廉昱晴 劉彥隆
關(guān)鍵詞: 認(rèn)知無線電; 群智能算法; 資源分配; 濾波器組; 正交頻分復(fù)用; 頻譜感知
中圖分類號: TN92?34 ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)01?0033?05
Abstract: In the multi?carrier cognitive radio system with multiuser mixed business, the grouping proportional fairness thought is fused into the resource allocation according to the actual situation of spectrum sensing error to propose an improved swarm intelligence algorithm. On the promising the fairness of different users and on the basis of filter bank multicarrier (FBMC) technology, the state factor is introduced into the algorithm for mixed business to maximize the cognitive radio system. The swam intelligence algorithm is used to allocate the system resources reasonably for the multiuser business. The cognitive radio systems based on FBMC and OFDM are compared. The simulation analysis results show that the capacity of cognitive radio system based on FBMC is better than that of cognitive radio system based on OFDM while the algorithm has low influence on primary user communication, and the algorithm can ensure the fairness of users, and satisfy the QoS requirement of mixed business.
Keywords: cognitive radio; swarm intelligence algorithm; resource allocation; filter back; OFDM; spectrum sensing
無線通信多用戶多業(yè)務(wù)的需求不斷增加,所需的頻譜資源的利用隨之變得越來越大,無線資源越發(fā)緊張,提高無線頻譜的利用率成為無線資源亟待優(yōu)化的熱點(diǎn)問題之一[1]。認(rèn)知無線電(Cognitive Radio,CR)在確保授權(quán)用戶正常通信的前提下,可以很好地感知空閑頻譜資源,以提供更多的頻譜資源,被認(rèn)為可以有效地改善無線頻譜資源匱乏的情況[2]。
自正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing,OFDM)技術(shù)提出以來,鑒于其可以動(dòng)態(tài)地調(diào)整子信道的調(diào)制技術(shù)和發(fā)射功率,可以有效提高頻譜利用率[3]。美中不足,OFDM技術(shù)存在循環(huán)前綴,具有較大的帶外泄露(Out?of?Band?Leakage,OOBL)等問題,這些都會(huì)影響系統(tǒng)頻譜利用率。相比OFDM技術(shù),濾波器組多載波(Filter Bank Multicarrier,F(xiàn)BMC)技術(shù),作為5G物理層備選技術(shù)之一[4],能夠很好地降低帶外頻譜泄露,不需要循環(huán)前綴就可以提升頻譜利用效率[5],能很好地應(yīng)用于CR系統(tǒng)中。
目前,針對多載波認(rèn)知無線電系統(tǒng)資源分配的研究已有一些。文獻(xiàn)[6?7]在認(rèn)知無線電OFDM系統(tǒng)中提出新的資源分配算法。文獻(xiàn)[6]研究了在干擾受限的前提下,利用注水搜索算法進(jìn)行系統(tǒng)功率聯(lián)合最優(yōu)化分配,可以實(shí)現(xiàn)多認(rèn)知用戶對速率需求不同情況下,求得功效最大化,但其算法實(shí)現(xiàn)復(fù)雜度較高,沒有考慮用戶間比例約束。文獻(xiàn)[7]則提出一種改進(jìn)的遺傳算法進(jìn)行認(rèn)知OFDM系統(tǒng)中的資源分配,但是沒有考慮綜合業(yè)務(wù)類型,且用戶緊急程度并未設(shè)定。而文獻(xiàn)[8]則研究了基于FBMC上行鏈路資源分配問題,并且與OFDM系統(tǒng)進(jìn)行比較分析。文獻(xiàn)[9]同文獻(xiàn)[8]一樣,在同樣的系統(tǒng)環(huán)境下,對認(rèn)知FBMC系統(tǒng)與認(rèn)知OFDM系統(tǒng)的資源分配問題進(jìn)行比較研究。文獻(xiàn)[8?9]基于FBMC進(jìn)行物理層傳輸,但是這兩者均未將不同認(rèn)知用戶對傳輸速率需求不同考慮在內(nèi),沒有引入調(diào)度策略。
綜合上述研究,雖然對系統(tǒng)資源分配進(jìn)行了不同程度的優(yōu)化,但卻都是設(shè)定在理想狀態(tài)下,沒有考慮認(rèn)知無線電中由于感知誤差或時(shí)延等因素對授權(quán)用戶造成干擾,系統(tǒng)存在頻譜感知錯(cuò)誤的情況。
螢火蟲算法通過全局隨機(jī)性的搜索,由個(gè)體動(dòng)態(tài)調(diào)整搜索范圍來確定移動(dòng)路徑[10]。該算法簡單易行,搜索速度快,但算法后期容易獲取局部最優(yōu)解,收斂較低,因此本文對其進(jìn)行改進(jìn)。
本文基于FBMC多載波認(rèn)知無線電系統(tǒng),結(jié)合實(shí)際情況,在考慮感知錯(cuò)誤的前提下,將分組比例公平改進(jìn)螢火蟲優(yōu)化(Modified Glowworm Swarm Optimization, M?GSO)算法用于系統(tǒng)資源分配中。算法先通過分組比例公平調(diào)度,在此基礎(chǔ)上引入用戶狀態(tài)因子,再利用M?GSO算法進(jìn)行資源分配,提高頻譜利用率。
通過對用戶間FI公平指數(shù)的比較,快速最優(yōu)算法和固定子載波分配算法的用戶公平指數(shù)明顯低于本文所提算法,如圖4所示。本文所提算法的公平性指數(shù)在0.8~0.9范圍。在SU數(shù)量與業(yè)務(wù)類型相同的前提下,由于本文所提算法考慮了業(yè)務(wù)分組和用戶分組時(shí)的時(shí)間緊急狀況,將最優(yōu)的資源分配給緊急用戶,以此類推,確保了不同SU的資源需求和QoS質(zhì)量,保證了用戶的比例公平。
本文在FBMC認(rèn)知無線電系統(tǒng)中,結(jié)合實(shí)際情況,將頻譜感知錯(cuò)誤考慮在內(nèi),引入分組比例公平的思想,將其與群智能算法——螢火蟲算法相結(jié)合,提出一種改進(jìn)的螢火蟲智能優(yōu)化算法。在系統(tǒng)資源分配的過程中應(yīng)用所提算法將最大化系統(tǒng)容量為目標(biāo),更合理地進(jìn)行資源分配。仿真結(jié)果表明,該算法在對授權(quán)用戶通信影響很小的情況下,系統(tǒng)容量優(yōu)于OFDM的認(rèn)知無線電系統(tǒng)容量,且確保用戶的公平,同時(shí)滿足混合業(yè)務(wù)的QoS需求。
注:本文通訊作者為劉彥隆。
參考文獻(xiàn)
[1] YU Bin, MA Piming, MA Yanbo. Resource allocation and energy management in OFDM?based cellular systems [C]// 2016 IEEE International Conference on Communication System. Shenzhen, China: IEEE, 2016: 1?6.
[2] JIA Min, GU Xuemai, GUO Qing, et al. Broadband hybrid sa?tellite?terrestrial communication systems based on cognitive radio toward 5G [J]. IEEE wireless communications, 2016, 12(23): 96?106.
[3] NI Chunxing, FENG Mingjie, LUO Kai, et al. Additive cancellation signal method for sidelobe suppression in NC?OFDM based cognitive radio systems [C]// 2015 IEEE Global Communications Conference. San Diego: IEEE, 2015: 1?5.
[4] FARHANG?BOROUJENY B. OFDM versus filter bank multi?carrier [J]. IEEE signal processing magazine, 2011, 28(3): 92?112.
[5] 尤肖虎,潘志文,高西奇,等.5G移動(dòng)通信發(fā)展趨勢與若干關(guān)鍵技術(shù)[J].中國科學(xué),2014,44(5):551?563.
YOU Xiaohu, PAN Zhiwen, GAO Xiqi, et al. Development trend of 5G mobile communication and several key technologies [J]. China science, 2014, 44(5): 551?563.
[6] MAO J, XIE G, GAO J, et al. Energy efficiency optimization for OFDM?based cognitive radio systems: a water filling factor aided search method [J]. IEEE transactions on wireless communications, 2013, 12(5): 2366?2375.
[7] WANG Qian, ZHANG Hang, CHEN Qian, et al. A modified genetic algorithm for resource allocation in OFDM?based cognitive radio systems [J]. Wavelet active media technology and information processing, 2015, 9(12): 18?20.
[8] SHAAT M, BADER F. An uplink resource allocation algorithm for OFDM and FBMC based cognitive radio systems [C]// Proceedings of 2010 Cognitive Radio Oriented Wireless Networks & Communications. Cannes: IEEE, 2010: 1?6.
[9] ZHANG H J, RUYET D L, ROVIRAS D, et al. Uplink capacity comparison of OFDM/FBMC based cognitive radio networks [C]// 2010 IEEE International Conference on Communications. [S.l.]: IEEE, 2010: 1?5.
[10] LI Yongmei, ZHOU Yongquan, WEI Jun. Using hierarchical structure glowworm swarm algorithm for function optimization [J]. Journal of applied sciences?electronics and information engineering, 2012, 30(4): 391?396.
[11] WEISS T, HILLENBRAND J, KROHN A, et al. Mutual interference in OFDM?based spectrum pooling systems [C]// Proceedings of the 59th Vehicular Technology Conference. Wa?shington DC, USA: IEEE, 2004: 1873?1877.
[12] GE Mengyao, WANG Shaowei. Fast optimal resource allocation is possible for multiuser OFDM?based cognitive radio networks with heterogeneous services [J]. IEEE transactions on wireless communications, 2012, 11(4): 1500?1509.
[13] 張偉.認(rèn)知OFDM系統(tǒng)建模及資源分配技術(shù)研究[D].邯鄲:河北工程大學(xué),2014.
ZHANG Wei. Cognitive OFDM system modeling and resource allocation technology research [D]. Handan: Hebei University of Engineering, 2014.