国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

花管注漿加固松散碎石土層試驗(yàn)與效果參數(shù)預(yù)測(cè)模型

2019-01-15 00:20楊志全
關(guān)鍵詞:漿液土層碎石

楊 溢,盧 杰,楊志全,丁 一

?

花管注漿加固松散碎石土層試驗(yàn)與效果參數(shù)預(yù)測(cè)模型

楊 溢,盧 杰,楊志全※,丁 一

(昆明理工大學(xué)公共安全與應(yīng)急管理學(xué)院,昆明 650093)

注漿技術(shù)可用來加固松散碎石土層,以提高其防滲與承載能力。該文以滲透注漿工作原理與注漿花管技術(shù)為基礎(chǔ),開展了加固松散碎石土層注漿試驗(yàn)研究;并依據(jù)數(shù)值分析方法與Minitab 16軟件,探討了注漿加固松散碎石土層注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度等效果參數(shù)預(yù)測(cè)模型;同時(shí)設(shè)計(jì)試驗(yàn)進(jìn)行了驗(yàn)證。研究結(jié)果表明:1)相鄰注漿孔流出的漿液在松散碎石土層中相容,且側(cè)邊與底部注漿孔流出的水泥漿液在松散碎石土層滲透擴(kuò)散時(shí)產(chǎn)生了明顯的群效應(yīng),從而形成一個(gè)整體近似呈圓柱形的注漿結(jié)石體;2)由這些模型計(jì)算得到的注漿量實(shí)測(cè)值大于預(yù)測(cè)值,而擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度的實(shí)測(cè)值都小于預(yù)測(cè)值,但均相差不大,其相對(duì)誤差分別在9%、7%、6%與6%左右變動(dòng)。因此,該文構(gòu)建模型可作為采用注漿技術(shù)加固松散碎石土層的注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度等效果參數(shù)的設(shè)計(jì)基礎(chǔ)。研究成果可為碎石土地質(zhì)災(zāi)害的防災(zāi)減災(zāi)提供一定的理論參考。

水泥;抗壓強(qiáng)度;模型;松散碎石土層;注漿花管技術(shù);效果參數(shù);預(yù)測(cè)模型

0 引 言

碎石土是由殘坡積、風(fēng)化卸荷及沖洪積等形成的第四紀(jì)土與石塊的二重介質(zhì)非均質(zhì)土石混合體,是一種特殊的地質(zhì)體[1-2]。在中國(guó),碎石土地層在每個(gè)省份均有分布,尤其在西南及西北山區(qū)更為廣泛[2],目前較多的自然災(zāi)害在碎石土地層中誘發(fā),如滑坡、崩塌與泥石流等;尤其在地震與人為活動(dòng)作用下更易發(fā)生,不僅損毀大量的農(nóng)田,而且造成非常慘痛的事故,嚴(yán)重影響著人民群眾的生命財(cái)產(chǎn)安全。如2010年8月8日甘肅舟曲誘發(fā)的泥石流災(zāi)害造成了300余間碎石土地基房屋倒塌、1 824人受傷、208人失蹤及1 557人遇難的慘劇[3-5]。

目前,學(xué)者在碎石土的物理力學(xué)性質(zhì)、碎石土邊坡穩(wěn)定性及防治措施等領(lǐng)域開展了較深入的探索,并取得了較多的研究成果。李泯蒂等[2,6-8]研究了碎石土的滲透特性;王生新等[9]與董輝等[10]分別研究了碎石土濕陷性與三軸剪切特性。吳銳等[11]分析了碎石尺寸對(duì)碎石土強(qiáng)度的影響;王春得等[12-16]研究了含石量對(duì)碎石土工程力學(xué)特性的影響。Fourie等[17-21]探索了滲透特性對(duì)碎石土邊坡穩(wěn)定性的影響;鄭開歡等[22]分析了暴雨作用下碎石土邊坡穩(wěn)定性的變化特征。陳志超等[23-25]探索了碎石土滑坡的工程防治對(duì)策。雷進(jìn)生等[26-28]在利用注漿技術(shù)加固碎石土方面取得了一定的研究成果;但它們存在研究對(duì)象與碎石土具有一定差異、選取因素不合理或研究不全面等方面的不足。

當(dāng)前,注漿技術(shù),尤其是花管注漿技術(shù),在國(guó)內(nèi)外眾多的注漿工程實(shí)踐中具有較廣泛的應(yīng)用,已遍及邊坡、地鐵、礦山、建筑、公路、隧道、鐵路及水電等較多工程領(lǐng)域[1,29-31]。然而,在采用花管注漿技術(shù)加固巖土體的理論研究方面目前還處于探索階段,導(dǎo)致其理論滯后于工程應(yīng)用,難以滿足注漿實(shí)踐的需要。為此,本文以滲透注漿工作原理與花管注漿技術(shù)為基礎(chǔ)開展加固松散碎石土層注漿試驗(yàn)研究;并依據(jù)數(shù)值分析方法與Minitab 16軟件探討注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度等效果參數(shù)與注漿壓力、水灰比、注漿花管側(cè)邊注漿孔間平均孔距、注漿時(shí)間與碎石土孔隙率等影響因素間的相互關(guān)系,以期為松散碎石土災(zāi)害的防治減災(zāi)提供一定的理論支撐。

1 材料與方法

1.1 試驗(yàn)材料

試驗(yàn)材料來源于云南省昆明市某建筑基地。根據(jù)野外實(shí)踐調(diào)查可知:大多碎石土地層災(zāi)害發(fā)生在孔隙率為0.35~0.50區(qū)間,尤其在0.40~0.50的范圍更廣泛。因此,本文設(shè)計(jì)9種松散碎石土層作為被注材料,其粒徑特征與基本性質(zhì)見表1。表1中,粒徑范圍、平均粒徑、比重、含水量、密度、滲透系數(shù)與抗壓強(qiáng)度等性質(zhì)指標(biāo)能直接測(cè)試獲得,而孔隙率可依據(jù)土力學(xué)基礎(chǔ)知識(shí)由比重、含水量與密度聯(lián)合計(jì)算得到。

注漿材料選用昆明水泥廠生產(chǎn)的#32.5普通硅酸鹽水泥,該標(biāo)號(hào)水泥在目前的注漿實(shí)踐工程中被廣泛使用。

表1 注漿試驗(yàn)采用的松散碎石土粒徑特征與基本性質(zhì)

1.2 試驗(yàn)設(shè)備與工作原理

1.2.1 試驗(yàn)設(shè)備

注漿試驗(yàn)設(shè)備自行設(shè)計(jì)與加工,由試驗(yàn)箱、供壓裝置與儲(chǔ)漿容器3部分組成[27],見圖1。

1.氮?dú)鉁p壓器與注漿控制開關(guān) 2.試驗(yàn)箱 3.供壓裝置 4.儲(chǔ)漿容器 5.注漿花管 6.電子稱

在圖1中,試驗(yàn)箱的三維尺寸為600 mm×600 mm× 600 mm,由有機(jī)玻璃板與鋼支架構(gòu)成,用來放置松散碎石土層;供壓裝置裝有的氮?dú)饪蔀樽{試驗(yàn)提供所需的注漿壓力,聯(lián)合氮?dú)鉁p壓器與注漿控制開關(guān)可實(shí)現(xiàn)對(duì)每組試驗(yàn)所設(shè)計(jì)的注漿壓力值與注漿時(shí)間的精確定量控制;儲(chǔ)漿容器用來盛注漿流體,由電子稱、密閉鋼制圓筒及圓形鐵架組成,電子稱可對(duì)試驗(yàn)過程注入的漿液量較精確地測(cè)量與控制;密閉鋼制圓筒設(shè)計(jì)能承受的最大壓力為2.5 MPa,高與底面直徑分別為40、15 cm;底部與頂部分別開口,開展注漿試驗(yàn)時(shí),有壓氮?dú)庥身敳块_口進(jìn)入儲(chǔ)漿容器,對(duì)注漿漿液提供所需的壓力,在注漿壓力的推動(dòng)下,漿液由底部開口注入放置在試驗(yàn)箱的松散礫石土層中。

1.2.2工作原理

本文開展的注漿試驗(yàn)采用滲透注漿,其工作原理見圖2,注漿具體步驟如下:

1)配置不同性質(zhì)特征的松散碎石土層,并測(cè)量它們各自的性質(zhì)特征參數(shù)。如,比重、含水量、密度、滲透系數(shù)及孔隙率等;

2)按設(shè)計(jì)要求拼裝試驗(yàn)箱體,鋪設(shè)塑料薄膜(防止注漿過程中漏漿),將步驟1)中配置好的松散碎石土層裝入試驗(yàn)箱體,同時(shí)預(yù)埋注漿花管;

3)按照設(shè)計(jì)的水灰比配置注漿流體—水泥漿液;

4)將配置好的水泥漿液灌入儲(chǔ)漿容器中,并安裝注漿導(dǎo)管;

5)開始注漿。打開注漿控制開關(guān),并緩慢開啟氮?dú)鉁p壓器,不斷調(diào)節(jié)注漿壓力直到壓力表達(dá)到設(shè)計(jì)的注漿壓力值,觀察并記錄漿液流動(dòng)情況;

6)停止注漿。當(dāng)儲(chǔ)漿容器中水泥漿液注完或大幅度增大注漿壓力漿液仍不再進(jìn)入,則停止注漿;

7)拆模。待漿液凝固后拆模,觀察并記錄容器內(nèi)部漿液的分布和擴(kuò)散情況;

8)整理試驗(yàn)數(shù)據(jù),測(cè)量、測(cè)試與分析在松散碎石土層中形成的注漿結(jié)石體擴(kuò)散效果參數(shù)。

1.供壓設(shè)備 2.儲(chǔ)漿容器 3.試驗(yàn)箱 4.氮?dú)鉁p壓器(裝有壓力表)與注漿控制開關(guān) 5.注漿流體(本文采用水泥漿液) 6.電子稱 7.注漿導(dǎo)管 8.注漿花管 9.松散碎石土層

1.3 試驗(yàn)設(shè)計(jì)

依據(jù)實(shí)際調(diào)查結(jié)果及注漿理論,本研究選取注漿壓力、水泥漿液水灰比、注漿花管側(cè)邊注漿孔間平均孔距與碎石土層孔隙率等4個(gè)因素作為開展注漿試驗(yàn)的影響因素,由此設(shè)計(jì)的注漿試驗(yàn)方案見表2。注漿花管上設(shè)計(jì)的注漿孔與漿液注入孔分布見圖3。

表2 注漿試驗(yàn)設(shè)計(jì)方案

注:編號(hào)為S1~S9的試驗(yàn)設(shè)計(jì)分別采用表1中編號(hào)為G1~G9所代表的松散碎石土層作為被注材料。

Note: Experiments numbered S1-S9 are designed to adopt respectively loose gravel soil-layer represented by number G1-G9 in the table 1 as injected materials.

圖3 注漿花管上的注漿孔與漿液注入孔分布示意圖

2 試驗(yàn)結(jié)果與分析

2.1 試驗(yàn)結(jié)果

依據(jù)表2的試驗(yàn)方案開展注漿試驗(yàn),可觀察得到水泥漿液在松散碎石土層中具有如下的擴(kuò)散規(guī)律:

1)水泥漿液從頂部注入孔注入注漿花管后,由側(cè)邊注漿孔從上到下依次流出進(jìn)入松散碎石土層滲透擴(kuò)散,而底部注漿孔最后流出少量的水泥漿液;

2)相鄰注漿孔流出的漿液在松散碎石土層中相容, 側(cè)邊與底部注漿孔流出的水泥漿液在松散碎石土層滲透擴(kuò)散時(shí)產(chǎn)生了明顯的群效應(yīng),進(jìn)而形成一個(gè)整體近似呈圓柱形的注漿結(jié)石體。

測(cè)量獲得的水泥漿液在松散碎石土層中的擴(kuò)散注漿量、結(jié)石體擴(kuò)散半徑、結(jié)石體擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)結(jié)果見表3;其擴(kuò)散形態(tài)與形成的結(jié)石體見圖4。

表3 注漿效果參數(shù)

Table 3 Parameters of grouting effect

圖4 水泥漿液在松散碎石土層中的擴(kuò)散形態(tài)與形成的結(jié)石體

2.2 抗壓強(qiáng)度增長(zhǎng)分析

由表3和表1可知,加固松散碎石土層形成的注漿結(jié)石體抗壓強(qiáng)度較未加固的松散碎石土層抗壓強(qiáng)度具有明顯地提升,其提升幅度為1 030%~1 342%。這表明采用花管注漿技術(shù)加固松散碎石土層具有較好的效果。

2.3 效果參數(shù)與影響因素間的相互關(guān)系分析

參考文獻(xiàn)[1],注漿加固效果參數(shù)與影響因素符合如下的相互變化關(guān)系

式中為注漿加固效果參數(shù);1、2、3、4與5為注漿影響因素;、、、、與為擬合參數(shù)。

采用Minitab 16軟件分別對(duì)注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)與注漿壓力、水灰比、注漿花管側(cè)邊注漿孔間平均孔距、注漿時(shí)間及碎石土孔隙率等影響因素間的試驗(yàn)結(jié)果(表3)進(jìn)行數(shù)值分析,可得到它們間分別符合式(3)~(6)的相互變化關(guān)系,擬合方差分析結(jié)果見表4。

表4 注漿加固松散碎石土層效果參數(shù)與影響因素間的擬合方差分析結(jié)果

注:為試驗(yàn)數(shù)據(jù)與回歸線間的標(biāo)準(zhǔn)偏離距離,mm。

Note:represents standard deviation distance between experimental data and regression line, mm.

由表4可知,各參數(shù)擬合相關(guān)系數(shù)2與調(diào)整的2(adj) 均大于84.30%,則表明擬合得到的式(3)~(6)與試驗(yàn)結(jié)果間的回歸分析效果較好;同時(shí),在方差分析結(jié)果中,值都小于0.05,表明回歸擬合式(3)~(6)在0.05水平下具有顯著的統(tǒng)計(jì)意義。因此,式(3)~(6)可分別作為注漿加固松散碎石土層注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)預(yù)測(cè)模型。

3 效果參數(shù)預(yù)測(cè)模型試驗(yàn)驗(yàn)證

為驗(yàn)證上文得到的注漿加固松散碎石土層注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)預(yù)測(cè)模型(式(3)~(6))在工程實(shí)踐中的適用性,筆者設(shè)計(jì)試驗(yàn)對(duì)其進(jìn)行驗(yàn)證。

3.1 驗(yàn)證試驗(yàn)設(shè)計(jì)

采用的試驗(yàn)設(shè)備與工作原理分別見圖1~2。本部分?jǐn)M設(shè)計(jì)4組驗(yàn)證試驗(yàn),其分別選用粒徑范圍為1~3、3~5、5~8與8~10 mm的松散碎石土層,對(duì)應(yīng)的平均粒徑分別為1.96、4.03、6.62與8.74 mm;比重、含水量、密度、孔隙率、滲透系數(shù)與抗壓強(qiáng)度等指標(biāo)的獲取方法同上文。設(shè)計(jì)的驗(yàn)證試驗(yàn)方案如表5所示。

表5 注漿驗(yàn)證試驗(yàn)設(shè)計(jì)方案

3.2 結(jié)果與分析

采用注漿加固松散碎石土層注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)預(yù)測(cè)模型(式(3)~(6))得到的注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度的預(yù)測(cè)值與實(shí)測(cè)值及二者間的相對(duì)誤差分析結(jié)果見表6。

由表6可看出,采用注漿加固松散碎石土層注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)預(yù)測(cè)模型(式(3)~(6))計(jì)算得到的注漿量預(yù)測(cè)值小于實(shí)測(cè)值,而擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度的實(shí)測(cè)值均小于預(yù)測(cè)值,但均相差不大,其相對(duì)誤差分別在9%、7%、6%與6%左右變動(dòng),均小于10%。這表明,本文構(gòu)建的注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度cu等效果參數(shù)預(yù)測(cè)模型(式(3)~(6))能用來分別預(yù)測(cè)采用注漿加固松散碎石土層的注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度等效果參數(shù)指標(biāo)。

表6 松散碎石土層注漿加固效果參數(shù)預(yù)測(cè)值與實(shí)測(cè)值及差異分析

4 結(jié) 論

以滲透注漿工作原理與注漿花管技術(shù)為基礎(chǔ),開展了加固松散碎石土層注漿試驗(yàn)研究,依據(jù)數(shù)值分析方法與Minitab 16軟件,構(gòu)建了注漿加固松散碎石土層注漿量、擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度等效果參數(shù)預(yù)測(cè)模型,并對(duì)其進(jìn)行了驗(yàn)證,得到以下結(jié)論:

1)水泥漿液通過花管注漿在松散碎石土層中的擴(kuò)散規(guī)律:相鄰注漿孔流出的漿液在松散碎石土層中相容,且側(cè)邊與底部注漿孔流出的漿液在松散碎石土層滲透擴(kuò)散時(shí)產(chǎn)生了明顯的群效應(yīng),從而形成一個(gè)整體近似呈圓柱形的注漿結(jié)石體;

2)由模型計(jì)算得到的注漿量實(shí)測(cè)值大于預(yù)測(cè)值,而擴(kuò)散半徑、擴(kuò)散高度及結(jié)石體抗壓強(qiáng)度的實(shí)測(cè)值都小于預(yù)測(cè)值,但均相差不大,其相對(duì)誤差分別在9%、7%、6%與6%左右變動(dòng),模型較準(zhǔn)確。

本文的研究成果不僅能為松散碎石土層的注漿加固工程實(shí)踐提供技術(shù)支撐,而且還可為碎石土地質(zhì)災(zāi)害的防災(zāi)減災(zāi)提供理論參考。

[1] 巖土注漿理論與工程實(shí)例》協(xié)作組. 巖土注漿理論與工程實(shí)例[M]. 北京:科學(xué)出版社,2001.

[2] 李泯蒂. 三峽庫區(qū)滑坡碎石土滲透特性研究[D]. 宜昌:三峽大學(xué),2014.

Li Mindi. Gravel Soil Infiltration Characteristics Research of the Three Gorges Area Landslides[D]. Yichang: China Three Gorges University, 2014. (in Chinese with English abstract)

[3] 邱敏,陳行,田明杰,等. 斜入射地震作用下坡面形態(tài)對(duì)碎石土邊坡穩(wěn)定性影響研究[J]. 震災(zāi)防御技術(shù),2015,10(2):324-334.

Qiu Min, Chen Hang, Tian Mingjie, et al. Effect of slope shape on gravel-soil slope stability in obliquely incident seismic wave[J]. Technology for Earthquake Disaster Prevention, 2015, 10(2): 324-334. (in Chinese with English abstract)

[4] 李曉蓮. 降雨和地震影響下碎石土邊坡的穩(wěn)定性分析[D].蘭州:蘭州大學(xué),2013.

Li Xiaolian. Analysis of Gravel Slope Stability Under Rainfall and Earthquake[D]. Lanzhou: Lanzhou University, 2013. (in Chinese with English abstract)

[5] 南如卓瑪. 甘肅舟曲泥石流五周年:浴火重生重振家園[EB/OL].(2015-08-08)[2018-03-02].http://www.Chinanews.com/sh/2015/08-08/7455355.shtml

[6] 王雙,李小春,王少泉,等. 碎石土級(jí)配特征對(duì)滲透系數(shù)的影響研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2015:34(增刊2):4394-4402.

Wang Shuang, Li Xiaochun, Wang Shaoquan, et al. Study on gravel-soil gradation characteristics influence on the permeability coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Supp.2): 4394-4402. (in Chinese with English abstract)

[7] Wang Z, Feyen J, Nielsen D R, et al. Two-phase flow infiltration equations accounting for air entrapment effects[J]. Water Resources Research, 1997, 33(12): 2759-2767.

[8] Hammecker C, Antonino A C D, Maeght J L, et al. Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of air entrapment[J]. European Journal of Soil Science, 2003, 54(3): 491-503.

[9] 王生新,陸勇翔,尹亞雄,等. 碎石土濕陷性試驗(yàn)研究[J].巖土力學(xué),2010,31(8):2373-2377.

Wang Shengxin, Lu Yongxiang, Yin Yaxiong, et al. Experimental study of collapsibility of gravel soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2373-2377. (in Chinese with English abstract)

[10] 董輝,陳璽文,傅鶴林,等. 堆積碎石土剪切特性的三軸試驗(yàn)[J]. 長(zhǎng)安大學(xué)學(xué)報(bào):自然科學(xué)版,2015,35(2):59-66.

Dong Hui, Chen Xiwen, Fu Helin,et al. Triaxial test of shear properties of eluvial gravel soil[J]. Journal of Changan University: Natural Science Edition, 2015,35(2):59-66. (in Chinese with English abstract)

[11] 吳銳,鄧清祿,付敏,等. 碎石尺寸對(duì)碎石土強(qiáng)度影響的大型直剪試驗(yàn)研究[J]. 長(zhǎng)江科學(xué)院院報(bào),2016,33(8):80-85.

Wu Rui, Deng Qinglu, Fu Min,et al. Large direct shear test on the influence of stone size on the strength of gravel soil[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(8): 80-85. (in Chinese with English abstract)

[12] 王春得,沈秋武,吳銳,等. 含石量對(duì)碎石土工程特性的影響試驗(yàn)研究[J]. 鐵道建筑,2016,56(2):97-101.

Wang Chunde, Shen Qiuwu, Wu Rui, et al. Experimental study on effect of stone content on engineering performance of crushed stone soil[J]. Railway Engineering, 2016, 56(2): 97-101. (in Chinese with English abstract)

[13] Lindquist E S, Goodman R E. Strength and deformation properties of a physical model[C]/ / Proceedings of the 1st North American Rock Mechanics Conference. Rotterdam: Balkema A A, 1994: 843-850.

[14] Medley E E, Lindquist E S. The engineering significance of the scale-independence of some franciscan melanges in California, USA[C]// Proceedings of the 35th US rock Mechanics Symposium. Rotterdam: Balkema A A, 1995: 907-914.

[15] Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand-gravel mixtures[J]. Geotechnical and Geological Engineering, 2006, 24(3): 523-549.

[16] Ghasemi A, Rothenbur G L, Matysel. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles[J]. Geotechnique, 2002, 52(3): 209-217.

[17] Fourie A B, Rowe D, Blight G E. The effect of infiltration on the stability of the slopes of a dry ash dump[J]. Geotechnique, 1999, 49(1): 15-23.

[18] Gavin K, Xue J F. A simple method to analyze infiltration into unsaturated soil slopes[J]. Computers & Geotechnics, 2008, 35(2): 223-231.

[19] Egeli I, Pulat H F. Mechanism and modeling of shallow soil slope stability during high intensity and short duration rainfall[J]. Scientia Iranica, 2011, 18(6): 1179-1193.

[20] Gasmo J M, Rahardjo H, Leong E C. Infiltration effects on stability of a residual soil slope[J]. Computers & Geotechnics, 2000, 26(2): 145-165.

[21] Yang C, Sheng D C, Carter J P. Effect of hydraulic hysteresis on seepage analysis for unsaturated soils[J]. Computers & Geotechnics, 2012, 41(5): 36-46.

[22] 鄭開歡,羅周全,羅成彥,等. 持續(xù)暴雨作用下排土場(chǎng)層狀碎石土邊坡穩(wěn)定性[J]. 工程科學(xué)學(xué)報(bào),2016,38(9):1204-1211.

Zheng Kaihuan, Luo Zhouquan, Luo Chengyan, et al. Layered gravel soil slope stability of a waste dump considering long-term hard rain[J]. Chinese Journal of Engineering, 2016, 38(9): 1204-1211. (in Chinese with English abstract)

[23] 陳志超,羅旋,柳侃,等. 碎石土滑坡滲流系統(tǒng)特征及防治措施研究[J]. 巖土力學(xué),2016,37(3):813-819.

Chen Zhichao, Luo Xuan, Liu Kan, et al. Seepage characteristics and mitigation measures of a gravel soil landslide[J]. Rock and Soil Mechanics, 2016, 37(3): 813-819. (in Chinese with English abstract)

[24] 孔紀(jì)名,蔡強(qiáng),張引,等.單排微型樁加固碎石土滑坡物理模型試驗(yàn)[J]. 山地學(xué)報(bào),2013,31(4):399-405.

Kong Jiming, Cai Qiang, Zhang Yin, et al. Physical model test of debris landslide reinforcement with single row micro-pile[J]. Journal of Mountain Science, 2013, 31(4): 399-405. (in Chinese with English abstract)

[25] 姚曉陽,楊小永,曾錢幫. 碎石土滑坡工程地質(zhì)特性及防治方案研究[J]. 工程地質(zhì)學(xué)報(bào),2012,20(3):369-376.

Yao Xiaoyang, Yang Xiaoyong, Zeng Qianbang. Engineering geology characteristics and prevention measure of landslide in soil and rock debris slopes[J]. Journal of Engineering Geology, 2012, 20(3): 369-376. (in Chinese with English abstract)

[26] 雷進(jìn)生. 碎石土地基注漿加固力學(xué)行為研究[D]. 武漢:中國(guó)地質(zhì)大學(xué),2013.

Lei Jinsheng. Research on Mechanical Behavior of Grout in Gravelly Soil Foundations[D]. Wuhan: China University of Geosciences, 2013. (in Chinese with English abstract)

[27] 楊志全. 水泥漿液在小粒徑砂石體中注漿理論及模擬實(shí)驗(yàn)研究[D]. 昆明:昆明理工大學(xué),2008.

Yang Zhiquan. Research on Grouting Theory and Simulation Experiments of Small-size Gravel Injected by Cement Grouting[D]. Kunming: Kunming University of Science and Technology, 2008. (in Chinese with English abstract)

[28] Yang Zhiquan, Qian Shanguang, Hou Kepeng, et al. Technological parameters of reinforced coarse-grained soil by grouting technology[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(27): 13347-13356.

[29] 黃博. 鋼花管注漿型擋墻加固邊坡研究[D]. 成都:西南交通大學(xué),2010.

Huang Bo. Research of Steel Pipe Type of Retaining Wall Reinforced Slope[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese with English abstract)

[30] 楊康. 花管注漿補(bǔ)強(qiáng)加固軟基施工技術(shù)[J]. 中國(guó)管理信息化,2017,20(12):105-106.

Yang Kang. Construction technology for reinforcing soft foundation with flower pipe grouting[J]. China Management Informationization, 2017, 20(12): 105-106. (in Chinese with English abstract)

[31] 王繼坤,張方方. 花管注漿在基坑邊坡加固工程中的應(yīng)用[J]. 資源環(huán)境與工程,2011,25(1):65-70.

Wang Jikun, Zhang Fangfang. Application of flower pipe grouting in foundation pit slope reinforcement[J]. Resources Environment Engineering, 2011, 25(1): 65-70. (in Chinese with English abstract)

Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting

Yang Yi, Lu Jie, Yang Zhiquan※, Ding Yi

(,650093,)

Grouting technology with very strong practicality and wide application can be used to reinforce loose gravel soil layers and improve its anti-seepage and carrying capacity. In China, loose gravel soil layers are distributed in every province, especially in the southwest and northwest mountainous areas. At present, due to their typical dual medium heterogeneity, lots of natural disasters are easily induced in loose gravel soil layers under the actions of rainfall, earthquake and human activities, such as debris flows, dammed lakes, collapses and landslides, which not only destroy a large amount of farmland, but also cause very painful accidents, and then seriously affect safety of people's lives and property. Firstly, based on penetration grouting operational principle and grouting flower pipe technologies in this research, some grouting experiments of reinforcing loose gravel soil layers had been carried out by analyzing and selecting four important influencing factors (grouting pressure, water cement ratio of cement grouting, mean hole distance of side grouting holes in grouting flower pipe and porosity of loose gravel soil layers). After that, according to numerical analysis method and Minitab 16 software, interrelations among grouting reinforcement effect parameters (such as grouting amount, diffusion radius, diffusion height, compressive strength of grouting stone body, et al) of loose gravel soil layers and influencing factors were researched, and then corresponding prediction models of these effect parameters which contains grouting pressure, water cement ratio of cement grouting, mean hole distance of side grouting holes in grouting flower pipe and porosity of loose gravel soil layers also were discussed. What is more, these prediction models were validated by means of designing indoor grouting experiments. Research results show that: 1) cement grouting injected into grouting flower pipe from top injection hole flows into in turn loose gravel soil layers from top to bottom through side grouting holes, while a small amount of it finally flows out from bottom grouting hole; A whole grouting stone body with approximately cylindrical shape is formed as cement grouting from adjacent grouting holes is compatible in loose gravel soil layer. 2) Predicted values of grouting amount calculated by grouting amount prediction models are less than actual measured values from grouting verification experiments, while predicted values of diffusion radius, diffusion height and compressive strength of grouting stone body are all more than corresponding actual measured values. And then these predicted values of grouting reinforcement effect parameters calculated by prediction models have within 10% relative error with the actual measurement values by grouting verification experiments, but these differences values are admitted. Thus, these prediction models of grouting reinforcement effect parameters constructed in this paper may take grouting amount, diffusion radius, diffusion height and compressive strength of stone body of reinforced loose gravel soil-layers by grouting technologies as design basis. Therefore, these research achievements obtained in this research may not only provide theoretical reference for disaster prevention, reduction and mitigation of debris flow, dammed lake, landslide and collapse induced in the loose gravel soil layers, but also can provide technical support for actual grouting engineering of controlled loose gravel soil layers by grouting technology.

cements; compressive strength; models; loose gravel soil-layers; flower pipe grouting technologies; effect parameters; prediction model

楊 溢,盧 杰,楊志全,丁 一. 花管注漿加固松散碎石土層試驗(yàn)與效果參數(shù)預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):151-157. doi:10.11975/j.issn.1002-6819.2018.24.018 http://www.tcsae.org

Yang Yi, Lu Jie, Yang Zhiquan, Ding Yi. Experiments and effect parameters prediction model of reinforcement loose gravel soil-layers by flower pipe grouting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 151-157. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.018 http://www.tcsae.org

2018-04-15

2018-10-22

國(guó)家自然科學(xué)基金聯(lián)合基金重點(diǎn)項(xiàng)目(U1502232);國(guó)家自然科學(xué)基金項(xiàng)目(41402272);云南省基礎(chǔ)研究計(jì)劃(2015FB122)

楊 溢,教授,博士,主要從事災(zāi)害起動(dòng)機(jī)理與水土保持方面研究。Email:2919847230@qq.com

楊志全,教授,博士,主要從事災(zāi)害起動(dòng)機(jī)理與水土保持方面研究。Email:yzq1983816@163.com

10.11975/j.issn.1002-6819.2018.24.018

TU 443

A

1002-6819(2018)-24-0151-07

猜你喜歡
漿液土層碎石
土釘噴錨在不同土層的支護(hù)應(yīng)用及效果分析
胰腺實(shí)性漿液性囊腺瘤1例
脫硫系統(tǒng)用漿液循環(huán)泵汽蝕分析
碎石神掌
水泥穩(wěn)定碎石配合比設(shè)計(jì)
土層 村與人 下
土層——伊當(dāng)灣志
土層 沙與土 上
盾構(gòu)法單液同步注漿漿液的對(duì)比分析
誤診為中心性漿液性脈絡(luò)膜視網(wǎng)膜病變的孤立性脈絡(luò)膜血管瘤1例
桦甸市| 南城县| 弥勒县| 江口县| 垦利县| 永昌县| 雅安市| 原平市| 泌阳县| 留坝县| 德令哈市| 房产| 门头沟区| 曲沃县| 肇东市| 松阳县| 阜南县| 太仆寺旗| 包头市| 隆尧县| 日土县| 民权县| 永修县| 房山区| 凯里市| 永福县| 五河县| 共和县| 望谟县| 峨边| 江都市| 延津县| 巴马| 莱西市| 府谷县| 五家渠市| 五华县| 紫云| 理塘县| 连州市| 临澧县|