楊三娟,朱國(guó)旗
(安徽中醫(yī)藥大學(xué) 新安醫(yī)學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230038)
人口老齡化正成為中國(guó)的主要社會(huì)問題之一。2050年約1/3人口年齡將超過60歲[1]。認(rèn)知下降廣泛存在于老年人群中,也是目前壽命延長(zhǎng)后一個(gè)急需解決的重大難題。盡管與年齡相關(guān)的記憶下降并不等同于阿爾茨海默病(Alzheimer’s disease,AD)中出現(xiàn)的破壞性的記憶力損害,但是衰老是引起AD等神經(jīng)退行性疾病的首要原因。中醫(yī)學(xué)認(rèn)為衰老與激素的調(diào)節(jié)有關(guān)?!饵S帝內(nèi)經(jīng)》中記載:“女子七歲,腎氣盛,齒更發(fā)長(zhǎng)。二七而天癸至……七七,任脈虛,太沖脈衰少,天癸竭,地道不通,故形壞而無子也?!庇涊d中表明“天癸”在人體衰老過程發(fā)揮重要的作用,而古書中記載的“天癸”即是現(xiàn)代生物醫(yī)學(xué)中的性激素。動(dòng)物實(shí)驗(yàn)也證實(shí),雌激素補(bǔ)充療法能抗衰老或調(diào)節(jié)衰老引發(fā)的海馬神經(jīng)細(xì)胞損傷[2-3]。
中醫(yī)學(xué)認(rèn)為,腎藏精,精生髓,腦為髓海,“在下為腎,在上為腦,虛則皆虛”(《醫(yī)碥·卷四》)。也就是說,腎精充盛則腦髓充盈,腎精虧虛則髓海不足。腦髓盈滿,則耳目聰明,精力充沛;腦髓空虛,可出現(xiàn)記憶減退。補(bǔ)腎填精益髓為緩解記憶減退的重要方法。人參為五加科植物人參的根?!侗静菥V目》中記載:“人參,味甘微寒。主補(bǔ)五臟,安精神,定魂魄,止驚悸,除邪氣,明目,開心益智。久服,輕身延年。”中國(guó)是藥用人參的發(fā)源地,人參作為珍貴中藥材應(yīng)用歷史悠久。人參皂苷類是人參中的主要有效成分,由人參的莖葉或根部提取精制而成,含有18種以上的人參單體皂苷。其中主要單體包含人參皂苷Rb1、Rb2、Rc、Rd、Rg1等。人參皂苷Rg1是人參主要活性成分之一,具有促進(jìn)海馬神經(jīng)再生、提高神經(jīng)突觸可塑性、增強(qiáng)學(xué)習(xí)記憶力、抗衰老、抗疲勞、提高免疫力、輔助抗腫瘤、修復(fù)性功能等藥理學(xué)作用。藥物代謝動(dòng)力學(xué)研究結(jié)果顯示,人參皂苷Rg1可以通過血腦屏障,并分布在整個(gè)腦區(qū)[4]。
細(xì)胞膜受體主要由跨膜結(jié)構(gòu)域及效應(yīng)結(jié)構(gòu)域組成。參與學(xué)習(xí)記憶的發(fā)生的細(xì)胞膜受體主要包括G蛋白偶聯(lián)受體30(G protein-coupled receptor 30,GPR30)、煙堿乙酰膽堿受體(nicotinic acetylcholine receptors,nAChR)、酪氨酸激酶受體(receptor tyrosine kinases, RTKs)、γ-氨基丁酸受體(γ-aminobutyric acid receptor,GABAR)和甘氨酸受體(glycine receptor,Glycine R)等。筆者對(duì)人參皂苷Rg1保護(hù)老年小鼠學(xué)習(xí)記憶的下降及其機(jī)制進(jìn)行了探索,結(jié)果表明人參皂苷Rg1連續(xù)腹腔注射30 d,能明顯增強(qiáng)中老年小鼠海馬突觸可塑性,促進(jìn)海馬內(nèi)腦源性神經(jīng)營(yíng)養(yǎng)因子(brain derived neurotrophic factor,BDNF)的表達(dá)、樹突脊再生,從而改善小鼠學(xué)習(xí)記憶[5]。然而人參皂苷Rg1作用后,可能參與的細(xì)胞膜受體還不清楚。因此,現(xiàn)就人參皂苷Rg1改善學(xué)習(xí)記憶可能性的細(xì)胞膜受體進(jìn)行綜述。
GPR30為一類由375個(gè)氨基酸組成的7次跨膜的G蛋白偶聯(lián)受體。GPR30與配體結(jié)合時(shí)具有高親和力、高特異性、可置換性等膜受體的特性。同時(shí),免疫細(xì)胞化學(xué)結(jié)果也提示GPR30主要定位于細(xì)胞膜[6]。GPR30與其配體結(jié)合后通過第二信使系統(tǒng)發(fā)揮間接的轉(zhuǎn)錄調(diào)控作用,該過程更容易調(diào)控,而且更符合學(xué)習(xí)記憶及突觸可塑性的調(diào)控機(jī)制。在神經(jīng)系統(tǒng),GPR30和多種老年性疾病的發(fā)生相關(guān),通過激活GPR30能改善帕金森病、腦血管病[7-9]。GPR30介導(dǎo)多種神經(jīng)功能的發(fā)揮,主要包括調(diào)節(jié)神經(jīng)遞質(zhì)的釋放和神經(jīng)保護(hù)的功能[10]。超微結(jié)構(gòu)進(jìn)一步顯示GPR30定位于海馬的樹突脊和軸突末端[6],而且報(bào)道直接指出,GPR30能介導(dǎo)雌二醇調(diào)節(jié)海馬結(jié)構(gòu)可塑性的功能[11]。人參皂苷Rg1具有類雌激素特性,激活雌激素受體而發(fā)揮神經(jīng)保護(hù)或增強(qiáng)記憶的功能[12-14]。LI等[15]研究指出,中藥通絡(luò)救腦方(由梔子和三七組成)及其活性成分人參皂苷Rg1通過非經(jīng)典雌激素受體發(fā)揮對(duì)AD的保護(hù),而此處的非經(jīng)典雌激素受體和GPR30有重要關(guān)聯(lián)。CHEN等[13]研究指出人參皂苷Rg1對(duì)Aβ25-35誘導(dǎo)的PC12死亡是通過胰島素樣生長(zhǎng)因子1(insulin-like growth factor 1,IGF-1)受體和雌激素受體關(guān)聯(lián)作用的,這與GPR30的作用極為相似。
乙酰膽堿(acetylcholine,ACh)是腦內(nèi)非常經(jīng)典的神經(jīng)遞質(zhì)之一,其在學(xué)習(xí)記憶中起著重要的作用。ACh主要通過與突觸后膜上的兩大受體結(jié)合發(fā)揮作用,AChR可分為毒蕈堿型乙酰膽堿受體(muscarinic acetylcholine receptors,mAChR)和nAChR,mAChR為G蛋白偶聯(lián)受體家族,而nAChR屬于配體門控離子通道超家族。nAChR有神經(jīng)保護(hù)作用,特異性煙堿受體激動(dòng)劑使α7和α4β2 nAChR亞型激動(dòng),可發(fā)揮神經(jīng)保護(hù)作用[16]。α7和α4β2在改善認(rèn)知能力方面也有重要作用[17-18]。人參皂苷Rg1已被證實(shí)可以改善慢性氧化性損傷,可能的機(jī)制和提高嚙齒動(dòng)物腦中膽堿乙酰轉(zhuǎn)移酶(choline acetyltransferase,ChAT)的水平有關(guān)[19]。而ChAT是Ach合成的關(guān)鍵酶,說明人參皂苷Rg1可促進(jìn)腦內(nèi)Ach的合成。JIN等[20]報(bào)道指出人參皂苷Rg1能改善脂多糖誘導(dǎo)的認(rèn)識(shí)損傷,而作用的主要靶點(diǎn)即為α7 nAChR。CHOI等[21]指出nAChR是人參皂苷類化合物作用神經(jīng)細(xì)胞的重要靶點(diǎn),也間接指出nAChR作為人參皂苷Rg1對(duì)學(xué)習(xí)記憶的保護(hù)的靶點(diǎn)之一。
酪氨酸激酶受體B(tyrosine kinase receptor B,TrkB)廣泛存在于中樞神經(jīng)系統(tǒng),是BDNF的功能性受體。TrkB可與BDNF特異性結(jié)合,參與神經(jīng)細(xì)胞的生存、生長(zhǎng)、分化過程。BDNF-TrkB通路是學(xué)習(xí)記憶保護(hù)重要的靶點(diǎn)[22-23]。在AD輕度認(rèn)知障礙患者的海馬和皮質(zhì)中,BDNF mRNA水平和蛋白質(zhì)含量均降低[24]。人參皂苷Rg1可以通過上調(diào)突觸可塑性相關(guān)蛋白p-TrkB和BDNF,恢復(fù)長(zhǎng)時(shí)程增強(qiáng)(long-time potentiation, LTP),改善AD小鼠的記憶[25]。WAN等[26]研究指出,人參皂苷通過促進(jìn)BDNF-TrkB改善慢性腦缺血引起的記憶下降。KEZHU等[27]報(bào)道了人參皂苷Rg1對(duì)慢性束縛應(yīng)激誘導(dǎo)的記憶損傷是由BDNF-TrkB部分介導(dǎo)的。筆者前期研究也發(fā)現(xiàn),人參皂苷Rg1上調(diào)突觸可塑性相關(guān)蛋白p-TrkB和BDNF的表達(dá),恢復(fù)弱θ節(jié)律波(theta-burst stimulation,TBS)誘導(dǎo)的LTP,改善衰老小鼠的學(xué)習(xí)記憶[5]。因此,包含TrkB在內(nèi)的RTKs很可能是Rg1改善衰老記憶減退的重要靶點(diǎn)。
GABAα是配體門控離子通道超家族成員之一,由8個(gè)不同的亞基(α,β,γ,δ,θ,ε,ρ和π)組成。GABA能神經(jīng)傳遞在學(xué)習(xí)和記憶過程中發(fā)揮重要作用[28-30]。GABAα受體可被用作治療認(rèn)知障礙藥物的作用靶點(diǎn)。星形膠質(zhì)細(xì)胞可產(chǎn)生和釋放GABA以影響神經(jīng)細(xì)胞信號(hào)[31]。人參皂苷Rg1通過降低星形膠質(zhì)細(xì)胞替代基因1(astrocyte elevated gene-1,Aeg-1)的表達(dá)水平來降低星形膠質(zhì)細(xì)胞的活化,從而提高認(rèn)知功能[32]。星形膠質(zhì)細(xì)胞活化的減少可能使得GABA的產(chǎn)生和釋放減少,從而改善學(xué)習(xí)記憶。BAE等[33]指出人參皂苷的代謝物化合物K能促進(jìn)GABA自主的釋放,激活GABAR參與學(xué)習(xí)記憶的調(diào)控。
甘氨酸(Glycine)和GABAα同屬于配體門控離子通道超家族成員。Glycine被認(rèn)為是除了GABA以外的最重要的抑制性神經(jīng)遞質(zhì)。Glycine廣泛分布在中樞神經(jīng)系統(tǒng)中,在神經(jīng)信號(hào)的傳遞過程中起著重要的基礎(chǔ)作用,還參與各種生理和病理反應(yīng)[34]。Glycine作為神經(jīng)遞質(zhì)有著雙重作用[35]:低濃度時(shí),它是N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptor,NMDAR)的共激動(dòng)劑,結(jié)合NMDAR上的甘氨酸共激活位點(diǎn),發(fā)揮興奮性作用,產(chǎn)生LTP;高濃度時(shí),它是中樞系統(tǒng)主要的抑制性神經(jīng)遞質(zhì),激活Glycine R,產(chǎn)生長(zhǎng)時(shí)程抑制。人參皂苷Rg1可以顯著改善嗎啡損傷的空間學(xué)習(xí)能力,并恢復(fù)嗎啡抑制的LTP,這種作用依賴于NMDAR[36]。LEE等[37]指出人參皂苷能抑制NMDAR,而這個(gè)調(diào)節(jié)作用和Glycine R密切相關(guān)[38]。
為還原傳統(tǒng)中藥人參延緩衰老、促進(jìn)認(rèn)知的作用本質(zhì),本研究在前期研究的基礎(chǔ)上,結(jié)合國(guó)內(nèi)外研究現(xiàn)狀,對(duì)人參皂苷Rg1改善記憶的作用靶點(diǎn)進(jìn)行了展望。盡管其他的信號(hào)通路(鈣調(diào)蛋白激酶Ⅱ、磷脂酰肌醇3-激酶信號(hào)通路、細(xì)胞外調(diào)節(jié)蛋白激酶、雷帕霉素靶蛋白等)也介導(dǎo)了人參皂苷Rg1的保護(hù)作用[39-41],筆者認(rèn)為人參皂苷Rg1的作用還是通過上游的細(xì)胞膜受體發(fā)揮級(jí)聯(lián)下游的信號(hào)通路。因此,上游靶點(diǎn)的揭示將更加有助于闡述人參皂苷的作用機(jī)制。
[1] CHATTERJI S,KOWAL P,MATHERS C,et al.The health of aging populations in China and India[J]. Health Aff (Millwood),2008,27:1052-1063.
[2] CHAVES A C, FRAGA V G,GUIMARAES H C,et al.Estrogen receptor-alpha gene Xbal A>G polymorphism influences short-term cognitive decline in healthy oldest-old individuals[J]. Arq Neuropsiquiatr,2017,75(3):172-175.
[3] BROOKS R C.GARRATT M G.Life history evolution reproduction, and the origins of sex-dependent aging and longevity[J]. Ann N Y Acad Sci,2017,1389(1):92-107.
[4] LONG W,ZHANG S C,WEN L,et al.Invivodistribution and pharmacokinetics of multiple active components from Danshen and Sanqi and their combination via inner ear administration[J]. J Ethnopharmacol,2014,156:199-208.
[5] ZHU G,WANG Y,LI J,et al.Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice [J]. Neuroscience,2015,292:81-89.
[6] AKAMA K T,THOMPSON L I,MILNER T A,et al.Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines[J]. J Biol Chem,2013,288(9):6438-6450.
[7] KUBOTA T,MATSUMOTO H,KIRINO Y.Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease[J]. J Pharmacol Sci,2016,131(3):219-222.
[8] TANG H,ZHANG Q,YANG L,et al.GPR30 mediates estrogen rapid signaling and neuroprotection[J]. Mol Cell Endocrinol,2014,387(1-2):52-58.
[9] BOURQUE M,MORISSETTE M,COTE M,et al.Implication of GPER1 in neuroprotection in a mouse model of Parkinson’s disease[J]. Neurobiol Aging, 2013,34(3):887-901.
[10] WATERS E M,THOMPSON L I,PATEL P,et al.G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus[J]. J Neurosci,2015,35(6):2384-2397.
[11] GABOR C,LYMER J,PHAN A,et al.Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice[J]. Physiol Behav,2015,149:53-60.
[12] GAO Q G,CHAN H Y,MAN C W,et al.Differential ER alpha-mediated rapid estrogenic actions of ginsenoside Rg1 and estren in human breast cancer MCF-7 cells[J]. J Steroid Biochem Mol Biol,2014,141:104-112.
[13] CHEN W F,ZHOU L P,CHEN L,et al. Involvement of IGF-I receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against Abeta(2)(5)(-)(3)(5)-induced toxicity in PC12 cells[J]. Neurochem Int,2013,62(8):1065-1071.
[14] GAO Q G,CHEN W F,XIE J X,et al.Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways[J].J Neurochem, 2009, 109(5):1338-1347.
[15] LI J,WANG F,DING H,et al.Geniposide, the component of the Chinese herbal formula Tongluojiunao, protects amyloid-β peptide (1-42-mediated death of hippocampal neurons via the non-classical estrogen signaling pathway[J]. Neural Regen Res,2014,9(5):474-480.
[16] EGEA J,BUENDIA I,PARADA E,et al.Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection[J]. Biochem Pharmacol, 2015,97(4):463-472.
[17] CALLAHAN P M,BERTRAND D,BERTRAND S,et al.Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholineinvitroand improves memory-related task performance in young and aged animals[J]. Neuropharmacology,2017,117:422-433.
[18] SUN Y,YANG Y,GALVIN V C,et al.Nicotinic α4β2 cholinergic receptor influences on dorsolateral prefrontal cortical neuronal firing during a working memory task[J]. J Neurosci,2017, 37(21):5366-5377.
[19] LU D,XU A,MAI H,et al.The synergistic effects of heat shock protein 70 and ginsenoside Rg1 against tert-butyl hydroperoxide damage modelinvitro[J]. Oxid Med Cell Longev,2015 .DOI:10.1155/2015/437127.
[20] JIN Y,PENG J,WANG X,et al. Ameliorative Effect of Ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system[J].Neurochem Res,2017,42(5):1299-1307.
[21] CHOI S,JUNG S Y,LEE J H,et al.Effects of ginsenosides,active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes[J].Eur J Pharmacol,2002,442(1-2):37-45.
[22] ZHU G,LI J,HE L,et al.MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway[J].Br J Pharmacol,2015,172(9):2354-2368.
[23] JEON S J,LEE H J,LEE H E,et al. Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling[J].Neuropharmacology,2017,113:100-109.
[24] BALIETTI M,GIULI C,F(xiàn)ATTORETTI P,et al.Effect of a comprehensive intervention on plasma BDNF in patients with Alzheimer’s Disease[J]. J Alzheimers Dis, 2017,57(1):37-43.
[25] LI F,WU X,LI J,et al. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer’s disease model[J]. Mol Med Rep,2016,13(6):4904-4910.
[26] WAN Q,MA X,ZHANG Z J,et al. Ginsenoside reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor regulated by epigenetic modulation[J]. Mol Neurobiol,2017,54(4):2889-2900.
[27] KEZHU W,PAN X,CONG L,et al.Effects of ginsenoside Rg1 on learning and memory in a reward-directed instrumental conditioning task in chronic restraint stressed rats[J].Phytother Res,2017,31(1):81-89.
[28] CONTESTABILE A,MAGARA S,CANCEDDA L.The GABAergic hypothesis for cognitive disabilities in Down syndrome[J]. Front Cell Neurosci,2017,11:54.
[29] M?HLER H,RUDOLPH U.Disinhibition,an emerging pharmacology of learning and memory[J].2017,6[2017-02-03].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302145.DOI:10.12688/f1000research.9947.1.
[30] WHISSELL P D,AVRAMESCU S,WANG D S,et al.δGABAA receptors are necessary for synaptic plasticity in the hippocampus: implications for memory behavior[J]. Anesth Analg,2016,123(5):1247-1252.
[31] ZHANG Y V,ORMEROD K G,LITTLETON J T.Astrocyte Ca2+Influx negatively regulates neuronal activity[J].eNeuro,2017,4[2017-03-10].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348542.DOI:10.1523/ENEURO.0340-16.2017.
[32] ZHU J,MU X,ZENG J,et al. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging[J]. PLoS One,2014,9(6):e101291.
[33] BAE M Y,CHO J H,CHOI I S,et al.Compound K,a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons[J].J Neurochem,2010,114(4):1085-1096.
[34] CHOW D M,ZUCHOWSKI K A,F(xiàn)ETCHO J R.invivomeasurement of glycine receptor turnover and synaptic size reveals differences between functional classes of motoneurons in zebrafish[J]. Curr Biol,2017,27(8):1173-1183.
[35] ACTON D,MILES G B.Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks[J]. J Neurophysiol,2017,117 (5):1877-1893.
[36] QI D,ZHU Y,WEN L,et al.Ginsenoside Rg1 restores the impairment of learning induced by chronic morphine administration in rats[J]. J Psychopharmacol,2009,23(1):74-83.
[37] LEE E,KIM S,CHUNG K C,et al.20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng,inhibits NMDA receptors in cultured rat hippocampal neurons[J]. Eur J Pharmacol,2006,536(1-2):69-77.
[38] KIM S,KIM T,AHN K,et al.Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons[J]. Biochem Biophys Res Commun,2004,323(2):416-424.
[39] ZHANG S,ZHU D,LI H,et al.Analyses of mRNA profiling through RNA sequencing on a SAMP8 mouse model in response to ginsenoside Rg1 and Rb1 Treatment[J]. Front Pharmacol, 2017. DOI:10.3389/fphar.2017.00088.
[40] YANG L,ZHANG J,ZHENG K,et al.Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice[J]. J Gerontol A Biol Sci Med Sci,2014,69(3):282-294.
[41] SONG X Y,HU J F,CHU S F,et al.Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats[J].Eur J Pharmacol,2013,710(1-3):29-38.