陳堅(jiān)
(新疆霍城縣清水河鎮(zhèn)育英小學(xué), 新疆 霍城 835207)
眾所周知,強(qiáng)調(diào)與現(xiàn)實(shí)生活的聯(lián)系正是新一輪數(shù)學(xué)課程改革的一個(gè)重要特征。數(shù)學(xué)課程的內(nèi)容一定要充分考慮數(shù)學(xué)發(fā)展進(jìn)程中人類的活動(dòng)軌跡,貼近學(xué)生熟悉的現(xiàn)實(shí)生活,不斷溝通生活中的數(shù)學(xué)與教科書上數(shù)學(xué)的聯(lián)系,使生活和數(shù)學(xué)融為一體。但是,從更為深入的角度去分析,我們?cè)诖藙t又面臨著這樣一個(gè)問題,即應(yīng)當(dāng)如何去處理“日常數(shù)學(xué)”與“學(xué)校數(shù)學(xué)”之間的關(guān)系。例如,在幾何題材的教學(xué)中,無論是教師或?qū)W生都清楚地知道,我們的研究對(duì)象并非教師手中的那個(gè)木制三角尺,也不是在黑板上或紙上所畫的那個(gè)具體的三角形,而是更為一般的三角形的概念,這事實(shí)上就已包括了由現(xiàn)實(shí)原型向相應(yīng)的“數(shù)學(xué)模式”的過渡。再例如,正整數(shù)加減法顯然具有多種不同的現(xiàn)實(shí)原型,如加法所對(duì)應(yīng)的既可能是兩個(gè)量的聚合,也可能是同一個(gè)量的增加性變化,同樣地,減法所對(duì)應(yīng)的既可能是兩個(gè)量的比較,也可能是同一個(gè)量的減少性變化;然而,在相應(yīng)的數(shù)學(xué)表達(dá)式中所說的現(xiàn)實(shí)意義、包括不同現(xiàn)實(shí)原型之間的區(qū)別(例如,這究竟表現(xiàn)了“二元的靜態(tài)關(guān)系”還是“一元的動(dòng)態(tài)變化”)則完全被忽視了:它們所對(duì)應(yīng)的都是同一類型的表達(dá)式,如4+5=9、7-3=4等,而這事實(shí)上就包括了由特殊到一般的重要過渡。
也正由于數(shù)學(xué)的直接研究對(duì)象是抽象的模式而非特殊的現(xiàn)實(shí)情景,這就為相應(yīng)的“純數(shù)學(xué)研究”提供了現(xiàn)實(shí)的可能性。例如,就以上所提及的加減法運(yùn)算而言,由于其中涉及三個(gè)不同的量(兩個(gè)加數(shù)與它們的和,或被減數(shù)、減數(shù)與它們的差),因此,從純數(shù)學(xué)的角度去分析,我們完全可以提出這樣的問題,即如何依據(jù)其中的任意兩個(gè)量去求取第三個(gè)量。例如,就“量的比較”而言,除去兩個(gè)已知數(shù)的直接比較以外,我們顯然也可提出:“兩個(gè)數(shù)的差是3,其中較小的數(shù)是4,問另一個(gè)數(shù)是幾?”或者“兩個(gè)數(shù)的差是3,其中較大的數(shù)是4,問另一個(gè)數(shù)是幾?”我們?cè)诖耸聦?shí)上已由“具有明顯現(xiàn)實(shí)意義的量化模式”過渡到了“可能的量化模式”。
綜上可見,即使就正整數(shù)的加減法此類十分初等的題材而言,就已十分清楚地體現(xiàn)了數(shù)學(xué)思維的一些重要特點(diǎn),特別是體現(xiàn)了在現(xiàn)實(shí)意義與純數(shù)學(xué)研究這兩者之間所存在的辯證關(guān)系。
具體地說,這正是現(xiàn)代關(guān)于數(shù)學(xué)思維研究的一項(xiàng)重要成果,即指明了所謂的“凝聚”,也即由“過程”向“對(duì)象”的轉(zhuǎn)化構(gòu)成了算術(shù)以及代數(shù)思維的基本形式,這也就是說,在數(shù)學(xué)特別是算術(shù)和代數(shù)中有不少概念在最初是作為一個(gè)過程得到引進(jìn)的,但最終卻又轉(zhuǎn)化成了一個(gè)對(duì)象??對(duì)此我們不僅可以具體地研究它們的性質(zhì),也可以此為直接對(duì)象去施行進(jìn)一步的運(yùn)算。例如,加減法在最初都是作為一種過程得到引進(jìn)的,即代表了這樣的“輸入?輸出”過程:由兩個(gè)加數(shù)(被減數(shù)與減數(shù))我們就可求得相應(yīng)的和(差);然而,隨著學(xué)習(xí)的深入,這些運(yùn)算又逐漸獲得了新的意義:它們已不再僅僅被看成一個(gè)過程,而且也被認(rèn)為是一個(gè)特定的數(shù)學(xué)對(duì)象,我們可具體地去指明它們所具有的各種性質(zhì),如交換律、結(jié)合律等,從而,就其心理表征而言,就已經(jīng)歷了一個(gè)“凝聚”的過程,即由一個(gè)包含多個(gè)步驟的運(yùn)作過程凝聚成了單一的數(shù)學(xué)對(duì)象。再如,有很多教師認(rèn)為,分?jǐn)?shù)應(yīng)當(dāng)定義為“兩個(gè)整數(shù)相除的值”而不是“兩個(gè)整數(shù)的比”,這事實(shí)上也可被看成包括了由過程向?qū)ο蟮霓D(zhuǎn)變,這就是說,就分?jǐn)?shù)的掌握而言我們不應(yīng)停留于整數(shù)的除法這樣一種運(yùn)算,而應(yīng)將其直接看成一種數(shù),我們可以此為對(duì)象去實(shí)施加減乘除等運(yùn)算。
首先,我們應(yīng)注意同一概念的不同解釋間的互補(bǔ)與整合。具體地說,與加減法一樣,有理數(shù)的概念也存在多種不同的解釋,如部分與整體的關(guān)系,商,算子或函數(shù),度量,等等;但是,正如人們所已普遍認(rèn)識(shí)到了的,就有理數(shù)的理解而言,關(guān)鍵恰又在于不應(yīng)停留于某種特定的解釋,更不能將各種解釋看成互不相關(guān)、彼此獨(dú)立的;而應(yīng)對(duì)有理數(shù)的各種解釋(或者說,相應(yīng)的心理建構(gòu))很好地加以整合,也即應(yīng)當(dāng)將所有這些解釋都看成同一概念的不同側(cè)面,并能根據(jù)情況與需要在這些解釋之間靈活地作出必要的轉(zhuǎn)換。例如,在教學(xué)中人們往往唯一地強(qiáng)調(diào)應(yīng)從“部分與整體的關(guān)系”這一角度去理解有理數(shù),特別是,分?jǐn)?shù)常常被想象成“圓的一個(gè)部分”。然而,實(shí)踐表明,局限于這一心理圖像必然會(huì)造成一定的學(xué)習(xí)困難、甚至是嚴(yán)重的概念錯(cuò)誤。
眾所周知,大力提倡解題策略的多樣化也是新一輪數(shù)學(xué)課程改革的一個(gè)重要特征:“由于學(xué)生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應(yīng)當(dāng)尊重學(xué)生的想法,鼓勵(lì)學(xué)生獨(dú)立思考,提倡計(jì)算方法的多樣化?!碑?dāng)然,在大力提倡解題策略多樣化的同時(shí),我們還應(yīng)明確肯定思維優(yōu)化的必要性,這就是說,我們不應(yīng)停留于對(duì)于不同方法在數(shù)量上的片面追求,而應(yīng)通過多種方法的比較幫助學(xué)生學(xué)會(huì)鑒別什么是較好的方法,包括如何依據(jù)不同的情況靈活地去應(yīng)用各種不同的方法。顯然,后者事實(shí)上也就從另一個(gè)角度更為清楚地表明了“互補(bǔ)與整合”確應(yīng)被看成數(shù)學(xué)思維的一個(gè)重要特點(diǎn)。
綜上所述,即使是小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容也同樣體現(xiàn)了一些十分重要的數(shù)學(xué)思維形式及其特征性質(zhì),因此,在教學(xué)中我們應(yīng)作出切實(shí)的努力以很好地落實(shí)“幫助學(xué)生學(xué)會(huì)基本的數(shù)學(xué)思想方法”這一重要目標(biāo)。