張少勇 朱鵬
摘 要:將W.kirk最著名的結果:具有正規(guī)結構自反的Banach空間關于非擴張映射具有不動點性質,推廣到更加一般的映射形式,即:‖T(x)-T(y)‖≤a1(t)(d(x,y))‖x-y‖+a2(t)(d(x,y))‖x-T(x)‖+a3(t)(d(x,y))‖x-T(y)‖,其中∑3i=1ai(t)≤1,且ai(t):(0,+∞)→(0,1)單調遞減, 研究了具有正規(guī)結構自反的Banach空間關于上述映射具有不動點性質。
關鍵詞:廣義非擴張映射;正規(guī)結構;自反性;不動點性質
DOI:10.15938/j.jhust.2019.05.024
中圖分類號: O177. 3
文獻標志碼: A
文章編號: 1007-2683(2019)05-0145-04
Abstract:In this paper, the most famous result by W.kirk is that the non-expansive mapping has the fixed point property in a Banach space with normal structure reflexive is extended to a more general form of mapping,namely:‖T(x)-T(y)‖≤a1(t)(d(x,y))‖x-y‖+a2(t)(d(x,y))‖x-T(x)‖+a3(t)(d(x,y))‖x-T(y)‖, where ai(t):(0,+∞)→(0,1) monotone decreases, a reflexive Banach space X with normal structure has the fixed point property for the mapping mentioned above.
Keywords:generalized non-expansive mapping; normal structure; reflexive; fixed point property
0 引 言
1912年,德國數(shù)學家Brouwer在運用度理論在拓撲學的基礎上,證明了關于連續(xù)單值映射的一個著名的不動點定理[1-6]。后來Schauder, Kakutani等人又相繼對Brouwer的結果進行推廣[7-9]。
不動點理論的研究一直都是數(shù)學研究的熱門問題。許多年來,許多數(shù)學工作者通過各種方法不斷豐富不動點理論,把單值壓縮映射的不動點定理推廣到多值映射的情況[10-15]。20世紀初,Banach提出了著名的Banach壓縮映射原理。Banach壓縮映射的一種自然推廣是非擴張映射,R.de Marr得到了一個關于非擴張映射不動點理論的重要結果,它是著名的Kakutani-Marko不動點定理的推廣[16-19]。此后不久,Brouwer,Kirk,Petryshyn分別討論了定義在距離空間有界閉凸集上的非擴張映像不動點存在性,將其部分結果推廣到平均非擴張映射的情形[20]。
1 預備知識
本文以X表示Banach空間。
定義1[21]? 映像T:X→X,若存在x*∈X,使得x*=T(x*),則稱x*為映像T的不動點。
定義2[22]? 若C是X的非空有界閉凸子集,T:C→C。如果是指對于x,y∈C,有‖Tx-Ty‖≤‖x-y‖,則稱T為C到其自身的非擴張映射。
定義3 稱Banach空間X具有不動點性質(FPP)是指定義在X每一個非空有界閉凸子集上的非擴張自映射具有不動點。稱Banach空間X具有弱不動點性質(WFPP)是指X上的每一個弱緊凸子集的非擴張自映射具有不動點。
參 考 文 獻:
[1] 崔云安. Banach空間幾何理論及應[M].北京:科學出版社,2011:31.
[2] 陳汝棟. 不動點理論及應用[M]. 北京:國防工業(yè)出版社,2012,1:58.
[3] 張石生. 不動點理論及應用[M]. 重慶: 重慶出版社,1984.
[4] 姚永紅, 陳汝棟, 周海云. 非擴張映象不動點的迭代算法[J]. 數(shù)學學報, 2007, 50(1): 139.
[5] PATHAK H K, CHO Y J, KANG S M. An Application of Fixed Point Theorems in Best Approximation Theory[J]. International Journal of Mathematics & Mathematical Sciences, 2016, 21(3): 467.
[6] CHANDOK S, KHAN M S, RAO KPR. Some Coupled Common Fixed Point Theorems for a Pair of Mappings Satisfying a Contractive Condition of Rational type Withoutmonotonicity[J]. International Journal of Mathematical Analysis, 2016, 7(9): 433.
[7] L. C. ZENG, On the Existence of Fixed Points for Mappings of Asymptotically Nonexpansive Type[J]. J. Systems Sci. Complexity, 2004, 17: 188.
[8] 俞鑫泰. Banach空間幾何理論[M]. 上海: 華東師范大學出版社, 1986: 1.
[9] GOCKENBACH M S, KHAN AA. Identification of Lame Parameters in Linear Elasticity: a Fixed Point Approach[J]. Journal of Industrial & Management Optimization, 2017, 1(4): 487.
[10]KOHLENBACH U, LEUSTEAN L. Asymptotically Nonexpansive Mappings in Uniformly Convex Hyperbolic Spaces[J]. European Mathematical Society, 2007,12: 71.
[11]SHIMIZU T,TSKAHASHI W. Fixed Points of Multivalued Nonexpansive Mappings in Certain Convex Metric spaces[J]. Topological Methods in Nonlinear Analysis, 1996, 8:197.
[12]ABBAS M, NAZIR T. Fixed Point of Generalized Weakly Contractive Mappings in Ordered Partial metric Spaces[J]. Fixed Point Theory and Applications, 2012, 2012(1): 1.
[13]KOVACS L G, WALL G E.Involutory Automorphisms of Groups of Odd Order and Their Fixed Point Groups[J]. Nagoya Mathematical Journal, 2016, 27(1): 55.
[14]Z GU, Y LI. Approximation Methods for Common Fixed Points of Meannonexpansive Mapping in Banach Spaces[J]. Fixed Point Theory & Applications, 2008, 2008(1): 471.
[15]梁嘉寧, 黎永錦. 平均非擴張映射的三種迭代收斂的等價性[J]. 內蒙古師大學報(自然漢文版), 2011, 40(6): 575.
[16]KIRK W A. A Fixed Point Theorem for Mappings Which Do Not Increase Distances[J]. American Mathematical Monthly, 1965, 72(9): 1004.
[17]張石生, 黃發(fā)倫. 關于Banach空間中平均非擴張映象的不動點理論[J]. 四川大學學報: 自然科學版, 1975(2): 73.
[18]GARCIA FALSET J. Stability and Fixed Point Fornonexpansive Mappings[J]. Houston Journal of Mathematics, 1994, 20(3): 842.
[19]BETIUK-PILARSKA A,WISNICKI A. On the Suzuki Nonexpansive-Type Mappings[J]. Annals of Functional Analysis, 2013, 4(2):72.
[20]BENAVIDES T D. A Geometrical Coefficient Implying the Fixed Point Property and Stability Results[J]. Houston Journal of Mathematics, 1996 , 22(4): 835.
[21]J M Wang, LL Chen, Y A CUI. The Fixed Point Property of Mean Nonexpansive Mapping[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(3): 298.
[22]Z ZUO. Fixed Point Theorems for Meannonexpansive Mappings in Banach Spaces[J]. Abstract and Applied Analysis, 2014, 2014(13): 1.
[23]BETIUK-PILARSKA A, BENAVIDES T D. The Fixed Point Property for Some Generalized Nonexpansive Mappings and Renormings[J]. Journal of Mathematical Analysis and Applications, 2015, 429(2): 800.
[24]KIM JK,PATHAK R P, DASHPUTRE S, et al. Fixed Point Approximation of Generalized Nonexpansive Mappings in Hyperbolic Spaces[J]. International Journal Journal of Mathemtics and Methematical Sciences, 2015, 2015:6.
[25]KRIK W A. Non-expansive Mappings in Product Spaces, Set-valued Mappings and K Uniform Rotundity// Browder F E. Nonlinear Functional Analysis and Its Application. Amer. Math. Soc. Symp. Pure Math, 1986, 45:51.
(編輯:王 萍)