顧 哲,袁壽其※,齊志明,王新坤,蔡 彬,鄭 珍
?
基于ET和水量平衡的日光溫室實時精準灌溉決策及控制系統(tǒng)
顧 哲1,袁壽其1※,齊志明2,王新坤1,蔡 彬1,鄭 珍1
(1. 江蘇大學流體機械工程技術(shù)研究中心,鎮(zhèn)江 212013;2. 加拿大麥吉爾大學生物資源工程系,蒙特利爾 H9X 3V9)
為提高日光溫室的灌溉水利用效率,充分發(fā)揮現(xiàn)有灌溉決策理論的指導作用,該文構(gòu)建了基于ET和水量平衡方法的實時精準灌溉決策及控制系統(tǒng)。以句容布戴莊村櫻桃番茄溫室為試驗對象,給出了利用ET和水量平衡方法的灌溉決策實施過程,即當田間蒸發(fā)蒸騰總量大于土壤中可供作物利用水分時觸發(fā)灌溉,灌水量等于自上一次灌溉起蒸散量的總和。采用Java語言開發(fā)了灌溉決策軟件ETSch,可實現(xiàn)以溫室內(nèi)氣象數(shù)據(jù)為基礎(chǔ)對不同地點的灌溉決策項目進行管理;設(shè)計了溫室精準滴灌系統(tǒng)并研制了基于單片機的灌溉控制器軟硬件,通過ETSch軟件與控制器的連接,建立了從田間氣象信息獲取到灌溉決策軟件運行,再到灌溉及控制系統(tǒng)的集成化自動精準灌溉模式。試驗結(jié)果表明,該實時精準灌溉決策及控制系統(tǒng)的平均灌水總量控制平均誤差為1.1%,系統(tǒng)運行穩(wěn)定,節(jié)約人工;盡管采用ET和水量平衡方法低估了實際土壤含水率,但總體趨勢一致,能實現(xiàn)合理有效的灌溉決策。該研究可為實現(xiàn)灌溉決策和控制系統(tǒng)的集成提供參考,為進一步提高灌溉效果和用水效率提供借鑒。
灌溉;控制;土壤水分;實時精準灌溉;灌溉決策;灌溉控制系統(tǒng);水量平衡;決策軟件
高效節(jié)水灌溉工程一直是中國農(nóng)業(yè)發(fā)展中的重中之重,在2018年的中央一號文件《關(guān)于實施鄉(xiāng)村振興戰(zhàn)略的意見》[1]中又給出了建設(shè)一批重大高效節(jié)水灌溉工程的意見。通過改用噴灌、滴灌等高效灌溉方式雖然提高了作物水分利用效率,但是不合理的灌溉決策會導致灌溉水不能滿足作物生長需求或造成土壤深層滲漏甚至徑流,帶走土壤養(yǎng)分,均不利于作物的生長。良好的灌溉決策方法應在保證作物生長需求的基礎(chǔ)上,盡量減少灌溉用水,提高灌溉水利用效率。
在實時灌溉決策方法方面,國際上主要形成了4類方法[2],即基于蒸散量計算和水量平衡的方法、基于土壤水分的方法、基于作物水分的方法和基于模型的方法。其中,基于蒸散量ET和水量平衡的灌溉決策方法[3-4]是一種較為通用且易于實施的方法,美國農(nóng)業(yè)部FAO開發(fā)的CROPWAT[5-6]以及近年推出的智能手機軟件SmartIrrigation Apps[7-11]均采用基于ET的灌溉決策方法,這種方法也在許多研究中使用[12-15],并應用于控制器中[16-17],形成了多種商用ET灌溉控制器[18],如Toro Intelli-sense、ETwater Smart Controller 100和Weathermatic SL1600等,相比一般的基于時間的灌溉控制器可達到平均43%的節(jié)水量[18]?;谕寥浪只蜃魑锼值姆椒ㄍ枰^多傳感器的支持,將增加系統(tǒng)的成本,且對水分含量下限的定義仍需要田間試驗來確定。近年來,采用模型的灌溉決策方法逐漸被應用[19-20],Gu等[2,21]提出了基于RZWQM2(Root Zone Water Quality Model 2)模型水分脅迫的灌溉決策方法,測試結(jié)果表明,該方法可以較好地保持作物產(chǎn)量并節(jié)約用水量最高達約30%[2,21-22],但是需要前期田間試驗數(shù)據(jù)的支持來實現(xiàn)模型的良好校準。
另外,灌溉決策需要與精確灌溉系統(tǒng)相結(jié)合,形成精準灌溉決策及控制系統(tǒng),才能真正體現(xiàn)決策的有效性和灌溉系統(tǒng)的價值。國外在大型噴灌機和變量灌溉方面逐漸形成了灌溉決策與控制系統(tǒng)的集成[23-27],但中國在這方面的發(fā)展較為緩慢,集成灌溉決策與控制的智能系統(tǒng)還不多,且較多采用基于土壤含水率測量[28]或模糊控制、專家知識[29-30]的灌溉系統(tǒng),不利于管理者對灌溉決策過程的理解和精準灌溉決策系統(tǒng)的形成。
為了實現(xiàn)精準灌溉決策,如基于模型的決策方法,對于大多數(shù)沒有前期試驗數(shù)據(jù)的灌溉地區(qū)首先需要一種有效的灌溉決策及控制系統(tǒng)開展灌溉實踐,因此,本研究以日光溫室灌溉試驗地為對象,擬采用基于ET和水量平衡的灌溉決策方法開展灌溉試驗,并設(shè)計灌溉決策軟件和控制系統(tǒng),從而為初步實現(xiàn)灌溉決策及控制系統(tǒng)的集成提供實例,為實現(xiàn)更精準的灌溉決策方法提供試驗數(shù)據(jù)參考。
試驗于2017年在江蘇省句容市天王鎮(zhèn)戴莊村有機農(nóng)業(yè)產(chǎn)地(119.23°E,31.65°N)的日光溫室內(nèi)進行。該試驗地海拔50 m,屬亞熱帶季風性濕潤氣候,夏季高溫多雨,冬季溫和少雨。日光溫室長44.5 m,寬6.1 m,采用拱形鋼架結(jié)構(gòu),中部高度約3 m,南北走向,覆蓋山東清田塑工有限公司生產(chǎn)的聚乙烯流滴耐老化棚膜,室內(nèi)沒有補溫和通風設(shè)施。溫室頂部采用雙層膜結(jié)構(gòu)使大棚既能防雨又保持通風,底部卷起0.6 m保持通風,當氣溫降低至15 ℃左右時放下四周棚膜保溫。日光溫室土壤質(zhì)地為粉砂質(zhì)黏壤土或粉砂質(zhì)黏土(國際制),土壤質(zhì)地隨深度沒有明顯變化,地下水埋深約為1 m。
供試番茄品種為千禧櫻桃番茄(),屬于無限生長型,南北向種植,留5穗果后打頂。溫室內(nèi)共4壟,平均壟間距1.33 m,壟寬0.73 m,平均株間距為0.64 m,由西向東依次為壟1至壟4,記為H1~H4。滴灌帶緊挨作物根部放置,一條滴灌帶用于一壟作物的灌溉。除灌溉外,溫室內(nèi)作物的其他管理根據(jù)當?shù)剞r(nóng)民的經(jīng)驗確定。在移栽前施豬糞1次,整個種植期間未施肥,未噴藥。櫻桃番茄于2017年8月11日移栽,緩苗期采用微噴頭灌水3次,約35 mm,滴灌1次,約19 mm,總灌水量54 mm,緩苗10 d后采用滴灌。滴灌時,設(shè)置2種灌溉處理,其中H1、H3為虧缺灌溉處理,H2、H4為充分灌溉處理,充分灌溉處理采用基于ET的實時灌溉決策方法得到灌溉時間和灌水量,虧缺灌溉處理的灌溉時間與充分灌溉處理相同,但灌水量是充分處理的80%。作物結(jié)果后定期采摘,約每10 d采摘1次,至12月5日夜間溫度低于0℃,作物死亡,試驗結(jié)束。
灌溉決策方法的有效性體現(xiàn)在對土壤水分估計的準確性上,為此,采用土鉆法測量了土壤含水率。平均每周采集一次,灌溉后加測1次,在每壟的首部、距首部10、20、30 m處以及尾部分別測量,取土深度為5、10、20、30和40 cm。采用烘干法測量土壤質(zhì)量含水率。烘干儀設(shè)定溫度為(105±3) ℃,烘干時間一般為18 h,烘至恒質(zhì)量;土壤質(zhì)量測量采用高精度電子秤,量程0~1 000 g,精度0.01 g。取土鋁盒直徑55 mm,高35 mm。土鉆長0.5 m,鉆頭直徑38 mm。土鉆法測得的土壤質(zhì)量含水率根據(jù)土壤容重換算成體積含水率。土壤容重采用環(huán)刀法測量。
本文采用的灌溉決策及控制系統(tǒng)框架如圖1所示。溫室內(nèi)自動氣象站采集冠層凈輻射和溫室內(nèi)溫濕度數(shù)據(jù)并儲存于數(shù)據(jù)采集器中,通過計算機獲取數(shù)據(jù)采集器的數(shù)據(jù)并通過本研究開發(fā)的ETSch軟件進行計算后給出灌溉決策到田間滴灌控制器,最終由滴灌控制器對田間滴灌系統(tǒng)進行控制,實現(xiàn)精準的灌水量自動控制。試驗中,個人電腦與數(shù)據(jù)采集器、滴灌控制器均采用RS232串口實現(xiàn)數(shù)據(jù)通信。為便于田間灌溉管理,滴灌控制器還增加了手動鍵盤輸入功能。
圖1 灌溉決策及控制系統(tǒng)框架
為計算參考蒸散量ET0,采用自動氣象站實時測量日光溫室棚內(nèi)微氣象數(shù)據(jù),放置于H2距首部30 m處,測量參數(shù)包括凈輻射、空氣溫度和濕度。由于日光溫室有塑料薄膜遮蔽,降雨量為0,風速也近似為0,因此沒有測量降雨和風速。凈輻射儀采用Kipp & Zonen公司的NR-LITE2,靈敏度為13.0V/(W·m-2),安裝高度為2 m;空氣溫濕度采用瑞士Rotronic公司的標準溫濕度探頭HygroClip2,型號為HC2S3,常溫下濕度測量精度為±0.8%,溫度測量精度為±0.2 ℃,安裝高度約1.5 m。上述傳感器測量參數(shù)通過線纜傳輸?shù)紺ampbell公司的CR1000數(shù)據(jù)采集終端。數(shù)據(jù)采集終端通過串口與計算機相連,通過配套軟件(Campbell_LoggerNet)實現(xiàn)數(shù)據(jù)下載。自動氣象站數(shù)據(jù)測量頻率為1 min,并給出每小時平均值和每日平均值,計算ET0時采用日均數(shù)據(jù),為保證當天ET0計算的可靠性并在需要時進行及時的灌溉,當天ET0的計算采用15個以上的每小時數(shù)據(jù)平均值。
圖2為溫室滴灌系統(tǒng)示意圖。該滴灌系統(tǒng)中,潛水泵從位于溫室附近的河塘中取水,水流通過鋼絲管和UPVC管輸送到主管路,依次流經(jīng)手動球閥、過濾器、流量計、壓力表后到達電磁閥,通過控制柜控制電磁閥的開閉即可實現(xiàn)溫室內(nèi)各壟的不同灌溉處理。相同的處理行采用同一個流量計測量總灌水量。
潛水泵額定功率550 W,額定流量6 m3/h,額定揚程9 m;主管路管徑40 mm;過濾器采用篩孔尺寸為0.125 mm的Y型疊片式過濾器;流量計量程范圍為0.4~8 m3/h,可顯示當前流量和總水量,并可輸出當前流量對應的4~20 mA電流信號供外部設(shè)備讀取。壓力表量程為100 kPa;電磁閥采用常閉式,由控制柜根據(jù)灌水量要求控制相應電磁閥的動作。選用0.1 MPa下標稱流量為3 L/h的滴灌帶(廣州順綠噴灌設(shè)備有限公司),滴灌帶管徑16 mm,壁厚0.3 mm,孔間距15 cm。滴灌系統(tǒng)工作時,壓力表讀數(shù)約為26 kPa,流量計讀數(shù)約為0.75 m3/h。
1. 滴灌帶 2. 作物 3. 電磁閥 4. 壓力表 5. 流量計 6. 過濾器 7. 球閥 8. 潛水泵 9. 河塘
1. Drip tape 2. Crop 3. Solenoid valve 4. Pressure meter 5. Flowmeter 6. Filter 7. Ball valve 8. Submerged pump 9. Pond
注:H1、H3標記第1、3壟虧缺灌溉處理,H2、H4標記第2、4壟充分灌溉處理。
Note: H1 and H3 marked first and third plots with deficit irrigation treatments; H2 and H4 marked second and forth plots with full irrigation treatments.
圖2 日光溫室滴灌系統(tǒng)布置示意圖
Fig.2 Layout of drip irrigation system in solar greenhouse
圖3為用于控制電磁閥的電氣控制柜及其單片機控制系統(tǒng)??刂乒裨O(shè)置有手動和自動灌溉控制功能。手動控制時,通過控制柜面板的撥動開關(guān)(圖中未標示)分別控制H1~H4的電磁閥動作。自動控制時,控制柜面板上對應的撥動開關(guān)失效,轉(zhuǎn)而由控制柜內(nèi)部的單片機控制器進行控制。
圖3 滴灌控制器
自動灌溉模式下,用戶首先通過計算機發(fā)送或單片機控制器鍵盤輸入相應灌溉處理下的灌水深度,確認后該控制器將自動開啟電磁閥進行灌溉,同時單片機控制器通過讀取流量計讀數(shù)并進行積分計算總灌水量,當相應的灌溉處理的總灌水量達到設(shè)定灌水量時,單片機系統(tǒng)控制對應的電磁閥關(guān)閉,并記下總灌水時間,當所有灌溉處理完成后,用戶即可切斷電源,關(guān)閉灌溉系統(tǒng)。
單片機控制器中,將輸入的灌水深度轉(zhuǎn)換成灌水量時,按壟長44 m壟寬0.6 m計算,即1 cm灌溉深度對應一壟的灌水量為0.264 m3。單片機芯片采用MSP430F169,控制電磁閥動作時首先通過芯片引腳控制4路繼電器(繼電器模塊放置于圖3中單片機控制系統(tǒng)的盒體內(nèi)),4路繼電器再分別控制電磁閥動作。流量計的輸出信號首先通過2個并聯(lián)的250 Ω(0.1%精度)電阻轉(zhuǎn)化為0.5~2.5 V電壓,然后由單片機自帶的模數(shù)轉(zhuǎn)化器(A/D)采樣,實現(xiàn)讀取當前流量的功能。單片機讀取流量后以1 s的時間間隔進行積分運算得到單次灌溉的累積灌水量,并當該值達到設(shè)定灌水量時停止灌溉。
圖4為單片機控制器的程序流程圖,其中,校準流量讀數(shù)時,同時檢測了流量計讀數(shù)是否正常,避免因流量計未開啟或灌溉完成后流量瞬時低于0時計算錯誤,當流量計未通電時控制器將關(guān)閉閥門并顯示錯誤,灌溉完成后,流量計讀數(shù)出現(xiàn)負值則按流量為零計算。灌溉完成后,時間計數(shù)器不再增加,因此顯示器(LCD12864)顯示的灌溉時間停止,總灌水量為累積計算值,當前流量為0。采用AD中斷對流量信號進行采樣,每秒內(nèi)中斷30次進行采樣后取平均值作為這一秒內(nèi)的流量平均值并用于積分計算。
圖4 單片機控制器程序流程圖
采用基于ET和水量平衡的方法進行灌溉決策。充分灌溉處理的灌水時間和灌水量根據(jù)Huffman[4]中總結(jié)的基于ET的灌溉方案進行決策,即當田間蒸發(fā)蒸騰總量大于土壤中可供作物利用水分(readily available water, RAW)時觸發(fā)灌溉,灌水量等于自上一次灌溉起蒸散量的總和。灌溉決策的具體實施步驟為:
1)根據(jù)氣象測量參數(shù)計算參考蒸散量ET0
由于日光溫室中風速幾乎為0,因此,不適宜采用FAO推薦的Penman-Monteith (PM)公式,而采用PM方程在日光溫室中的修正公式[31]
式(1)中相關(guān)參數(shù)根據(jù)Huffman[4]計算:
式中ET0i為充分灌溉下第天的參考蒸散量,cm/d;?為飽和蒸氣壓曲線斜率,kPa/℃;R為作物冠層凈輻射,MJ/(m2?d);為土壤熱通量密度,MJ/(m2?d),相比R通常很小,可忽略;為干濕表常數(shù),取0.067 kPa/℃;為地表1.5~2.5 m高度處每日平均氣溫,℃;max/min為地表1.5~2.5 m高度處每日最高/最低氣溫,℃;e為地表1.5~2.5 m高度處平均飽和蒸氣壓,kPa;e為地表1.5~2.5 m高度處平均實際蒸氣壓,kPa;RHmax/min為地表1.5~2.5 m高度處每日最高/最低相對濕度,%。
2)以天為單位,按式(6)計算ETc
作物系數(shù)c參照FAO推薦值并根據(jù)作物生長階段進行設(shè)定[3]。將櫻桃番茄生長發(fā)育劃分為4個階段:苗期(8月11日—8月31日)、開花坐果期(9月1日—10月9日,)盛果期(10月10日—11月14日)、盛果后期(11月15日—12月5日),4個階段依次對應天數(shù)為21、39、36和21 d,其中,盛果后期因霜凍致作物死亡,提前結(jié)束。在苗期、盛果期和最后設(shè)定的作物參數(shù)分別為0.7、1.05和0.8[3]。
式中ETci為充分灌溉下第天的作物蒸散量,cm/d;c為作物系數(shù),無量綱。
3)計算土壤水分虧缺[4]
式中D為第天的土壤水分虧缺值,cm,種植當天(8月11日)為第1天,默認0= 0;ETci為第天作物蒸散量,cm。
4)計算土壤允許水分虧缺值RAW[4](cm)
表1 允許虧缺比例(MAD)隨最大日蒸散量變化的建議值[4]
5)比較RAW和D,當D> RAW時觸發(fā)灌溉,灌水量設(shè)置為D。
6)若第天進行了灌溉,令D=D-1= 0,否則令D-1=D,以d為單位,重復上述步驟,直至作物收獲。
至此,結(jié)合自動氣象站測量的氣象數(shù)據(jù),F(xiàn)AO[3]推薦的作物系數(shù),Huffman[4]給出的MAD以及試驗前期檢測的溫室內(nèi)土壤在田持和凋萎點時的含水率,即可按上述步驟完成灌溉決策。
采用Java語言開發(fā)了基于ET的實時灌溉決策軟件ETSch,采用項目式管理結(jié)構(gòu),可實現(xiàn)多個地點的實時灌溉決策管理。軟件運行前,需要下載最新的氣象數(shù)據(jù)。軟件運行時,讀取上一次保存的結(jié)果數(shù)據(jù),更新上次計算中最后一天的ET0,并按照上述灌溉決策方法逐日進行計算,直至當前日。計算結(jié)果以圖表形式展現(xiàn),如圖5所示,在該界面中,根據(jù)用戶需要,可以修改ET0數(shù)據(jù)(主要是數(shù)據(jù)缺失時)、灌溉數(shù)據(jù)、MAD、RD、田持含水率和凋萎點含水率。表格參數(shù)修改后將自動重新計算并更新灌溉計劃示意圖。軟件界面表格中,c、ETc、D和RAW不可改,其中c值根據(jù)軟件中設(shè)定的c曲線(圖6)自動獲取,ETc、D和RAW均采用上述公式計算獲得。
圖5 ETSch軟件灌溉計劃界面
圖6 灌溉決策軟件中作物系數(shù)Kc及根系深度RD設(shè)定值
ETSch軟件中還可以設(shè)置項目描述,試驗地位置信息,選擇日、小時氣象數(shù)據(jù)文件,種植和收獲日期等。在首次進行該作物的灌溉試驗時,根據(jù)實際情況對c曲線和根系深度進行了適時的調(diào)整。出于田間管理的需要,如為了方便在壟上插竹竿以防止作物倒伏,需要增加灌水使土壤松軟,此時在軟件的灌溉計劃界面表格中直接修改對應日期的灌水量,軟件將以實際灌溉量進行計算。
以2017年試驗結(jié)果為例,對上述開發(fā)的基于ET的灌溉決策及控制系統(tǒng)進行分析,從滴灌控制系統(tǒng)的灌水量控制精度、灌溉決策方法的有效性方面進行評價。通過比較設(shè)定灌水量和實際測量灌水量評價控制系統(tǒng)的精度;通過比較估計的土壤含水率和實際土壤含水率評價灌溉決策方法的有效性,即當估計的土壤含水率與實際情況越接近,則說明這種方法能較準確地反映土壤含水率的變化,從而有效地實現(xiàn)對土壤含水率的控制,保持作物生長的水量需求,實現(xiàn)較好的灌溉決策。
流量采樣的精度和灌水量計算的精度通過前期校準,平均誤差控制在1%以內(nèi)。盡管如此,由于關(guān)閉電磁閥后水流的滯后作用,實際流量計測定的灌水量和控制器設(shè)定值之間仍存在一些誤差,如圖7所示。除圖中標記的初次灌水量存在近10%的誤差外,其他灌溉事件中的灌水量誤差均較小。流量采樣校準后,實際灌水量比設(shè)定值平均增大約1.1%,總體上系統(tǒng)的流量控制精度較高。
圖7 設(shè)定灌水量與實際灌水量對比
如圖8為采用上述基于ET的灌溉決策方法下,溫室灌溉試驗的決策過程及實際田間試驗灌溉方案。
圖8 日光溫室基于ET的灌溉決策過程與結(jié)果
由圖8可知,當估計的土壤含水率降至MAD定義的土壤含水率下限時觸發(fā)灌溉,每次灌溉均灌至田持。初始土壤含水率設(shè)置為田持,超過田持的部分視為滲漏量。試驗前期由于灌溉系統(tǒng)調(diào)試和田間管理等因素,有些與決策方法不一致,試驗中期由于管理需要,有時當估計的土壤含水率接近MAD定義的下限時提前進行了灌溉。最后一次灌溉考慮到果實采摘和氣溫、水溫較低的因素,延遲并減少了灌水量。
灌溉過程中采用ET計算和水量平衡估計的土壤含水率與實測值對比如圖9所示。其中實測的土壤含水率計算時,首先計算充分處理下(H2、H4)在根系深度內(nèi)每個土壤層體積含水率的平均值(多個測量點取平均值),再計算根系深度內(nèi)各土壤層的加權(quán)平均作為當前根系深度內(nèi)的實測土壤含水率。
圖9 土壤含水率估計值與測量值對比
由圖9可知,估計值普遍比實測值小,但總體上變化趨勢一致。數(shù)據(jù)統(tǒng)計結(jié)果顯示,估計值相對于實測值的百分比偏差為-9.1%,相對根均方誤差rRMSE為10.8%,相關(guān)系數(shù)為0.7,從模型角度來說,采用ET和水量平衡計算估計的土壤含水率效果還不夠理想,但從灌溉決策角度來說,在缺乏前期試驗數(shù)據(jù)的基礎(chǔ)上,采用基于ET和水量平衡計算能獲得較為可靠的土壤含水率變化,并以此進行灌溉決策,使得實際土壤含水率保持在合理范圍內(nèi),既不產(chǎn)生明顯徑流和深層滲漏,也能滿足作物的水分需求,保證了灌溉水的有效利用,因此,該方法在灌溉決策上的應用是合理有效的。
由于土壤含水率估計值是在田持基礎(chǔ)上減去土壤水分虧缺(D)并換算到根系層含水率得到的,因此其估計的準確性不僅依賴于對田持測量的準確性,還受到蒸散量計算準確性的影響,此外,土壤含水率實測值也存在誤差,受到日光溫室棚外降雨通過土壤滲透的影響,也會導致測量值偏大??傊趶碗s的田間環(huán)境下,采用基于ET和水量平衡計算的灌溉決策方法盡管在土壤含水率的估計上存在一定的誤差,但仍能夠?qū)崿F(xiàn)較為可靠有效的灌溉決策。
雖然基于ET和水量平衡計算的灌溉決策方法沒有直接考慮作物的實際需水量,但是通過在不同蒸散速率下MAD值的調(diào)整,可以將作物根系土壤含水率控制在適宜生長的范圍內(nèi)。針對不同種類的作物,Huffman[4]也同樣給出了MAD在不同蒸散速率下的標準值,同時,F(xiàn)AO56[3]也給出了不同作物的作物系數(shù)曲線,因此,基于ET和水量平衡的灌溉決策方法也能適用于不同種類的作物,具有較廣泛的實用性。由于這種方法在估計土壤含水率方面的可靠性較好,相比采用傳感器測量的方法減少了成本,結(jié)合筆者開發(fā)的軟件ETSch,可以實現(xiàn)快速的決策。
本文提出的灌溉決策及控制系統(tǒng)也同樣適用于大田灌溉實踐中,即仍然由田間氣象數(shù)據(jù)采集、基于ET和水量平衡的灌溉決策方法、以及自動灌溉控制系統(tǒng)組成,但在具體實施細節(jié)上應根據(jù)實際情況有所不同,例如,應增加風速和降雨量的測量,用于ET和水量平衡的計算;應采用FAO56推薦的PM公式計算ET0;灌溉系統(tǒng)管網(wǎng)及控制系統(tǒng)應做相應調(diào)整;以及在數(shù)據(jù)采集、灌溉決策軟件和自動控制器之間采用遠程通訊等。
由于本文旨在提出一種灌溉決策及控制系統(tǒng),且由于缺乏前期試驗數(shù)據(jù)和田間測量數(shù)據(jù),采用了基于ET和水量平衡計算的灌溉決策方法,這種方法雖然對作物根系土壤含水率的估計準確性有限,但是能整體上反映土壤含水率的變化并保持土壤含水率在適宜作物生長的范圍內(nèi),根據(jù)FAO56[3]給出的作物系數(shù)曲線和Huffman[4]給出的MAD建議值,可以實現(xiàn)對不同作物的灌溉決策。由于采用灌溉深度進行灌溉決策,采用ET和水量平衡計算后給出的灌溉深度可以根據(jù)灌溉系統(tǒng)的規(guī)模轉(zhuǎn)換為灌水量,因此,在本文采用的基于ET和水量平衡的灌溉決策方法中不反映溫室的規(guī)模對灌溉深度的影響,溫室大小對灌溉深度的潛在影響可在今后的研究中考慮。隨著這種灌溉決策方法及其控制系統(tǒng)的應用,可以獲取不同作物和不同大小溫室的灌溉數(shù)據(jù),從而可以采用人工神經(jīng)網(wǎng)絡(luò)算法和農(nóng)業(yè)系統(tǒng)模型等對灌溉決策進行優(yōu)化,進一步提高灌溉水的利用率。
本文以實現(xiàn)精準灌溉決策及控制系統(tǒng)為目標,通過ET和水量平衡計算進行灌溉決策,構(gòu)建了實時精準灌溉決策及控制系統(tǒng),實現(xiàn)了灌溉過程的自動化,對灌溉科學和應用的發(fā)展具有參考意義。
1)構(gòu)建了基于ET和水量平衡的灌溉決策及控制系統(tǒng),并以句容市戴莊村日光溫室櫻桃番茄為試驗對象開展了灌溉試驗。通過開發(fā)灌溉決策軟件ETSch實現(xiàn)了基于ET的灌溉決策方法,設(shè)計了溫室滴灌系統(tǒng)和滴灌控制系統(tǒng),并建立其與ETSch的集成,形成了灌溉決策與控制的集成化自動精準灌溉模式,實現(xiàn)了科學的準確時間和精確灌水量的精準灌溉決策。
2)試驗結(jié)果表明:構(gòu)建的精準灌溉系統(tǒng)在流量控制上的平均誤差為1.1%。根據(jù)ET和水量平衡計算估計的土壤含水率盡管與實際含水率存在偏差,但能有效地反應實際含水率的變化并作出合理有效的灌溉決策。因此,在缺乏前期試驗數(shù)據(jù)的基礎(chǔ)上,采用基于ET和水量平衡計算進行灌溉決策不失為一種較好的方法。
[1] 新華社. 中共中央國務(wù)院關(guān)于實施鄉(xiāng)村振興戰(zhàn)略的意見[J]. 中國合作經(jīng)濟,2018(2):18—27.
[2] Gu Zhe, Qi Zhiming, Ma Liwang, et al. Development of an irrigation scheduling software based on model predicted crop water stress[J]. Computers and Electronics in Agriculture, 2017, 143: 208-221.
[3] Allen R G, Pereira L S, Raes D, et al. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Rome: FAO, 1998.
[4] Huffman R L. Soil and Water Conservation Engineering (7th Edition)[M]. Michigan: American Society of Agricultural and Biological Engineers, 2013.
[5] Smith M. FAO Irrigation and Drainage Paper No. 46: CROPWAT: A Computer Program for Irrigation Planning and Management[M]. Rome: FAO, 1992.
[6] Savva A P, Frenken K. Crop Water Requirements and Irrigation Scheduling[M]. Harare: FAO Sub-Regional Office for East and Southern Africa, 2002.
[7] Vellidis G, Liakos V, Perry C, et al. A smartphone app for scheduling irrigation on cotton[C]// S. Boyd, M. Huffman and B. Robertson. Proceedings of the 2014 Beltwide Cotton Conference. New Orleans, LA: National Cotton Council, Memphis, TN, 2014: 15551.
[8] Vellidis G, Liakos V, Tucker M, et al. A Smartphone App for Precision Irrigation Scheduling in Cotton[M]// Stafford J V. Precision Agriculture'15. Wageningen, The Netherlands: Wageningen Academic Publishers, 2015: 701-708.
[9] Vellidis G, Liakos V, Perry C, et al. Irrigation scheduling for cotton using soil moisture sensors, smartphone apps, and traditional methods[C]// Proceedings of the 2016 Beltwide Cotton Conference. New Orleans, LA: National Cotton Council Memphis, TN, 2016: 772-780.
[10] Vellidis G, Liakos V, Andreis J H, et al. Development and assessment of a smartphone application for irrigation scheduling in cotton[J]. Computers and Electronics in Agriculture, 2016, 127: 249-259.
[11] Migliaccio K W, Morgan K T, Vellidis G, et al. Smartphone apps for irrigation scheduling[J]. Transactions of the ASABE, 2016, 59(1): 291-301.
[12] Thysen I, Detlefsen N K. Online decision support for irrigation for farmers[J]. Agricultural Water Management, 2006, 86(3): 269-276.
[13] Chauhan Y S, Wright G C, Holzworth D, et al. Aquaman: a web-based decision support system for irrigation scheduling in peanuts[J]. Irrigation Science, 2013, 31(3): 271-283.
[14] Bartlett A C, Andales A A, Arabi M, et al. A smartphone app to extend use of a cloud-based irrigation scheduling tool[J]. Computers and Electronics in Agriculture, 2015, 111: 127-130.
[15] Perea R G, García I F, Arroyo M M, et al. Multiplatform application for precision irrigation scheduling in strawberries[J]. Agricultural Water Management, 2017, 183: 194-201.
[16] Dukes M D. Water conservation potential of landscape irrigation smart controllers[J]. Transactions of the ASABE, 2012, 55(2): 563-569.
[17] Devitt D A, Carstensen K, Morris R L. Residential water savings associated with satellite-based ET irrigation controllers[J]. Journal of Irrigation and Drainage Engineering, 2008, 134(1): 74-82.
[18] Davis S L, Dukes M D, Miller G L. Landscape irrigation by evapotranspiration-based irrigation controllers under dry conditions in Southwest Florida[J]. Agricultural Water Management, 2009, 96(12): 1828-1836.
[19] Maier N, Dietrich J. Using SWAT for strategic planning of basin scale irrigation control policies: A case study from a humid region in Northern Germany[J]. Water Resources Management, 2016, 30(9): 3285-3298.
[20] Linker R, Ioslovich I, Sylaios G, et al. Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato[J]. Agricultural Water Management, 2016, 163: 236-243.
[21] Gu Zhe, Qi Zhiming, Ma Liwang, et al. Water stress based deficit irrigation scheduling using RZWQM2 model for maize in Colorado[C]. 2017 ASABE Annual International Meeting. St. Joseph, MI.: ASABE, 2017: paper No. 1701226.
[22] Liu Che, Qi Zhiming, Gu Zhe, et al. Optimizing irrigation rates for cotton production in an extremely arid area using RZWQM2 simulated water stress[J]. Transactions of the ASABE, 2017, 60(6): 2041-2052.
[23] Han Y J, Khalilian A, Owino T O, et al. Development of Clemson variable-rate lateral irrigation system[J]. Computers and Electronics in Agriculture, 2009, 68(1): 108-113.
[24] Peters R T, Evett S R. Automation of a center pivot using the temperature-time-threshold method of irrigation scheduling[J]. Journal of Irrigation and Drainage Engineering, 2008, 134(3): 286-291.
[25] McCarthy A, Hancock N, Raine S. Holistic control system design for large mobile irrigation machines[M]// Billingsley J, Brett P. Machine Vision and Mechatronics in Practice. Berlin, Heidelberg: Springer, 2015: 177-184.
[26] Liakos V, Vellidis G, Tucker M, et al. A decision support tool for managing precision irrigation with center pivots[M]// Stafford J V. Precision Agriculture'15. Wageningen, The Netherlands: Wageningen Academic Publishers, 2015: 713-720.
[27] Vellidis G, Liakos V, Porter W, et al. A dynamic variable rate irrigation control system[C]// Proceedings of the 13thInternational Conference on Precision Agriculture, St. Louis, Missouri: Academic Publishers, 2016.
[28] 張偉,何勇,裘正軍,等. 基于無線傳感網(wǎng)絡(luò)與模糊控制的精細灌溉系統(tǒng)設(shè)計[J]. 農(nóng)業(yè)工程學報,2009,25(2): 7-12. Zhang Wei, He Yong, Qiu Zhengjun, et al. Design of precision irrigation system based on wireless sensor network and fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 7-12. (in Chinese with English abstract)
[29] 裘正軍,童曉星,沈杰輝,等. 基于模糊控制與虛擬儀器的灌溉決策系統(tǒng)研究[J]. 農(nóng)業(yè)工程學報,2007,23(8): 165-169. Qiu Zhengjun, Tong Xiaoxing, Shen Jiehui, et al. Irrigation decision-making system based on the fuzzy-control theory and virtual instrument[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(8): 165-169. (in Chinese with English abstract)
[30] 余國雄,王衛(wèi)星,謝家興,等. 基于物聯(lián)網(wǎng)的荔枝園信息獲取與智能灌溉專家決策系統(tǒng)[J]. 農(nóng)業(yè)工程學報,2016,32(20):144-152. Yu Guoxiong, Wang Weixing, Xie Jiaxing, et al. Information acquisition and expert decision system in litchi orchard based on internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 144-152. (in Chinese with English abstract)
[31] 王健,蔡煥杰,李紅星,等. 日光溫室作物蒸發(fā)蒸騰量的計算方法研究及其評價[J]. 灌溉排水學報,2006,25(6):11-14. Wang Jian, Cai Huanjie, Li Hongxing, et al. Study and evaluation of the calculation methods of reference crop evapotranspiration in solar-heated greenhouse[J]. Journal of Irrigation & Drainage, 2006, 25(6): 11-14. (in Chinese with English abstract)
Real-time precise irrigation scheduling and control system in solar greenhouse based on ET and water balance
Gu Zhe1, Yuan Shouqi1※, Qi Zhiming2, Wang Xinkun1, Cai Bin1, Zheng Zhen1
(1.212013,; 2.H9X 3V9,)
China is experiencing critical water scarce in agricultural production, and to improve irrigation water use efficiency has been the priority of agriculture development for years. Real-time irrigation scheduling, as well as its integration with irrigation control system, should be paid more attention other than the solely use of sprinkler and drip irrigation systems to improve irrigation water use efficiency in Chinese irrigation community. The evapotranspiration(ET) and water balance (ET-WB) method was applied in this paper to schedule irrigations in a solar greenhouse for cherry tomato in Jurong City in Jiangsu Province. A modified reference ET equation for solar greenhouse was used, and FAO56 suggested initial parameters were referenced to calculate crop evapotranspiration (ETc). Irrigations were triggered in a daily scale when accumulated crop evapotranspiration exceeded readily available water (RAW) across the root depth, which was defined by management allowable depletion (MAD) suggested by Huffman et al.(2013). Then an irrigation event was applied to replenish the soil to field capacity. A user-friendly irrigation scheduling software, namely ETSch, was developed using Java on a laptop, to facilitate managers with calculations involved in ET-WB method. The ETSch calculated ET using meteorological data measured from a field station in greenhouse, and outputed the accumulated ETcand RAW, as well as the irrigation decision on that day. Once an irrigation was triggered, ETSch would send a control signal through a serial connection to the irrigation control system, which was designed using a single-chip microcomputer (SCM) MSP430F169. The SCM system controlled the irrigation amount of the drip irrigation system arranged for each irrigation treatment. Once received an irrigation command, the SCM system would open the corresponding valves and read the flow from a flowmeter. The total water amount would be calculated in the SCM through an integration of flow and stops irrigation when it reached the scheduled amount. Both hardware and software of the SCM control system were detailly designed and developed. The experiment result showed that the irrigation control system worked well after flow correction, with an average error of only 1.1% between set and actual irrigation amount . The scheduled irrigations avoided the occurrence of over-high or low soil water content, and maintained crop water requirement over the crop season, though with an averagely 9.1% underestimate of soil moisture. The estimated soil moisture under ET-WB method showed a consistent change with measured values generally, which proved the efficiency of the developed irrigation scheduling and control system. The underestimate of soil moisture would probably be caused by the error of soil property settings and lateral flow from outside greenhouse with much rainfall. To conclude, a real-time precise irrigation scheduling and control system was developed for greenhouse planted cherry tomato based on ET-WB method, including a laptop-based scheduling software and an SCM-based precise controller. The framework of irrigation scheduling and control system could be an example of further smart irrigation systems, and the data collected could be used for agricultural models calibration and benefit the improvement of irrigation scheduling efficiency. To improve the feasibility of such real-time precise irrigation scheduling and control system for field-scale applications, remote connections should be built for data collection system, irrigation scheduling system and irrigation control system.
irrigation; control; soil moisture; real-time precise irrigation; irrigation scheduling; irrigation control system; water balance; irrigation scheduling software
顧 哲,袁壽其,齊志明,王新坤,蔡 彬,鄭 珍. 基于ET和水量平衡的日光溫室實時精準灌溉決策及控制系統(tǒng)[J]. 農(nóng)業(yè)工程學報,2018,34(23):101-108. doi:10.11975/j.issn.1002-6819.2018.23.012 http://www.tcsae.org
Gu Zhe, Yuan Shouqi, Qi Zhiming, Wang Xinkun, Cai Bin, Zheng Zhen. Real-time precise irrigation scheduling and control system in solar greenhouse based on ET and water balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 101-108. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.012 http://www.tcsae.org
2018-04-27
2018-09-26
十三五國家重點研發(fā)計劃(2016YFC0400202)
顧哲,博士生,主要從事農(nóng)業(yè)灌溉決策及控制系統(tǒng)智能化研究。Email:zhegu2017@163.com
袁壽其,研究員,博士,博士生導師,從事節(jié)水灌溉裝備及系統(tǒng)研究。Email:shouqiy@ujs.edu.cn
10.11975/j.issn.1002-6819.2018.23.012
S274
A
1002-6819(2018)-23-0101-08