李廣棟,呂東穎,田秀芝,姬鵬云,郭江鵬,路永強(qiáng),劉國(guó)世
?
組學(xué)技術(shù)在奶牛乳房炎上應(yīng)用的相關(guān)研究進(jìn)展
李廣棟1,呂東穎1,田秀芝2,姬鵬云1,郭江鵬3,路永強(qiáng)3,劉國(guó)世1
(1中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,北京 100193;2中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193;3北京市畜牧總站,北京 100101)
奶牛乳房炎發(fā)病率較高、病因復(fù)雜,是影響世界奶牛業(yè)發(fā)展的主要常見(jiàn)疾病之一。由金黃色葡萄球菌、大腸桿菌、鏈球菌等病原體引起的臨床和隱形乳房炎對(duì)動(dòng)物性食品安全及畜牧業(yè)的正常發(fā)展構(gòu)成巨大安全隱患,全球每年因奶牛乳房炎導(dǎo)致的經(jīng)濟(jì)損失多達(dá)數(shù)十億美元。近年來(lái)隨著測(cè)序技術(shù)的不斷突破和測(cè)序成本的不斷降低,生命科學(xué)的研究進(jìn)入了多組學(xué)時(shí)代,其在畜牧業(yè)中的應(yīng)用也越來(lái)越廣泛。對(duì)奶牛乳房炎來(lái)說(shuō),傳統(tǒng)的組織病理學(xué)篩查、體細(xì)胞計(jì)數(shù)、牛乳pH檢測(cè)、牛乳電導(dǎo)率檢測(cè)、酶活檢驗(yàn)、紅外熱顯影等診斷技術(shù)由于其自身的局限性難以充分全面地闡明其發(fā)病機(jī)理,已不能滿足科研人員的需求。組學(xué)技術(shù)即Omics,主要包括基因組學(xué)技術(shù)、蛋白質(zhì)組學(xué)技術(shù)和代謝組學(xué)技術(shù)等。通過(guò)基因組學(xué)研究不僅能從轉(zhuǎn)錄層面上揭示奶牛乳房炎復(fù)雜性狀的表型變異及遺傳基礎(chǔ),還能從轉(zhuǎn)錄后調(diào)控(miRNAs、LncRNAs等)和表觀遺傳學(xué)修飾(DNA甲基化、組蛋白修飾等)層面挖掘出相關(guān)的DNA和RNA變化及多分子間的相互作用規(guī)律,能夠幫助我們更好地了解奶牛乳腺組織對(duì)病原體的免疫應(yīng)答機(jī)制,篩選鑒定出乳房炎抗性的信號(hào)通路及關(guān)鍵候選基因,從而提高基因組預(yù)測(cè)或選擇的準(zhǔn)確性。利用蛋白質(zhì)組學(xué)技術(shù)能夠?qū)Σ煌h(huán)境不同狀態(tài)的牛乳及乳腺組織的蛋白質(zhì)種類、表達(dá)豐度、蛋白互作、翻譯后修飾等進(jìn)行比較分析,對(duì)差異表達(dá)的蛋白質(zhì)經(jīng)過(guò)COG功能注釋、數(shù)據(jù)庫(kù)比對(duì)、GO和Pathway富集分析,可以從蛋白水平揭示乳房炎發(fā)生及防御過(guò)程中的復(fù)雜調(diào)控機(jī)制,同時(shí)還能發(fā)現(xiàn)乳房炎診斷的標(biāo)記分子,進(jìn)而為乳房炎治療藥物的研發(fā)提供潛在的精準(zhǔn)靶點(diǎn)。代謝組學(xué)是系統(tǒng)生物學(xué)的重要組成部分。通過(guò)代謝組學(xué)研究,能夠同時(shí)對(duì)機(jī)體在內(nèi)、外環(huán)境等復(fù)雜因素作用下及特定生理時(shí)期內(nèi)所有低分子量代謝產(chǎn)物(如氨基酸、脂類、碳水化合物等)進(jìn)行精準(zhǔn)、高效的定性和定量分析,從而闡明相關(guān)的代謝途徑;其作為基因表達(dá)的最下游,能使基因和蛋白質(zhì)表達(dá)的微小變化在代謝物水平上得到放大,進(jìn)而可以更充分地反映細(xì)胞功能。將代謝組學(xué)技術(shù)應(yīng)用到奶牛乳房炎研究中,能夠分析出差異代謝物、鑒定出相關(guān)的生物標(biāo)志物,進(jìn)而揭示奶牛乳腺的生理及病理變化過(guò)程??傊?,將各組學(xué)技術(shù)及多組學(xué)整合關(guān)聯(lián)分析應(yīng)用到奶牛乳房炎研究中可以更深入地揭示其病原防御機(jī)制,進(jìn)而為乳房炎的預(yù)測(cè)、診斷和治療提供有價(jià)值的參考和借鑒。本文就最近幾年組學(xué)技術(shù)在奶牛乳房炎領(lǐng)域的研究進(jìn)展進(jìn)行綜述,以期為我國(guó)奶牛健康及奶業(yè)安全發(fā)展提供指導(dǎo)。
組學(xué)技術(shù);奶牛;乳房炎
奶牛乳房炎是乳腺組織發(fā)生的一種炎癥性反應(yīng),誘發(fā)因素較多,主要為微生物感染(如細(xì)菌、真菌、支原體、病毒等)、環(huán)境因素(如衛(wèi)生條件、溫度濕度、飼料等)、人為因素(如機(jī)械性損傷、擠奶應(yīng)激、飼養(yǎng)管理不當(dāng)?shù)龋┘芭V蛔陨硪蛩兀ㄈ缒挲g、胎次、產(chǎn)奶量、泌乳階段等)[1-4]。乳房炎的特點(diǎn)為乳腺組織發(fā)生或輕或重的病理學(xué)變化,乳汁中的體細(xì)胞數(shù)增多,乳品質(zhì)異常[5]。該病是世界范圍內(nèi)奶牛養(yǎng)殖業(yè)中治療成本最為昂貴的感染疾病,僅對(duì)美國(guó)畜牧業(yè)造成的影響而言,每年由于牛奶產(chǎn)量及品質(zhì)下降、獸醫(yī)治療成本飆升及牧場(chǎng)管理費(fèi)用增加等方面造成的損失高達(dá)數(shù)十億美元[6]。根據(jù)乳房及乳汁有無(wú)肉眼可見(jiàn)的變化,研究人員通常將奶牛乳房炎分為臨床型乳房炎和亞臨床乳房炎即隱性乳房炎[7-8]。引起奶牛乳房炎的微生物種類繁多,據(jù)報(bào)道有137種,較為常見(jiàn)的有20多種[9-10]。其中金黃色葡萄球菌、大腸桿菌和鏈球菌在檢出的致病菌中占有較高比例,為最常見(jiàn)的乳房炎致病菌類型[11-13]。代謝組學(xué)、蛋白質(zhì)組學(xué)和基因組學(xué)是系統(tǒng)生物學(xué)的重要組成部分[14-20],是近年來(lái)發(fā)展十分迅速的學(xué)科,其不僅在人類醫(yī)學(xué)領(lǐng)域占用重要地位,而且也不斷在畜牧業(yè)中的相關(guān)研究中嶄露頭角[21-23],一代又一代組學(xué)技術(shù)的變革讓人們得以探究微觀世界的真理并從分子水平上解析生命的奧秘。在奶牛乳房炎的相關(guān)研究中,以往的生物技術(shù)因其自身的局限性已經(jīng)不能滿足科研人員的需求,而組學(xué)技術(shù)的出現(xiàn)恰恰能夠從多個(gè)角度深入的解析出奶牛乳房炎的復(fù)雜發(fā)病機(jī)理,進(jìn)而能夠篩選出有效的生物學(xué)標(biāo)記從而進(jìn)行及時(shí)準(zhǔn)確的預(yù)防,同時(shí)其還能為相關(guān)治療藥物的研發(fā)提供精準(zhǔn)的靶點(diǎn),最終達(dá)到防治結(jié)合的預(yù)期結(jié)果。因此,本文從代謝組學(xué)、蛋白質(zhì)組學(xué)和基因組學(xué)三個(gè)方面闡述了組學(xué)技術(shù)在奶牛乳房炎領(lǐng)域的研究進(jìn)展,希望能夠?yàn)楹罄m(xù)的奶牛健康及奶業(yè)安全的相關(guān)研究提供新的思路。
隨著代謝組學(xué)相關(guān)儀器和分析技術(shù)的不斷完善與提高,其在奶牛業(yè)樣品分析中的應(yīng)用研究越來(lái)越多[24-26],牛奶代謝組學(xué)一般是通過(guò)檢測(cè)牛奶中的代謝產(chǎn)物來(lái)研究乳品質(zhì)、乳成分等,進(jìn)而從側(cè)面研究牛只的健康狀況,因此,利用代謝組學(xué)的技術(shù)可以很好的揭示出奶牛乳房炎的病理代謝機(jī)制[27-28]。代謝組學(xué)的過(guò)程通常包括制備和收集奶樣,利用質(zhì)譜、氣相色譜-質(zhì)譜聯(lián)用、液相色譜-質(zhì)譜聯(lián)用、核磁共振等手段進(jìn)行檢測(cè),最后對(duì)獲得的原始數(shù)據(jù)進(jìn)行生物信息學(xué)分析找出差異標(biāo)志物,再通過(guò)比對(duì)相關(guān)數(shù)據(jù)庫(kù)進(jìn)行代謝通路的分析,最終明確代謝產(chǎn)物之間的互作關(guān)系。
越來(lái)越多的專家學(xué)者利用代謝組學(xué)的方法尋找與奶牛乳房炎相關(guān)的活性標(biāo)記物。THOMAS等[29]以由鏈球菌特異性誘導(dǎo)的奶牛乳房炎作為實(shí)驗(yàn)?zāi)P?,將采集的奶樣通過(guò)液相色譜和質(zhì)譜聯(lián)用特異性分析了奶樣的代謝組學(xué),結(jié)果獲得了3 000個(gè)色譜峰,層次聚類分析和主成分分析顯示在誘導(dǎo)乳房炎的81 h后奶樣中的代謝產(chǎn)物變化最大,312 h后才恢復(fù)到正常水平,代謝通路分析表明鏈球菌刺激后的前81 h內(nèi)碳水化合物和核苷酸代謝物多數(shù)呈減少趨勢(shì)而脂代謝物和二、三和四肽卻截然相反,另外還發(fā)現(xiàn)膽汁酸-核受體FXR信號(hào)通路顯著上調(diào),這提示膽汁酸有可能參與了乳腺的炎癥反應(yīng),這也可以對(duì)乳腺組織在應(yīng)答外界感染時(shí)的反應(yīng)有了更好的認(rèn)識(shí)。HETTINGA等[30]采用兩種不同的頂空氣相色質(zhì)譜法(headspace gas chromatography-mass spectrometry, GC-MS)對(duì)大多數(shù)病原菌導(dǎo)致的臨床乳房炎的奶樣進(jìn)行了代謝組學(xué)分析,并成功的對(duì)奶中的揮發(fā)性代謝物進(jìn)行了定量,而且還繪制出了特定揮發(fā)性代謝物的表達(dá)譜,解決了傳統(tǒng)手段無(wú)法解決的難題。SUNDEKILDE等[31]利用核磁共振光譜(nuclear magnetic resonance spectroscopy, NMR)法分析了脫脂牛奶中的代謝組學(xué),結(jié)果發(fā)現(xiàn)低、高體細(xì)胞數(shù)的樣本之間的代謝產(chǎn)物差異顯著,在高體細(xì)胞數(shù)的樣品中乳酸、丁酸、異亮氨酸、乙酸和β-羥基丁酸酯的含量顯著增加,而馬尿酸和富馬酸含量則降低,最終確定了丁酸、β-羥基丁酸酯、異亮氨酸、馬尿酸和富馬酸可以作為牛奶中高體細(xì)胞數(shù)的新的標(biāo)志物,而高體細(xì)胞數(shù)也正是隱性乳房炎和臨床乳房炎的典型特征,因此這些代謝物可以間接的反應(yīng)牛只是否患了乳房炎。而DERVISHI等[32]通過(guò)氣相色譜-質(zhì)譜聯(lián)用的手段對(duì)圍產(chǎn)期患隱性乳房炎的荷斯坦奶牛進(jìn)行了氨基酸、碳水化合物和脂類代謝有關(guān)的代謝組分析,確定了纈氨酸、絲氨酸、酪氨酸和苯丙氨酸可以作為產(chǎn)前4到8周的奶牛隱性乳房炎患病與否的標(biāo)記物,而纈氨酸、異亮氨酸、絲氨酸和脯氨酸則可作為產(chǎn)后4—8周泌乳期的診斷標(biāo)記物,因此,可以通過(guò)氨基酸的代謝變化來(lái)預(yù)測(cè)圍產(chǎn)期奶牛隱性乳房炎的患病風(fēng)險(xiǎn)。Xi[33]等則利用新型的超高效液相色譜四極桿飛行時(shí)間質(zhì)譜(UPLC-Q-TOF-MSE)技術(shù)對(duì)健康組、臨床乳房炎組和隱性乳房炎組的奶牛乳樣進(jìn)行了代謝組分析,結(jié)果發(fā)現(xiàn)和健康組相比,臨床乳房炎組的葡萄糖、一磷酸甘油、4-羥基苯乳酸、左旋肉堿、甘油- 3 -磷酸膽堿、檸檬酸和馬尿酸顯著減少,而在隱性乳房炎組一磷酸甘油、苯甲酸、左旋肉堿和順烏頭酸顯著減少,同時(shí),精氨酸和亮氨酸含量在隱性乳房炎組中顯著增加,該結(jié)果又為乳房炎的診斷提供了更多的標(biāo)記物。綜上所述,代謝組學(xué)不論在隱性乳房炎還是在臨床乳房炎中的應(yīng)用都取得了理想的效果,為該病的診斷提供了更多的依據(jù)。
傳統(tǒng)的蛋白質(zhì)組學(xué)主要包括二維凝膠電泳、質(zhì)譜等技術(shù),目前,二維毛細(xì)管電泳(2D-CE)、二維色譜(2D-LC)、液相色譜-毛細(xì)管電泳(LC-CE)、電噴霧質(zhì)譜(ESI- MS)和基質(zhì)輔助激光解吸電離-飛行時(shí)間質(zhì)譜(MALDI-TOF-MS)等新技術(shù)異軍突起。目前,隨著科技的發(fā)展和成本的降低,蛋白質(zhì)組學(xué)在動(dòng)物疾病相關(guān)領(lǐng)域的研究越來(lái)越廣泛[34],畜牧業(yè)上對(duì)于奶牛乳房炎的蛋白質(zhì)組學(xué)研究也逐漸增多[35-36]。
MANSOR等[37]利用毛細(xì)管電泳質(zhì)譜法(CE-MS)對(duì)健康奶牛和患臨床乳房炎的奶牛乳樣進(jìn)行了蛋白質(zhì)組學(xué)分析,結(jié)果顯示和對(duì)照組相比,患病組的β-乳球蛋白、αS1-酪蛋白、β-酪蛋白、乳過(guò)氧化物酶、骨橋蛋白、白細(xì)胞介素4受體、成纖維細(xì)胞生長(zhǎng)因子結(jié)合蛋白和糖基化依賴性細(xì)胞粘附分子-1差異顯著,另外還發(fā)現(xiàn)αS1-酪蛋白、β酪蛋白和微管α-1C鏈蛋白可以作為區(qū)分由革蘭氏陰性菌(如大腸桿菌等)和革蘭氏陽(yáng)性菌(如金黃色葡萄球菌等)所致奶牛乳房炎的生物標(biāo)記物。ZHAO等[38]則利用二維凝膠電泳和無(wú)標(biāo)記定量分析技術(shù)對(duì)正常奶牛和由大腸桿菌誘導(dǎo)的患乳房炎的奶牛乳腺組織進(jìn)行了比較蛋白質(zhì)組分析,通過(guò)繪制差異蛋白互作網(wǎng)絡(luò)發(fā)現(xiàn)了波形蛋白和α-烯醇化酶為蛋白調(diào)控網(wǎng)絡(luò)的中心,進(jìn)而成功揭示了機(jī)體在應(yīng)對(duì)大腸桿菌入侵乳腺時(shí)的防御機(jī)制。JACOB等[39]則利用液相色譜-質(zhì)譜聯(lián)用(LC-MS)結(jié)合二維凝膠電泳和Western Blot技術(shù)對(duì)隱性乳房炎奶牛和健康奶牛的乳樣中乳清蛋白成分進(jìn)行了組學(xué)分析,結(jié)果發(fā)現(xiàn)在乳房炎早期蛋白胨-3前體、胰蛋白酶前體、補(bǔ)體成分-c3、免疫球蛋白重鏈前體、C型凝集素等差異十分顯著,并且確定了補(bǔ)體C3a可以作為診斷奶牛隱性乳房炎的潛在標(biāo)記物。而HUANG等[40]利用同位素標(biāo)記相對(duì)絕對(duì)定量(isobaric tags for relative and absolute quantification,iTRAQ)技術(shù)和二維液相色譜-串聯(lián)質(zhì)譜法(2D-LC- MS/MS)并結(jié)合生物信息學(xué)分析了由金黃色葡萄球菌導(dǎo)致的奶牛乳房炎感染盛期乳腺組織的蛋白組,結(jié)果發(fā)現(xiàn)和對(duì)照組相比,I型膠原-α1(COL1A1)和間α-球蛋白抑制劑H4(ITIH4)在感染后的乳腺組織中顯著上調(diào),并且最終通過(guò)免疫印跡和免疫組化得到了證實(shí),這為奶牛乳房炎的精準(zhǔn)醫(yī)療提供了新的靶點(diǎn)。綜上所述,蛋白質(zhì)作為中心法則的重要核心,無(wú)論是DNA還是RNA最終都要通過(guò)蛋白質(zhì)來(lái)行使其功能,因此,在奶牛乳房炎中蛋白質(zhì)組學(xué)的應(yīng)用可以更加直觀的描繪出相關(guān)的抗病機(jī)制。
基因組學(xué)是人類醫(yī)學(xué)、動(dòng)植物遺傳育種和進(jìn)化研究中的重要組成部分,隨著高通量深度測(cè)序技術(shù)的不斷突破和測(cè)序平臺(tái)的升級(jí)換代,基因組學(xué)的應(yīng)用越來(lái)越廣泛。復(fù)雜性狀的表型變異通常被認(rèn)為受到許多微效基因和環(huán)境因素的影響,通過(guò)評(píng)估基因組特征中所有遺傳標(biāo)記對(duì)復(fù)雜性狀的整體效應(yīng),可以揭示出復(fù)雜性狀的遺傳基礎(chǔ),從而提高基因組預(yù)測(cè)或選擇的準(zhǔn)確性。將相關(guān)的基因組學(xué)技術(shù)運(yùn)用到奶牛乳房炎的研究中能夠發(fā)現(xiàn)奶牛病理組織和正常組織中的差異表達(dá)基因和相關(guān)的生物學(xué)通路,進(jìn)而可以鑒定出乳房炎的關(guān)鍵候選基因及遺傳標(biāo)記[41-42]。該技術(shù)的運(yùn)用不僅可以從轉(zhuǎn)錄水平上反應(yīng)出功能基因的變化,還能從轉(zhuǎn)錄后調(diào)控(如基因調(diào)控原件miRNA)及表觀遺傳學(xué)修飾(如DNA甲基化和組蛋白修飾)兩個(gè)方面揭示出更深層的互作關(guān)系。
TIEZZI等[43]利用Illumina BovineSNP50芯片對(duì)103 585頭患臨床乳房炎且處于第一個(gè)泌乳期的荷斯坦奶牛和1 361頭公牛進(jìn)行了全基因組關(guān)聯(lián)分析(genome wide association study, GWAS),通過(guò)單步基因組BLUP法發(fā)現(xiàn)臨床乳房炎具有多基因遺傳效應(yīng),并且其性狀和遺傳變異密切相關(guān),還發(fā)現(xiàn)在2號(hào)(IFIH1, LY75, ITGB6, NR4A2 and DPP4)、14號(hào)(LY6K, LY6D, LYNX1, LYPD2, SLURP1, PSCA)、20號(hào)(GHR, OXCT1, C6, C7, C9, C1QTNF3, DAB2, OSMR, PRLR)染色體上的QTL影響臨床乳房炎的遺傳變異,這些候選QTL在免疫反應(yīng)中起著十分重要的作用;在8、11、16、19和24號(hào)染色體上還發(fā)現(xiàn)了未經(jīng)注釋的基因,這些基因能夠作為臨床乳房炎的潛在候選基因,該研究確定的基因組區(qū)域可作為預(yù)測(cè)荷斯坦奶牛臨床乳房炎抗性的遺傳學(xué)依據(jù)。WANG等[44]將2 093頭中國(guó)荷斯坦奶牛體細(xì)胞數(shù)估計(jì)育種值(SCC EBVs)作為表型性狀,利用GWAS和 MMRA 分析鑒定了與奶牛乳房炎抗性及易感性相關(guān)的SNPs和候選基因。結(jié)果發(fā)現(xiàn)48個(gè)SNPs與奶牛乳房炎抗性顯著相關(guān)并且大多數(shù)定位在14號(hào)染色體上,有6 個(gè)顯著的SNPs 被注釋在TRAPPC9 和ARHGAP39 基因中,其可作為奶牛乳房炎易感性/抗性候選基因。而B(niǎo)RAND等[45]利用高乳房炎易感性牛和低乳房炎易感性牛的乳腺組織為試驗(yàn)材料通過(guò)分子標(biāo)記輔助選擇結(jié)合微陣列表達(dá)芯片(marker assisted selection-Microarray chip,MAS)技術(shù)發(fā)現(xiàn)了與奶牛金黃色葡萄球菌乳房炎密切相關(guān)的候選基因RELB,還發(fā)現(xiàn)與奶牛金黃色葡萄球菌乳房炎易感性相關(guān)的候選基因可能潛藏著QTL效應(yīng),該結(jié)果為金葡菌乳房炎抗性基因的篩選提供了更多的選擇。IM等[46]則以經(jīng)過(guò)金黃色葡萄球菌細(xì)胞壁成分脂磷壁酸和肽聚糖處理的奶牛乳腺上皮細(xì)胞為材料,利用Affymetrix芯片技術(shù)檢測(cè)了基因的表達(dá)譜,共篩選到2 019個(gè)差異表達(dá)基因,其中801個(gè)上調(diào)基因,1 218個(gè)下調(diào)基因;在上調(diào)基因中有14個(gè)與炎癥調(diào)控相關(guān)的基因、22個(gè)細(xì)胞內(nèi)分子信號(hào)通路相關(guān)的基因還有15 個(gè)與轉(zhuǎn)錄因子相關(guān)的基因;而下調(diào)基因中有17 個(gè)與炎癥相關(guān)。最后還通過(guò)qPCR對(duì)18個(gè)差異極顯著的基因進(jìn)行了驗(yàn)證,這為金葡菌感染奶牛乳房炎的病理學(xué)研究提供了參考。以上的研究表明,盡管奶牛乳房炎性狀存在復(fù)雜的遺傳變異效應(yīng),但也有一定規(guī)律可尋,顯著差異表達(dá)基因的發(fā)現(xiàn)為相關(guān)的預(yù)測(cè)和選擇提供了可能。
XIU等[47]使用金黃色葡萄球菌(S108)、大腸桿菌(E23)及克雷白氏桿菌(K96)分別感染奶牛的乳腺上皮細(xì)胞,并對(duì)感染后的細(xì)胞通過(guò)Solexa系統(tǒng)進(jìn)行了轉(zhuǎn)錄組測(cè)序。GO分析顯示三種病原菌感染組的差異表達(dá)基因分別集中在細(xì)胞代謝,細(xì)胞凋亡和胚胎發(fā)育上,同源蛋白的聚類分析結(jié)果表明它們均參與了翻譯,核糖體生物合成和修復(fù)等生物過(guò)程,而KEGG分析表明三者分別在氧化磷酸化通路、NOD樣受體信號(hào)通路和凋亡信號(hào)通路顯著富集,還發(fā)現(xiàn)了NRF1、IL8、CXCL5、IL1α、PDCD2L、RAB3A、RAB1B 等基因可作為金葡菌乳房炎抗性候選基因。Wang等[48]利用Illumina系統(tǒng)的Paired-End技術(shù)對(duì)健康牛和金葡菌乳房炎牛的乳腺組織進(jìn)行了轉(zhuǎn)錄組測(cè)序,結(jié)果篩選到1 352 個(gè)差異表達(dá)基因,其中一些免疫相關(guān)基因ITGB6、MYD88、ADA、ACKR1、TNFRSF1B 與金葡菌乳房炎密切相關(guān),可作為金葡菌乳房炎抗性候選基因,另外還發(fā)現(xiàn)在受感染的乳腺組織中CCL5、Colec2、LTF、CD46和NCF1等基因存在復(fù)雜的可變剪接。WANG等[49]則對(duì)經(jīng)過(guò)S56、S178和S36三種金黃色葡萄球菌誘導(dǎo)的奶牛乳腺上皮組織進(jìn)行了轉(zhuǎn)錄組測(cè)序,分別篩選到1 720, 427和219個(gè)差異表達(dá)基因,GO和Pathway分析顯示這些基因顯著地參與炎癥反應(yīng)、代謝轉(zhuǎn)化、細(xì)胞增殖和凋亡信號(hào)通路,IL-1α、TNF、EFNB1、IL-8 和EGR1 等促炎因子顯著上調(diào)。而PU等[50]對(duì)經(jīng)過(guò)無(wú)乳鏈球菌誘導(dǎo)的患乳房炎和健康的中國(guó)荷斯坦牛乳腺組織進(jìn)行了miRNA測(cè)序,結(jié)果發(fā)現(xiàn)和對(duì)照組相比,乳房炎組有35個(gè)差異表達(dá)的miRNA,其中有10個(gè)顯著上調(diào)(miR-223最高),25個(gè)顯著下調(diào)(miR-26a最低),這些miRNA的靶基因主要富集在RIG-I-like受體信號(hào)通路、胞質(zhì)DNA傳感通路和Notch信號(hào)通路上,該研究為miRNA參與無(wú)乳鏈球菌感染奶牛乳房炎的發(fā)病調(diào)控提供了有力的證據(jù)。FANG等[51-52]對(duì)經(jīng)過(guò)高、低濃度金葡菌攻毒24h后的奶牛乳腺組織進(jìn)行了RNA-seq和miRNA-seq,結(jié)果鑒定出194個(gè)差異表達(dá)基因與高濃度的金葡菌感染有關(guān),這些基因主要參與了先天性免疫反應(yīng)過(guò)程;轉(zhuǎn)錄組和QTL數(shù)據(jù)庫(kù)的聯(lián)合分析發(fā)現(xiàn)了28 個(gè)與奶牛金葡菌乳房炎抗性相關(guān)的候選基因(如SLC4A11等);他們還發(fā)現(xiàn)高濃度金葡菌感染組β-mir-223和β-mir-21-3p顯著上調(diào),互作分析顯示這兩個(gè)miRNA通過(guò)抑制CXCL14和KIT來(lái)抵抗病原入侵,這些結(jié)果從轉(zhuǎn)錄調(diào)控和轉(zhuǎn)錄后調(diào)控的兩個(gè)角度綜合分析了金葡菌入侵時(shí)的機(jī)體免疫機(jī)制,具有一定的借鑒意義。JIN等[53]則對(duì)經(jīng)金葡菌和大腸桿菌感染的牛乳腺上皮細(xì)胞(Mac-T)進(jìn)行了RNA-Seq和miRNA-Seq,結(jié)果發(fā)現(xiàn)兩種菌感染牛乳腺細(xì)胞后共有17個(gè)miRNA顯著差異,其中金葡菌感染細(xì)胞后特有的差異表達(dá)miRNA 有4個(gè)(bta-miR-2339, miR-499, miR-23a 和miR- 99b),而大腸桿菌感染細(xì)胞后的差異表達(dá)miRNA 有5 個(gè)(bta-miR-184, miR-24-3p, miR-148, miR-486 和let-7a-5p),靶基因預(yù)測(cè)顯示主要富集在細(xì)胞增殖和凋亡生物過(guò)程中。以上研究為奶牛乳房炎相關(guān)基因的轉(zhuǎn)錄、轉(zhuǎn)錄后調(diào)控及宿主細(xì)胞對(duì)病原菌的免疫應(yīng)答等研究提供了參考,這些新發(fā)現(xiàn)的潛在的靶基因和miRNA可作為奶牛隱性和臨床乳房炎診斷和預(yù)防的生物學(xué)標(biāo)記。
目前,靈長(zhǎng)類及模式動(dòng)物的表觀遺傳學(xué)研究如火如荼,尤其是疾病相關(guān)領(lǐng)域的研究工作甚多,但在家養(yǎng)動(dòng)物中相關(guān)的研究開(kāi)展相對(duì)較晚,奶牛乳房炎因受病原菌和環(huán)境共同影響,若單從病原角度或單從遺傳學(xué)角度均難以有效實(shí)現(xiàn)對(duì)奶牛乳房炎的防治,因此,表觀遺傳學(xué)的出現(xiàn)對(duì)奶牛乳房炎的研究是一個(gè)很好的補(bǔ)充。
VANSELOW等[54]研究發(fā)現(xiàn),在大腸桿菌性乳房炎中酪蛋白的表達(dá)受到αS1-酪蛋白基因(CSN1S1)遠(yuǎn)端啟動(dòng)子區(qū)的DNA 甲基化調(diào)控,這說(shuō)明CpG島甲基化變化可能與奶牛乳房炎的發(fā)病有重要關(guān)系。WANG等[55]則通過(guò)重亞硫酸鹽-焦磷酸測(cè)序技術(shù)定量檢測(cè)了中國(guó)健康荷斯坦牛與乳房炎牛CD4基因的啟動(dòng)子CpG甲基化水平,結(jié)果發(fā)現(xiàn)臨床乳房炎牛CD4基因啟動(dòng)子區(qū)的甲基化水平顯著高于健康奶牛,從而導(dǎo)致該基因的表達(dá)水平下降,這表明CD4 基因啟動(dòng)子區(qū)的高DNA甲基化水平可作為奶牛乳房炎易感性的分子標(biāo)記。而SONG等[56]通過(guò)DNA甲基化免疫共沉淀-芯片(MeDIP-chip)結(jié)合亞硫酸氫鹽測(cè)序(BSP)技術(shù)首次獲得了金葡菌隱性乳房炎牛外周血淋巴細(xì)胞的全基因組DNA甲基化圖譜,結(jié)果分析鑒定出的58個(gè)差異甲基化表達(dá)基因中有20.7%的超甲基化基因顯著下調(diào),14.3%顯著上調(diào);KEGG分析表明這些基因參與炎癥反應(yīng)、ErbB信號(hào)通路和DNA錯(cuò)配修復(fù)等;最終獲得了三個(gè)新的DNA 甲基化修飾靶基因MST1、NRG1和NAT9,它們可作為潛在的金葡菌隱性乳房炎抗性生物學(xué)標(biāo)記,該研究為奶牛乳房炎易感性的表觀遺傳學(xué)研究提供了新的依據(jù)。HE等[57]則采用染色質(zhì)免疫共沉淀(ChIP-seq)和數(shù)字基因表達(dá)譜(DGE-seq)技術(shù)對(duì)隱性乳房炎奶牛的淋巴細(xì)胞進(jìn)行了測(cè)序,獲得了奶牛組蛋白修飾H3K27me3 的全基因組表達(dá)譜及金葡菌乳房炎抗性相關(guān)的靶基因,發(fā)現(xiàn)隱性乳房炎組的H3K27me3在沉默基因中的表達(dá)水平顯著高于健康牛,還確定了金葡菌乳房炎抗性重要候選基因PTX3、IL10等,該研究表明奶牛的金葡菌乳房炎抗性與組蛋白的甲基化調(diào)控密切相關(guān)。以上研究結(jié)果表明DNA、組蛋白甲基化等表觀遺傳因素對(duì)于奶牛乳房炎的發(fā)生、發(fā)展和維持等具有重要影響。奶牛產(chǎn)奶性狀的遺傳力屬于中等遺傳力,而奶牛乳房炎遺傳力非常低,因此乳房炎相關(guān)基因更易受到環(huán)境影響而使DNA甲基化程度發(fā)生改變。
中國(guó)是畜牧業(yè)大國(guó),畜牧業(yè)的可持續(xù)發(fā)展是社會(huì)穩(wěn)定的基礎(chǔ),奶牛在畜牧業(yè)中占用重要的地位,乳房炎是制約奶牛健康及乳品安全的關(guān)鍵,三大組學(xué)技術(shù)從蛋白質(zhì)、氨基酸、代謝物等深入到基因的轉(zhuǎn)錄表達(dá)、轉(zhuǎn)錄后調(diào)控、表觀修飾、信號(hào)通路等,從微觀和分子角度極大地豐富了對(duì)于奶牛乳房炎的研究。與此同時(shí),也應(yīng)當(dāng)清醒的意識(shí)到三大組學(xué)技術(shù)也存在一定的局限性,比如對(duì)于基因組測(cè)序而言,仍然是以Illumina等為首的國(guó)外公司獨(dú)占鰲頭,完全具有自主知識(shí)產(chǎn)權(quán)的國(guó)內(nèi)測(cè)序平臺(tái)仍然寥寥無(wú)幾,而蛋白質(zhì)組學(xué)和代謝組學(xué)相對(duì)高昂的成本也并非每個(gè)實(shí)驗(yàn)室都能夠負(fù)擔(dān)的起,因此,組學(xué)的應(yīng)用推廣工作任重而道遠(yuǎn),需要每一位科研工作者的不斷努力。
[1] THOMPSON-CRISPI K, ATALLA H, MIGLIOR F, MALLARD B A. Bovine mastitis: frontiers in immunogenetics., 2014, 5: 493.
[2] GODDEN S M, ROYSTER E, KNAUER W, SORG J, LOPEZ- BENAVIDES M, SCHUKKEN Y, LEIBOWITZ S, FRENCH E A. Randomized noninferiority study evaluating the efficacy of a postmilking teat disinfectant for the prevention of naturally occurring intramammary infections., 2016, 99(5): 3675-3687.
[3] DAHL M O, MAUNSELL F P, DE VRIES A, GALVAO K N, RISCO C A, HERNANDEZ J A. Evidence that mastitis can cause pregnancy loss in dairy cows: A systematic review of observational studies., 2017, 100(10): 8322-8329.
[4] FRANCOZ D, WELLEMANS V, DUPRé J P, ROY J P, LABELLE F, LACASSE P, DUFOUR S. Invited review: A systematic review and qualitative analysis of treatments other than conventional antimicrobials for clinical mastitis in dairy cows., 2017, 100(10): 7751-7770.
[5] PILLA R, MALVISI M, SNEL G G, SCHWARZ D, K?NIG S, CZERNY C P, PICCININI R. Differential cell count as an alternative method to diagnose dairy cow mastitis., 2013, 96(3): 1653-1660.
[6] HERTL J A, SCHUKKEN Y H, WELCOME F L, TAUER L W, GR?HN Y T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows., 2014, 97(3): 1465-1480.
[7] REYES J, CHAFFER M, SANCHEZ J, TORRES G, MACIAS D, JARAMILLO M, DUQUE P C, CEBALLOS A, KEEFE G P. Targeting human pathogenic bacteria by siderophores A proteomics review., 2015, 98(8): 5294-5303.
[8] ROWBOTHAM R F, RUEGG P L. Associations of selected bedding types with incidence rates of subclinical and clinical mastitis in primiparous Holstein dairy cows., 2016, 99(6): 4707-4717.
[9] TAPONEN S, LISKI E, HEIKKIL? A M, PY?R?L? S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci,,,,, or., 2017, 100(1): 493-503.
[10] GAO J, BARKEMA H W, ZHANG L, LIU G, DENG Z, CAI L, SHAN R, ZHANG S, ZOU J, KASTELIC J P, HAN B. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms., 2017, 100(6): 4797-4806.
[11] HERRY V, GITTON C, TABOURET G, RéPéRANT M, FORGE L, TASCA C, GILBERT F B, GUITTON E, BARC C, STAUB C, SMITH D G, GERMON P, FOUCRAS G, RAINARD P. Local immunization impacts the response of dairy cows tomastitis., 2017, 7(1): 3441.
[12] SANTOS R I, ZUNINO P M, GIL A D, LAPORT A, HIRIGOYEN D J. Antibiotic resistance ofassociated with subclinical and clinical mastitis in Uruguay during an eight-year period., 2017, 49(3): 191-194.
[13] LEELAHAPONGSATHON K, SCHUKKEN Y H, PINYOPUMMINTR T, SURIYASATHAPORN W. Comparison of transmission dynamics betweenandintramammary infections., 2016, 99(2): 1418-1426.
[14] ORTEA I, O'CONNOR G, MAQUET A. Review on proteomics for food authentication., 2016, 147: 212-225.
[15] FERREIRA D, SECA A M, C G A D, SILVA A M. Targeting human pathogenic bacteria by siderophores: A proteomics review., 2016, 145: 153-166.
[16] TALWAR D, TSENG T S, FOSTER M, XU L, CHEN L S. Genetics/genomics education for nongenetic health professionals: a systematic literature review., 2017, 19(7): 725-732.
[17] CHEN R, MIAS G I, LI-POOK-THAN J, JIANG L, LAM H Y, CHEN R, MIRIAMI E, KARCZEWSKI K J, HARIHARAN M, DEWEY F E, CHENG Y, CLARK M J, IM H, HABEGGER L, BALASUBRAMANIAN S, O'HUALLACHAIN M, DUDLEY J T, HILLENMEYER S, HARAKSINGH R, SHARON D, EUSKIRCHEN G, LACROUTE P, BETTINGER K, BOYLE A P, KASOWSKI M, GRUBERT F, SEKI S, GARCIA M, WHIRL-CARRILLO M, GALLARDO M, BLASCO M A, GREENBERG P L, SNYDER P, KLEIN T E, ALTMAN R B, BUTTE A J, ASHLEY E A, GERSTEIN M, NADEAU K C, TANG H, SNYDER M. Personal omics profiling reveals dynamic molecular and medical phenotypes., 2012, 148(6): 1293-1307.
[18] JOYCE A R, PALSSON B O. The model organism as a system: integrating 'omics' data sets., 2006, 7(3): 198-210.
[19] GEHLENBORG N, O'DONOGHUE S I, BALIGA N S, GOESMANN A, HIBBS M A, KITANO H, KOHLBACHER O, NEUWEGER H, SCHNEIDER R, TENENBAUM D, GAVIN A C. Visualization of omics data for systems biology., 2010, 7(3 Suppl): S56-S68.
[20] PATTI G J, YANES O, SIUZDAK G. Innovation: Metabolomics: the apogee of the omics trilogy., 2012, 13(4): 263-269.
[21] VAN EMON J M. The Omics Revolution in Agricultural Research., 2016, 64(1): 36-44.
[22] GOBERT M, SAYD T, GATELLIER P, SANTé-LHOUTELLIER V. Application to proteomics to understand and modify meat quality., 2014, 98(3): 539-543.
[23] KAMATH P L, FOSTER J T, DREES K P, LUIKART G, QUANCE C, ANDERSON N J, CLARKE P R, COLE E K, DREW M L, EDWARDS W H, RHYAN J C, TREANOR J J, WALLEN R L, WHITE P J, ROBBE-AUSTERMAN S, CROSS P C. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock., 2016, 7: 11448.
[24] 孫雨航, 許楚楚, 李昌盛, 夏成, 徐闖, 吳凌, 張洪友.基于1H NMR 技術(shù)的乳熱奶牛血清代謝組學(xué)分析.中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(2): 362-369.
SUN Y H, XU C C, LI C S, XIA C, XU C, WU L, ZHANG H Y. 1H NMR-based serum Metabolomics analysis of dairy cows with milk fever., 2015, 48(2): 362-369. (in Chinese)
[25] 李亞娟, 王東升, 張世棟, 嚴(yán)作廷, 楊志強(qiáng), 杜玉蘭, 董書(shū)偉, 何寶祥.基于GC-MS 技術(shù)的蹄葉炎奶牛血漿代謝譜分析. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(21): 4255-4264.
LI Y J, WANG D S, ZHANG S D, YAN Z T, YANG Z Q, DU Y L, DONG S W, HE B X.Plasma metabolic profiling analysis of dairy cows with laminitis based on GC-MS., 2016, 49(21): 4255-4264. (in Chinese)
[26] GOLDANSAZ S A, GUO A C, SAJED T, STEELE M A, PLASTOW G S, WISHART D S. Livestock metabolomics and the livestock metabolome: A systematic review., 2017, 12(5): e0177675.
[27] GUILLEMIN N, HORVATI? A, KULE? J, GALAN A, MRLJAK V, BHIDE, M. Omics approaches to probe markers of disease resistance in animal sciences., 2016, 12(7): 2036-2046.
[28] ADDIS M F, TANCA A, UZZAU S, OIKONOMOU G, BICALHO R C, MORONI P. The bovine milk microbiota: insights and perspectives from-omics studies., 2016, 12(8): 2359-2372.
[29] THOMAS F C, MUDALIAR M, TASSI R, MCNEILLY T N, BURCHMORE R, BURGESS K, HERZYK P, ZADOKS R N, ECKERSALL P D. Mastitomics, the integrated omics of bovine milk in an experimental model ofmastitis: 3. Untargeted metabolomics., 2016, 12(9): 2762-2769.
[30] HETTINGA K A, DE BOK F A, LAM T J. Short communication: Practical issues in implementing volatile metabolite analysis for identifying mastitis pathogens., 2015, 98(11): 7906-7910.
[31] SUNDEKILDE U K, POULSEN N A, LARSEN L B, BERTRAM H C. Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk., 2013, 96(1): 290-299.
[32] DERVISHI E, ZHANG G, DUNN S M, MANDAL R, WISHART D S, AMETAJ B N. GC-MS metabolomics identifies metabolite alterations that precede subclinical mastitis in the blood of transition dairy cows., 2017, 16(2): 433-446.
[33] XI X, KWOK L, WANG Y, MA C, MI Z, ZHANG H. Ultra- performance liquid chromatography-quadrupole-time of flight mass spectrometry MS E-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis., 2017, 100(6): 4884-4896.
[34] 徐闖, 朱奎玲, 陳媛媛, 楊威, 夏成, 張洪友, 吳凌, 舒適, 沈泰鈺, 于洪江, 許秋實(shí), 張子揚(yáng).應(yīng)用 SELDI-TOF-MS 技術(shù)對(duì)患脂肪肝奶牛血漿差異蛋白的分離鑒定及生物信息學(xué)特征.中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(8): 1585-1598.
XU C, ZHU K L, CHEN Y Y, YANG W, XIA C, ZHANG H Y, WU L, SHU S, SHEN T Y, YU H J, XU Q S, ZHANG Z Y.Isolation identification and bioinformatics of differences protein in plasma of cows suffer from fatty liver with SELDI-TOF-MS techniques., 2016, 49(8): 1585-1598.(in Chinese)
[35] THOMAS F C, MULLEN W, TASSI R, RAMíREZ-TORRES A, MUDALIAR M, MCNEILLY T N, ZADOKS R N, BURCHMORE R, ECKERSALL P D. Mastitomics, the integrated omics of bovine milk in an experimental model of: 1. High abundance proteins, acute phase proteins and peptidomics., 2016, 12(9): 2735-2747.
[36] MUDALIAR M, TASSI R, THOMAS F C, MCNEILLY T N, WEIDT S K, MCLAUGHLIN M, WILSON D, BURCHMORE R, HERZYK P, ECKERSALL P D, ZADOKS R N. Mastitomics, the integrated omics of bovine milk in an experimental model ofmastitis: 2. Label-free relative quantitative proteomics., 2016, 12(9): 2748-2761.
[37] MANSOR R, MULLEN W, ALBALAT A, ZEREFOS P, MISCHAK H, BARRETT D C, BIGGS A, ECKERSALL P D. A peptidomic approach to biomarker discovery for bovine mastitis., 2013, 85: 89-98.
[38] ZHAO X W, YANG Y X, HUANG D W, Cheng G L, Zhao H L. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected withmastitis., 2015, 16(3): 253-263.
[39] JACOB T, SUBRAMANI G, SIVAPRAKASAM P, XAVIER A P, MUKHOPADHYAY H K. Immuno-detection of C3a, a C3 complement activated product in mastitis milk, a potential Diagnostic marker., 2017, 4(1): 13.
[40] HUANG J, LUO G, ZHANG Z, WANG X, JU Z, QI C, ZHANG Y, WANG C, LI R, LI J, YIN W, XU Y, MOISá S J, LOOR J J, ZHONG J. iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus., 2014, 15: 839.
[41] LIPPOLIS J D, HOLMAN D B, BRUNELLE B W, THACKER T C, BEARSON B L, REINHARDT T A, SACCO1 R E, CASEY T A. Genomic and transcriptomic analysis ofstrains associated with persistent and transient bovine mastitis and the role of Colanic Acid., 2017, IAI: 00566-17.
[42] CAPRA E, CREMONESI P, PIETRELLI A, PUCCIO S, LUINI M, STELLA A, CASTIGLIONI B. Genomic and transcriptomic comparison betweenstrains associated with high and low within herd prevalence of intra-mammary infection., 2017, 17(1): 21.
[43] TIEZZI F, PARKER-GADDIS K L, COLE J B, CLAY J S, MALTECCA C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure., 2015, 10(2): e114919.
[44] WANG X, MA P, LIU J, ZHANG Q, ZHANG Y, DING X, JIANG L, WANG Y, ZHANG Y, SUN D, ZHANG S, SU G, YU Y. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility., 2015, 16(1): 111.
[45] BRAND B, HARTMANN A, REPSILBER D, GRIESBECK-ZILCH B, WELLNITZ O, KüHN C, PONSUKSILI S, MEYER H H, SCHWERIN M. Comparative expression profiling ofandinoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score., 2011, 43(1): 24.
[46] IM J, LEE T, JEON J H, BAIK J E, KIM K W, KANG S S, YUN C H, KIM H, HAN S H. Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid plus peptidoglycan from., 2014, 21(1): 231-240.
[47] XIU L, FU Y B, DENG Y, SHI XJ, BIAN ZY, RUHAN A, WANG X. Deep sequencing-based analysis of gene expression in bovine mammary epithelial cells after,, andinfection., 2015, 14(4): 16948-16965.
[48] WANG X G, JU Z H, HOU M H, JIANG Q, YANG C H, ZHANG Y, SUN Y, LI R L, WANG C F, ZHONG J F, HUANG J M. Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected withMastitis., 2016, 11(7): e159719.
[49] WANG X, XIU L, HU Q, CUI X, LIU B, TAO L, WANG T, WU J, CHEN Y, CHEN Y. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response toinfection withstains., 2013, 8(12): e82117.
[50] PU J, LI R, ZHANG C, CHEN D, LIAO X, ZHU Y, GENG X, JI D, MAO Y, GONG Y, YANG Z. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae- induced mastitis., 2017, 84(3): 300-308.
[51] FANG L, HOU Y, AN J, Li B, SONG M, WANG X, S?RENSEN P, DONG Y, LIU C, WANG Y, ZHU H, ZHANG S, YU Y. Genome-eide transcriptional and post-transcriptional regulation of iInnate immune and defense responses of bovine mammary gland to, 2016, 6: 193.
[52] FANG L, SAHANA G, SU G, YU Y, ZHANG S, LUND M S, S?RENSEN P. Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle., 2017, 7: 45560.
[53] JIN W, IBEAGHA-AWEMU E M, LIANG G, BEAUDOIN F, ZHAO X, GUAN L L. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged withorbacteria reveals pathogen directed microRNA expression profiles., 2014, 15(1): 181.
[54] VANSELOW J, YANG W, HERRMANN J, ZERBE H, SCHUBERTH H J, PETZL W, TOMEK W, SEYFERT H M. DNA-remethylation around a STAT5-binding enhancer in the S1-casein promoter is associated with abrupt shutdown of S1-casein synthesis during acute mastitis., 2006, 37(3): 463-477.
[55] WANG X S, ZHANG Y, HE Y H, MA P P, FAN L J, WANG Y C, ZHANG Y I, SUN D X, ZHANG S L, WANG C D, SONG J Z, YU Y. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitis dairy cows., 2013, 12(4): 6228-6239.
[56] SONG M, HE Y, ZHOU H, ZHANG Y, LI X, YU Y. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovinesubclinical mastitis., 2016, 6(1): 29390.
[57] HE Y, SONG M, ZHANG Y, LI X, SONG J, ZHANG Y, YU Y. Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by., 2016, 17(1): 565.
Research Progress of Omics Technologies in Cow Mastitis
LI GuangDong1, Lü DongYing1, TIAN XiuZhi2, JI PengYun1, GUO JiangPeng3, LU YongQiang3, LIU GuoShi1
(1College of Animal Science and Technology,China Agriculture University,Beijing 100193;2Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193;3Beijing Animal Husbandry Station,Beijing 100101)
Dairy mastitis, a common and complex disease with a high incidence, takes its toll on the development of world dairy industry, brings economic losses of billions of dollars per year. Clinical and subclinical mastitis, caused by pathogens such as,and, posed a huge security risk to milk industry. In recent years, with the continuous breakthrough of sequencing technology and decline of sequencing cost, the research of life science has entered into the Omics era. The traditional methods such as histopathological screening, somatic cell counting, milk PH value detection, detection of milk conductivity, enzyme activity test, infrared thermal imaging can be employed for clinical diagnosis of dairy cow mastitis, but these methods are not powerful enough to elucidate the pathogenesis in a cellular or molecular view. Omics technologies are mainly composed of genomics, proteomics and metabolomics. Genomics can not only reveal the phenotypic variation and genetic basis of the complex trait of dairy mastitis at the transcriptional level, but also reveal the molecular patterns of the mastitis from the aspects of transcriptional regulation (miRNAs, LncRNAs, etc.) and epigenetic modification (DNA methylation, histone modification, etc.). Genomic analysis of mastitis can also dig out the related changes of DNA, RNA and the rules of multi-molecule interaction, which accounts for a better understanding of the immune mechanism of the host against the pathogen, so as to screen and identify the signal pathways and key candidate genes of mastitis resistance, thus improving the accuracy of genome prediction or selection. Proteomics can not only compare milk protein type and abundance but also analyze protein interaction and post-translational modification in breast tissues under different states and environments. The differentially expressed proteins are annotated by COG (Cluster of Orthologous Groups of protein) function followed by database comparison, GO and Pathway enrichment analysis, which help bring to light the complex regulatory mechanism of mastitis occurrence and defense process at protein level. Proteomic analysis can also be used to find molecular marker of mastitis diagnosis, which will provide a potential precise target for the development of therapeutic drugs. Metabolomics, an important part of the system biology, can detect metabolites of low molecular weight (such as amino acids, lipids, carbohydrates, etc.) of the specific tissues or organs in specific environment or specific physiological states. Efficient qualitative and quantitative analysis will elucidate the relevant metabolic pathways. As the ultimate downstream of gene expression, metabolomics technology enables small changes in gene expression and protein synthesis to be amplified at metabolite levels to fully reflect cellular functions, whose application in dairy mastitis will be able to identify related biomarkers and reveal the physiological and pathological changes of dairy breasts. In conclusion, applying Omics or multi-Omics association analysis techniques to mastitis can further reveal the pathogenic defense mechanism, which will provide valuable reference for disease prediction, diagnosis and treatment. This paper reviews the latest research progress about application of Omics in the field of cow mastitis, aiming to provide solid theoretical bases and practical references for cow health and safety of dairy industry in China.
Omics; cow; mastitis
10.3864/j.issn.0578-1752.2019.02.013
2017-12-05;
2017-12-22
轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2014ZX0800802B)、北京市奶牛創(chuàng)新團(tuán)隊(duì)(BAIC06-2017)
李廣棟,E-mail:15600911225@cau.edu.cn。通信作者劉國(guó)世,E-mail:gshliu@cau.edu.cn
(責(zé)任編輯 林鑒非)