(nèi)各生物學(xué)重復(fù)之間的Pearson相關(guān)系數(shù)均在0.9734以上,說明各樣品的重復(fù)性較好(圖1)。上述結(jié)果說明本研究的測序數(shù)據(jù)質(zhì)量良好,可用于進(jìn)一步分析。
表1 sRNA-seq數(shù)據(jù)統(tǒng)計
Am4 vs Am5比較組中有26個miRNA差異表達(dá),包括16個上調(diào)miRNA和10個下調(diào)miRNA。Am5 vs Am6 比較組共有12個DEmiRNA,包括5個上調(diào)miRNA和7個下調(diào)miRNA。Am 4 vs Am6比較組中有41個miRNA差異表達(dá),包括15個上調(diào)miRNA和26個下調(diào)miRNA。分別對Am4 vs Am5和Am5 vs Am6的DEmiRNA進(jìn)行表達(dá)量聚類分析,結(jié)果顯示2個比較組中DEmiRNA的變化倍數(shù)差異明顯,多數(shù)DEmiRNA的差異表達(dá)幅度較小(圖2-A、2-B)。進(jìn)一步分析發(fā)現(xiàn),Am4 vs Am5和Am5 vs Am6中DEmiRNA分別包含3個和2個novel miRNA,其中novel-m0031-3p為2個比較組所共有。利用miRDeep2軟件對novel miRNA的前體二級結(jié)構(gòu)進(jìn)行預(yù)測,結(jié)果顯示它們均有標(biāo)志性的莖環(huán)結(jié)構(gòu)(圖2-C—2-F)。
利用TargetFinder軟件對意蜂幼蟲腸道的DEmiRNA進(jìn)行靶基因預(yù)測,Am4 vs Am5、Am5 vs Am6的DEmiRNA可分別預(yù)測出5 742和3 733個靶基因。對上述靶基因進(jìn)行GO數(shù)據(jù)庫注釋,結(jié)果顯示Am4 vs Am5的DEmiRNA的2 725個靶基因共涉及46個GO term,富集基因數(shù)最多的是結(jié)合(1 612 gene)、細(xì)胞進(jìn)程(1 537 gene)、代謝進(jìn)程(1 232 gene)、單組織進(jìn)程(1 197 gene)、催化活性(1 020 gene)、細(xì)胞膜(761 gene)、細(xì)胞(757 gene)、細(xì)胞組件(757 gene)、細(xì)胞膜組件(745 gene)、細(xì)胞器(578 gene)等(圖3);Am5 vs Am6的DEmiRNA的1 785個靶基因可注釋到41個GO term,富集基因數(shù)最多的是結(jié)合(1 068 gene)、細(xì)胞進(jìn)程(1 026 gene)、單組織進(jìn)程(847 gene)、代謝進(jìn)程(799 gene)、催化活性(591 gene)、細(xì)胞膜(533 gene)、細(xì)胞膜組件(529 gene)、細(xì)胞(448 gene)、細(xì)胞組件(448 gene)、生物學(xué)調(diào)控(348 gene)等(圖3)。說明隨著發(fā)育時間的延長,意蜂幼蟲腸道的DEmiRNA數(shù)、靶基因數(shù)及其涉及的GO term數(shù)逐漸減少;DEmiRNA廣泛參與意蜂幼蟲腸道的新陳代謝、細(xì)胞生命活動及免疫防御。
圖1 各意蜂幼蟲腸道樣品的不同生物學(xué)重復(fù)間的Pearson相關(guān)性
進(jìn)一步對DEmiRNA的靶基因進(jìn)行KEGG代謝通路(pathway)富集分析,結(jié)果顯示Am4 vs Am5中的1 046個DEmiRNA的靶基因可注釋到116條pathway,其中富集基因數(shù)最多的是Wnt信號通路(140 gene)、嘌呤代謝(87 gene)、Hippo信號通路(80 gene)、內(nèi)吞作用(64 gene)、光傳導(dǎo)(60 gene)、神經(jīng)活性配體-受體相互作用(57 gene)、FoxO信號通路(43 gene)、內(nèi)質(zhì)網(wǎng)中蛋白質(zhì)的加工(41 gene)、磷脂酰肌醇信號系統(tǒng)(38 gene)、泛素介導(dǎo)的蛋白水解(36 gene)等(圖4-A),說明相應(yīng)的miRNA參與到意蜂4和5日齡幼蟲腸道發(fā)育過程中的新陳代謝、蛋白質(zhì)合成、免疫防御以及相關(guān)信號通路的調(diào)控。
Am5 vs Am6中的676個DEmiRNA的靶基注釋到92條pathway,并主要富集在Wnt信號通路(109 gene)、光傳導(dǎo)(69 gene)、Hippo信號通路(66 gene)、神經(jīng)活性配體-受體相互作用(57 gene)、嘌呤代謝(42 gene)、內(nèi)吞作用(38 gene)、背腹軸形成(30 gene)、mRNA監(jiān)視(28 gene)、Hedgehog信號通路、晝夜節(jié)律(24 gene)等(圖4-B),說明相應(yīng)的miRNA同樣廣泛參與了意蜂幼蟲5和6日齡腸道的生長發(fā)育過程中各類新陳代謝以及信號通路的調(diào)控過程。
利用軟件預(yù)測DEmiRNA結(jié)合的靶基因并通過Cytoscape軟件進(jìn)行可視化,結(jié)果顯示Am4 vs Am5中上調(diào)miRNA可結(jié)合611個靶基因,下調(diào)miRNA可結(jié)合85個靶基因,上調(diào)(或下調(diào))miRNA與靶基因形成較為復(fù)雜的調(diào)控網(wǎng)絡(luò),DEmiRNA居于調(diào)控網(wǎng)絡(luò)的中心位置,而靶基因處于調(diào)控網(wǎng)絡(luò)的外周;其中,所有DEmiRNA均可連接2個靶基因以上,ame-miR- 6052結(jié)合的靶基因數(shù)多達(dá)204個(圖5-A、5-B)。Am5 vs Am6中上調(diào)和下調(diào)miRNA可分別結(jié)合43和431個靶基因,上調(diào)(或下調(diào))miRNA同樣與靶基因形成復(fù)雜的調(diào)控網(wǎng)絡(luò),所有DEmiRNA均可連接3個以上的靶基因,其中miR-iab-4-x結(jié)合的靶基因數(shù)最多,達(dá)到125個(圖5-C、5-D)。
A:Am4 vs Am5中DEmiRNA的表達(dá)量聚類Expression clustering of DEmiRNA in Am4 vs Am5;B:Am5 vs Am6中DEmiRNA的表達(dá)量聚類Expression clustering of DEmiRNA in Am5 vs Am6;C:novel-m0004-3p前體的二級結(jié)構(gòu)Secondary structure of precursor of novel-m0004-3p;D:novel-m0017-3p前體的二級結(jié)構(gòu)Secondary structure of precursor of novel-m0017-3p;E:novel-m0031-3p前體的二級結(jié)構(gòu)Secondary structure of precursor of novel-m0031-3p;F:novel-m0037-5p前體的二級結(jié)構(gòu)Secondary structure of precursor of novel-m0037-5p。黃色區(qū)域為novel miRNA的成熟序列Yellow regions indicate mature sequences of novel miRNA
圖3 意蜂幼蟲腸道DEmiRNA的靶基因的GO數(shù)據(jù)庫注釋
隨機(jī)挑取3個DEmiRNA(miR-7964-y、miR-8516-x和miR-3747-x)進(jìn)行RT-qPCR驗證,結(jié)果顯示它們的表達(dá)水平的變化趨勢和測序數(shù)據(jù)中相應(yīng)DEmiRNA的表達(dá)水平的變化趨勢一致(圖6),說明本研究中的測序數(shù)據(jù)真實可靠。
A:Am4 vs Am5中的DEmiRNA的靶基因Target genes of DEmiRNA in Am4 vs Am5;B:Am5 vs Am6中的DEmiRNA的靶基因Target genes of DEmiRNA in Am5 vs Am6
A:Am4 vs Am5中上調(diào)miRNA的miRNA-mRNA網(wǎng)絡(luò)miRNA-mRNA networks of up-regulated miRNA in Am4 vs Am5;B:Am4 vs Am5中下調(diào)miRNA的miRNA-mRNA網(wǎng)絡(luò)miRNA-mRNA networks of down-regulated miRNA in Am4 vs Am5;C:Am5 vs Am6中上調(diào)miRNA的miRNA-mRNA網(wǎng)絡(luò)miRNA-mRNA networks of up-regulated miRNA in Am5 vs Am6;D:Am5 vs Am6中下調(diào)miRNA的miRNA-mRNA網(wǎng)絡(luò)miRNA-mRNA networks of down-regulated miRNA in Am5 vs Am6
A:miR-7964-y;B:miR-8516-x;C:miR-3747-x
MiRNA作為一種重要的基因表達(dá)調(diào)控因子,在昆蟲的各種生物學(xué)進(jìn)程發(fā)揮關(guān)鍵作用[23]。家蠶()和小菜蛾()不同發(fā)育階段和不同組織中的miRNA表達(dá)譜研究揭示了miRNA在其生長發(fā)育[24]、變態(tài)[25]及行為反應(yīng)[26]等過程中的重要調(diào)控功能。相比于果蠅、家蠶等模式昆蟲,蜜蜂的miRNA研究相對滯后。陳璇等[27-28]曾對三型蜂不同發(fā)育階段的混合小RNA文庫進(jìn)行了測序,發(fā)現(xiàn)了267個novel miRNA,并進(jìn)一步對蜂王和工蜂4和5日齡幼蟲的DEmiRNA及其靶基因進(jìn)行了分析,為蜜蜂發(fā)育和級型分化關(guān)鍵時期的miRNA調(diào)控網(wǎng)絡(luò)研究打下了基礎(chǔ)。目前,有關(guān)蜜蜂幼蟲腸道發(fā)育過程miRNA表達(dá)譜的研究十分滯后,miRNA在腸道發(fā)育中的調(diào)控機(jī)理仍不明確。本研究利用sRNA-seq技術(shù)對意蜂4、5和6日齡幼蟲腸道進(jìn)行測序,通過生物信息學(xué)方法對鄰近日齡幼蟲腸道的miRNA進(jìn)行差異表達(dá)分析,分別預(yù)測出26和12個DEmiRNA,說明DEmiRNA的數(shù)量在意蜂幼蟲腸道發(fā)育過程中有逐漸減少的趨勢;進(jìn)一步分析發(fā)現(xiàn)Am4 vs Am5和Am5 vs Am6中的特有DEmiRNA數(shù)分別為25(miR-342-y、ame-miR-3759和miR-4331-y等)和11個(miR-4955-x、miR-46-y和ame-miR-3478等),二者包含1個共有DEmiRNA(novel-m0031-3p),且novel-m0031-3p的表達(dá)水平隨日齡的增加呈逐漸下調(diào)趨勢,推測其通過下調(diào)表達(dá)量減少對靶基因的抑制作用,從而在意蜂幼蟲腸道的不同發(fā)育階段均發(fā)揮基礎(chǔ)性的調(diào)控作用,而特有DEmiRNA在幼蟲腸道的不同發(fā)育階段發(fā)揮特殊的調(diào)控功能。
蜜蜂幼蟲腸道內(nèi)存在簡單的共生菌,為盡量減小意蜂幼蟲腸道內(nèi)共生菌對測序數(shù)據(jù)的影響,本研究一方面在人工飼喂過程中盡量減少環(huán)境微生物的帶入,例如對所用器具進(jìn)行高壓蒸汽滅菌,用75%酒精對人工氣候箱進(jìn)行擦洗消毒,更換飼料時在酒精燈旁操作等;另一方面通過對原始數(shù)據(jù)進(jìn)行嚴(yán)格的過濾和質(zhì)控、比對西方蜜蜂基因組以消除腸道共生菌數(shù)據(jù)的影響,昆蟲和微生物的物種親緣關(guān)系較遠(yuǎn),二者的基因保守性很低,因而比對西方蜜蜂基因組的數(shù)據(jù)理論上應(yīng)為意蜂幼蟲腸道本身的數(shù)據(jù)。
蜜蜂腸道不僅是食物消化、營養(yǎng)吸收和利用的主要場所,也是抵御病原入侵的重要免疫器官。本研究發(fā)現(xiàn),Am5 vs Am6中的12個DEmiRNA的靶基因富集在了各類能量和物質(zhì)代謝通路,如氮代謝(1 gene)、氨基酸代謝(32 gene)、碳水化合物代謝(69 gene)和脂質(zhì)代謝(74 gene)等,表明相應(yīng)的DEmiRNA參與了意蜂幼蟲腸道能量和物質(zhì)代謝的調(diào)控;還發(fā)現(xiàn)部分靶基因注釋到與生長、發(fā)育相關(guān)的代謝通路和信號通路,包括背腹軸形成(30 gene)、Hippo信號通路(66 gene)、Wnt信號通路(109 gene)等,表明相應(yīng)的DEmiRNA在生長和發(fā)育過程中發(fā)揮重要的調(diào)控作用。此外,分別有38和13個靶基因注釋到內(nèi)吞作用和泛素介導(dǎo)的蛋白質(zhì)水解等細(xì)胞免疫通路,分別有6和4個靶基因注釋到MAPK和Jak-STAT等體液免疫通路,表明相應(yīng)的DEmiRNA參與了意蜂幼蟲腸道的免疫防御過程。本研究中,Am4 vs Am5中的26個DEmiRNA的靶基因同樣也廣泛參與生長發(fā)育、新陳代謝以及免疫防御相關(guān)的代謝通路。Am4 vs Am5中的DEmiRNA及其靶基因數(shù)均高于Am5 vs Am6,意蜂5日齡幼蟲體積近乎4日齡幼蟲的2倍,但6日齡幼蟲體積稍大于5日齡幼蟲,推測意蜂4—5日齡幼蟲的發(fā)育時期需要更多的DEmiRNA參與到生長發(fā)育、新陳代謝等方面的調(diào)控。
蛻皮激素(ecdysteroid,Ec)是昆蟲體內(nèi)的重要激素之一,參與昆蟲生長、變態(tài)和生殖的整個生命活動,其滴度的階段性增加是昆蟲生長和發(fā)育的必要條件[29]。novel-m0031-3p在Am4 vs Am5和Am5 vs Am6中均有表達(dá),且其結(jié)合的5個靶基因(XM_006564318.2、XM_006564319.2、XM_006564320.2、XM_006564321.2和XM_016914663.1)均涉及Ec誘導(dǎo)蛋白的調(diào)控,有研究表明蛻皮觸發(fā)激素基因可在家蠶幼蟲蛻皮和變態(tài)發(fā)育過程中起到關(guān)鍵調(diào)控作用[30],因此推測novel-m0031-3p通過調(diào)控Ec滴度使其達(dá)到動態(tài)平衡,從而保證意蜂幼蟲腸道的正常發(fā)育。miR-281是一種高度保守的miRNA,在家蠶幼蟲階段中呈高量表達(dá),與神經(jīng)發(fā)育、組織生長密切相關(guān)[25]。周艷河[31]研究發(fā)現(xiàn),受到高劑量登革病毒侵染的白紋伊蚊()中腸內(nèi)miR-281會靶向調(diào)控自身基因從而影響病毒的復(fù)制水平;熊慧萍[32]對位于可變內(nèi)含子區(qū)的黑腹果蠅()的miR-281-1/2基因轉(zhuǎn)錄和啟動子進(jìn)行分析,發(fā)現(xiàn)miR-281只在3齡幼蟲、蛹和成蟲期表達(dá),且在不同發(fā)育階段miR-281轉(zhuǎn)錄起始位點的轉(zhuǎn)錄效率存在差異。本研究中,miR-281-x是Am4 vs Am5中的特有DEmiRNA,其結(jié)合的49個靶基因涉及TGF-信號通路(8 gene)、Hippo信號通路(7 gene)、背腹軸的形成(3 gene)和組氨酸代謝(3 gene)等代謝通路,推測其參與對意蜂幼蟲腸道早期生長和發(fā)育的調(diào)控,但miR-281-x的時空表達(dá)譜需進(jìn)一步研究。miR-iab-4可通過調(diào)控Hox編碼蛋白的基因表達(dá)間接影響黑腹果蠅的翅形成過程,miR-iab-4的突變會影響果蠅幼蟲的自身調(diào)節(jié)能力[33]。本研究中,miR-iab-4-x為Am5 vs Am6中的特有DEmiRNA,其結(jié)合的125個靶基因涉及Hippo信號通路(14 gene)、Wnt信號通路(9 gene)、FoxO信號通路(8 gene)、Notch信號通路(7 gene)、mTOR信號通路(6 gene)和背腹軸的形成(5 gene)等與生長發(fā)育相關(guān)的代謝通路,推測其參與意蜂幼蟲腸道發(fā)育后期的調(diào)控,miR-iab-4-x的下調(diào)表達(dá)可能對意蜂幼蟲腸道發(fā)育過程發(fā)揮重要作用。
一個miRNA可以同時靶向調(diào)控多個mRNA,反之亦然。為進(jìn)一步揭示DEmiRNA的作用,本研究通過序列匹配關(guān)系預(yù)測DEmiRNA結(jié)合的靶基因,并構(gòu)建了二者的調(diào)控網(wǎng)絡(luò)(圖5),發(fā)現(xiàn)部分上調(diào)和下調(diào)的miRNA位于調(diào)控網(wǎng)絡(luò)的中心位置且結(jié)合較多的mRNA,如ame-miR-6052與miR-iab-4-x可分別結(jié)合204和125個靶基因,具有很高的連通性,表明二者可能在意蜂幼蟲腸道的生長和發(fā)育過程中發(fā)揮關(guān)鍵的調(diào)控功能。細(xì)胞色素P450作為一種重要的解毒酶,廣泛存在于昆蟲的脂肪體、馬氏管和中腸內(nèi),且在中腸的含量最高;其也可參與內(nèi)源性物質(zhì)代謝,在生物體內(nèi)發(fā)揮重要的作用[34-35]。本研究發(fā)現(xiàn)Am4 vs Am5中特有的ame-miR-6052表達(dá)量上調(diào),其結(jié)合的5個靶基因(XM_006559340.2、XM_006559341.1、XM_016912202.1、XM_016916903.1和XM_623618.5)與細(xì)胞色素P450的調(diào)節(jié)有關(guān),推測ame-miR-6052可參與意蜂幼蟲腸道對異源物質(zhì)的降解、新陳代謝過程的調(diào)控,下一步可通過合成miRNA mimic、miRNA inhibitor對其進(jìn)行過表達(dá)和敲減,從而深入探究其功能。
結(jié)合高通量測序技術(shù)和生物信息學(xué)分析方法對意蜂幼蟲腸道的DEmiRNA進(jìn)行了全基因組水平的預(yù)測和分析,并對DEmiRNA-mRNA調(diào)控網(wǎng)絡(luò)進(jìn)行構(gòu)建及分析,發(fā)現(xiàn)意蜂幼蟲通過調(diào)節(jié)包括ame-miR-6052、miR-iab-4-x、miR-281-x和novel-m0031-3p在內(nèi)的多個miRNA的表達(dá)水平對腸道生長和發(fā)育進(jìn)行調(diào)控,研究結(jié)果不僅提供了意蜂腸道發(fā)育過程的miRNA表達(dá)譜及差異表達(dá)信息,也為闡明意蜂幼蟲腸道的發(fā)育機(jī)理打下了基礎(chǔ)。
[1] Azzam G, Smibert P, Lai E C, LIU J L.Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division., 2012, 365(2): 384-394.
[2] Asgari S. MicroRNA functions in insects., 2013, 43(4): 388-397.
[3] Xu L, Hu Y G, Cao Y, LI J R, MA L G, LI Y, QI Y J. An expression atlas of miRNAs in., 2018, 61(2): 178-189.
[4] Liu M, Yu H, Zhao G, HUANG Q, LU Y, OUYANG B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing., 2017, 18(1): 481.
[5] Yu Z Q, Gao X L, Liu C N, LV X P, ZHENG S M. Analysis of microRNA expression profile in specific pathogen-free chickens in response to reticuloendotheliosis virus infection., 2017, 101(7): 2767-2777.
[6] Ojha C R, Rodriguez M, Dever S M, MUKHOPADHYAY R, EL-HAGE N. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections., 2016, 23(1): 74.
[7] The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee., 2006, 443(7114): 931-949.
[8] 劉芳. 意蜂哺育蜂與采集蜂頭部mRNAs與miRNAs表達(dá)譜Solexa測序比較分析及其調(diào)控網(wǎng)絡(luò)研究[D]. 杭州: 浙江大學(xué), 2012.
LIU F. Integrating of Solexa high-abundance mRNAs and miRNAs in: comparison between nurses and foragers to identify regulatory network[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[9] 郭昱, 蘇松坤, 陳盛祿, 張少吾, 陳潤生. LncRNA在蜜蜂級型分化中的功能研究. 生物化學(xué)與生物物理進(jìn)展, 2015, 42(8): 750-757.
GUO Y, SU S K, CHEN S L, ZHANG S W, CHEN R S. The function of lncRNAs in the caste determination of the honeybee., 2015, 42(8): 750-757. (in Chinese)
[10] Ashby R, FORêT S, Searle I, MALESZKA R. MicroRNAs in honey bee caste determination., 2016, 6: 18794.
[11] 陳曉. 蜜蜂卵巢激活和產(chǎn)卵過程差異表達(dá)的編碼RNA與非編碼RNA的篩選和鑒定[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2017.
CHEN X. Identification of differentially expressed coding and noncoding RNAs during ovary activation and oviposition in honey bees[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[12] 石元元. 東方蜜蜂遺傳圖譜構(gòu)建以及雌性蜜蜂發(fā)育分子機(jī)理[D]. 南昌: 江西農(nóng)業(yè)大學(xué), 2014.
SHI Y Y. Construction of genetic linkage map inand molecular mechanism of development in females honey bee[D]. Nanchang: Jiangxi Agricultural University, 2014. (in Chinese)
[13] 常偉. 蜜蜂消化道共生細(xì)菌及其多態(tài)性研究初探[D]. 福州: 福建農(nóng)林大學(xué), 2010.
CHANG W. Diversity of symbiotic bacteria in honeybee alimentary tract[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese)
[14] 賈慧茹. 亞致死劑量吡蟲啉對意大利蜜蜂中腸菌群的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2015.
JIA H R. Effect of the sublethal doses of imidacloprid on the bacterial diversity in the midgut of[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[15] 郭睿, 解彥玲, 熊翠玲, 尹偉軒, 鄭燕珍, 付中民, 陳大福. 意大利蜜蜂4、5和6日齡幼蟲腸道發(fā)育過程中差異表達(dá)基因的趨勢分析. 上海交通大學(xué)學(xué)報(農(nóng)業(yè)科學(xué)版), 2018, 36(4): 14-21, 29.
GUO R, XIE Y L, XIONG C L, YI W X, ZHENG Y Z, FU Z M, CHEN D F. Trend analysis for differentially expressed genes in developmental process of 4-, 5- and 6-day-old larval guts of, 2018, 36(4): 14-21, 29. (in Chinese)
[16] Chen D, Guo R, Xu X, XIONG C l, LIANG Q, ZHENG Y z, LUO Q, ZHANG Z, HUANG Z J, KUMAR D, XI W J, ZOU X, LIU M. Uncovering the immune responses of, larval gut to, infection utilizing transcriptome sequencing., 2017, 621: 40-50.
[17] 陳大福, 郭睿, 熊翠玲, 梁勤, 鄭燕珍, 徐細(xì)建, 黃枳腱, 張曌楠, 張璐, 李汶東, 童新宇, 席偉軍. 脅迫意大利蜜蜂幼蟲腸道的球囊菌的轉(zhuǎn)錄組分析. 昆蟲學(xué)報, 2017, 60(4): 401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis ofstressing larval gut of(Hyemenoptera: Apidae)., 2017, 60(4): 401-411. (in Chinese)
[18] 王倩, 孫亮先, 肖培新, 劉鋒, 康明江, 胥保華. 室內(nèi)人工培育中華蜜蜂幼蟲技術(shù)研究. 山東農(nóng)業(yè)科學(xué), 2009(11): 113-116.
WANG Q, SUN L X, XIAO P X, LIU F, KANG M J, XU B H. Study on technology for indoor artificial feeding oflarvae., 2009(11): 113-116. (in Chinese)
[19] Friedl?nder M R, Mackowiak S D, Li N, CHEN W, RAJEWSKY N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades., 2012, 40(1): 37-52.
[20] Allen E, Xie Z, Gustafson A M, CARRINGTON J C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants., 2005, 121(2): 207-221.
[21] Smoot M E, Ono K, Ruscheinski J, WANG P L, IDEKER T. Cytoscape 2.8: new features for data integration and network visualization., 2011, 27(3): 431-432.
[22] Chen C, Ridzon D A, Broomer A J, ZHOU Z, LEE D H, NGUYEN J T, BARBISIN M, XU N L, MAHUVAKAR V R, ANDERSEN M R, LAO K Q, LIVAK K J, GUEGLER K J. Real-time quantification of microRNAs by stem-loop RT-PCR., 2005, 33(20): e179.
[23] Lucas K J, Zhao B, Liu S, RAIKHEL A S. Regulation of physiological processes by microRNAs in insects., 2015, 11: 1-7.
[24] Zhang Y, Zhou X, Ge X, LI M, JIA S, YANG X, KAN Y, MIAO X, ZHAO G, LI F, HUANG Y. Insect-specific microRNA involved in the development of the silkworm., 2009, 4(3): e4677.
[25] Liu S, Gao S, Zhang D, YIN J, XIANG Z, XIA Q. MicroRNAs show diverse and dynamic expression patterns in multiple tissues of., 2010, 11: 85.
[26] Liang P, Feng B, Zhou X G, GAO X W. Identification and developmental profiling of microRNAs in diamondback moth,(L.)., 2013, 8(11): e78787.
[27] 陳璇, 俞曉敏, 鄭火青, 蔡亦梅, 胡福良. 西方蜜蜂(L.) sRNA的富集與文庫檢測. 中國農(nóng)業(yè)科學(xué), 2009, 42(8): 2943-2948.
CHEN X, YU X M, ZHENG H Q, CAI Y M, HU F L. Separation and enrichment of sRNAs from honeybee (L.) and its quality detection by library construction., 2009, 42(8): 2943-2948. (in Chinese)
[28] 陳璇. 蜜蜂() microRNA的全基因組挖掘及在雌性蜜蜂級型分化關(guān)鍵時期轉(zhuǎn)錄組水平調(diào)控作用[D]. 杭州: 浙江大學(xué), 2012.
CHEN X. Genome-wide identification of microRNAs and their regulation of transcriptome on female caste determination of honey bee ()[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[29] 汝玉濤, 王勇, 周敬林, 王德意, 馬月月, 姜義仁, 高清, 秦利. 蛻皮激素受體和超氣門蛋白基因在柞蠶發(fā)育過程及激素誘導(dǎo)后的表達(dá)模式. 蠶業(yè)科學(xué), 2017(4): 594-602.
RU Y T, WANG Y, ZHOU J L, WANG D Y, MA Y Y, JIANG Y R, GAO Q, QIN L. The expression patterns of ecdysone receptor and ultraspiracle genes induring development and hormone-induced process., 2017(4): 594-602. (in Chinese)
[30] 舒旭. 家蠶蛻皮觸發(fā)激素及其受體基因的克隆和表達(dá)分析[D]. 重慶: 西南大學(xué), 2009.
SHU X. Cloning and expression analysis of genes encoding ecdysis triggering hormone and its receptor in the silkworm,[D]. Chongqing: Southwest University, 2009. (in Chinese)
[31] 周艷河. 白紋伊蚊中腸特異性高表達(dá)miRNA-miR-281對登革病毒復(fù)制的調(diào)節(jié)作用[D]. 廣州: 南方醫(yī)科大學(xué), 2014.
ZHOU Y H. Dengue virus replication is regulated by miR-281: an abundant midgut-specific miRNA of vector mosquito[D]. Guangzhou: Southern Medical University, 2014. (in Chinese)
[32] 熊慧萍. 位于可變內(nèi)含子區(qū)的果蠅microRNA-281-1/2基因轉(zhuǎn)錄和啟動子分析[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2008.
XIONG H P. Transcription and promoter analysis ofintronic microRNA-281-1/2 located in alternative spliced region[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)
[33] Ronshaugen M, Biemar F, Piel J, LEVINE M, LAI E C. ThemicroRNA iab-4 causes a dominant homeotic transformation of halteres to wings., 2005, 19(24): 2947-2952.
[34] TAMáSI V, Monostory K, Prough R A, Falus A. Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s., 2011, 68(7): 1131-1146.
[35] 黃獻(xiàn)彬. 小菜蛾解毒代謝相關(guān)miRNA鑒定及表達(dá)分析[D]. 福州: 福建農(nóng)林大學(xué), 2016.
HUANG X B. Identification and analysis of miRNAs involved in detoxification in the diamondback moth,[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
Differentially expressed microRNA and their regulation networks during the developmental process oflarval gut
Guo Rui1, Du Yu1, Xiong CuiLing1, Zheng YanZhen1, Fu ZhongMin1, Xu GuoJun1, Wang HaiPeng1, Chen HuaZhi1, Geng SiHai1, Zhou DingDing1, Shi CaiYun1, Zhao HongXia2, Chen DaFu1
(1College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002;2Guangdong Institute of Applied Biological Resources, Guangzhou 510260)
【Objective】MicroRNA (miRNA) is a kind of key regulator for negative regulation of mRNA at post-transcriptional level. The objective of this study is to provide miRNA expression patterns and differential expression information, illuminate the function of differentially expressed miRNA (DEmiRNA) in the development of larval gut by comprehensively investigating the DEmiRNAs and their regulation networks during the developmental process oflarval gut.【Method】Deep sequencing of the 4-, 5- and 6-day-old larval guts ofwas conducted using small RNA-seq (sRNA-seq) technology, followed by mapping of the data after quality-control with the reference genome of,and the mapped tags were then compared to miRBase database. The miRNA expression level was normalized by TPM algorithm, and the expression clustering, prediction of secondary structure of precursor and differential expression analysis were performed using related bioinformatic softwares. TargetFinder software was used to predict target gene of DEmiRNA, which was annotated to GO and KEGG databases using Blast, furthermore, miRNA-mRNA regulation networks were constructed using Cytoscape software. Stem-loop RT-qPCR was used to verify the sequencing data in this study.【Result】High-throughput sequencing of larval gut samples produced 10 841 644, 12 037 678 and 9 230 496 clean tags, respectively. In Am4 vs Am5 comparison group, there were16 up-regulated and 10 down-regulated miRNAs, while Am5 vs Am6 comparison groupincluded 5 up-regulated and 7 down-regulated miRNAs, respectively. Among them, novel-m0031-3p was shared by both Am4 vs Am5 and Am5 vs Am6, binding 5 target genes associated with ecdysone inducible protein, 25 and 11 DEmiRNAs were specific for the above-mentioned two comparison groups.DEmiRNA in Am4 vs Am5 could bind 5 742 target genes, among them 2 725 targets could be annotated to 46 GO terms in GO database, and the largest ones were binding, cellular process, metabolic process and single-organism process. similarly, 12 DEmiRNAs in Am5 vs Am6 could link 3 733 target genes, among them 2 725 targets could be annotated to 41 GO terms, and mostly enriched terms were binding, cellular process, single-organism processand metabolic process. In addition, 1 046 and 676 target genes of two comparison groups were related to 116 and 92 KEGG pathways, and the number of DEmiRNA target genes in Am4 vs Am5 was more than that in Am5 vs Am6, which annotated to Wnt signaling pathway, Hippo signaling pathway, purine metabolism and endocytosis. further analysis demonstrated that up-regulated and down-regulated miRNAs in Am4 vs Am5 could bind 611 and 85 target genes, and ame-miR-6052 linked the most target genes and participated in regulating cytochrome P450 via 5 target genes.miR-281-x could bind 49 target genes and indirectly regulate histidine metabolism, TGF-signaling pathway and Hippo signaling pathway.InAm5 vs Am6 comparison group, up-regulated and down-regulated miRNAs could bind 43 and 431 target genes, respectively, among them miR-iab-4-x linked the most target genes, and it could participate in regulating growth and development related pathways, such as dorso-ventral axis formation, Hippo signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Notch signaling pathway and mTOR signaling pathway. Regulation network analysis indicated that complex networks formed between DEmiRNAs and target genes, and DEmiRNAs lied in the center while target genes lied in the periphery. Finally, Stem-loop RT-qPCR was carried out to validate the randomly selected three DEmiRNAs, and the result confirmed the reliability of sequencing data. 【Conclusion】The DEmiRNA and corresponding target genes in thelarval gut were predicted and analyzed at genome-wide level, it was found thatare capable of regulating the expression of many miRNAs such as ame-miR-6052, miR-iab-4-x, miR-281-x and novel-m0031-3p. The results not only offer the expression pattern and differential expression information of miRNA during the developmental process oflarval gut, but also lay a foundation for clarifying the molecular mechanisms underlying the larval gut’s development.
; larval gut; development; microRNA; target gene; regulation network
10.3864/j.issn.0578-1752.2018.21.018
2018-05-22;
2018-06-28
國家自然科學(xué)基金(31702190)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金(CARS-44-KXJ7)、福建省科技計劃項目(2018J05042)、福建省教育廳中青年教師教育科研項目(JAT170158)、福建農(nóng)林大學(xué)科技創(chuàng)新專項基金(CXZX2017343)、福建農(nóng)林大學(xué)科技發(fā)展基金(KF2015123)
郭睿,E-mail:ruiguo@fafu.edu.cn。杜宇,E-mail:m18505700830@163.com。郭睿和杜宇為同等貢獻(xiàn)作者。通信作者陳大福,E-mail: dfchen826@fafu.edu.cn
(責(zé)任編輯 岳梅)