崔 憲,張樂(lè)平,孫 輝,溫嘯宇,2,郭建斌,董仁杰,3
碳氮比對(duì)干黃秸稈貯存及后續(xù)甲烷產(chǎn)量的影響
崔 憲1,張樂(lè)平1,孫 輝1,溫嘯宇1,2,郭建斌1※,董仁杰1,3
(1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 中共中央黨校研究生院,北京 100091;3. 中國(guó)農(nóng)業(yè)大學(xué)煙臺(tái)研究院,煙臺(tái) 264670)
秸稈的有效貯存,是保證秸稈沼氣工程全年穩(wěn)定運(yùn)行的前提。干黃秸稈因其處于可溶性碳源與氮源雙重缺乏狀態(tài),成為影響貯存過(guò)程正常進(jìn)行的重要原因。該文以干黃玉米秸稈為原料,通過(guò)補(bǔ)充可溶性碳源(蔗糖)與蛋白氮源(豆粕)調(diào)節(jié)秸稈初始C/N比后,分析其對(duì)秸稈濕貯存過(guò)程及后續(xù)甲烷產(chǎn)量的影響。當(dāng)原料初始C/N比分別為30:1、25:1和20:1時(shí)。經(jīng)60 d濕貯存試驗(yàn)結(jié)果表明,與僅添加蔗糖處理組相比,對(duì)貯存過(guò)程的pH值和干物質(zhì)損失無(wú)顯著影響(0.05),但有效降低了半纖維素含量,乳酸產(chǎn)量分別提高了19.0%、22.2% 和31.7%;通過(guò)分析貯存前后的細(xì)菌群落多樣性,結(jié)果表明,可提高秸稈濕貯存過(guò)程中有益菌(乳酸菌)的相對(duì)豐度,腐敗菌(梭菌屬)的相對(duì)豐度降至0;對(duì)濕貯存前后原料進(jìn)行產(chǎn)甲烷潛力測(cè)試,結(jié)果表明,與貯存前相比,累積甲烷產(chǎn)量分別提高3.9%、6.1%和10.8%。綜上所述,通過(guò)補(bǔ)充可溶性碳源與蛋白氮源調(diào)節(jié)干黃秸稈C/N比,可改善干黃秸稈濕貯存過(guò)程的品質(zhì)、穩(wěn)定性和生物可降解性,并有效提高后續(xù)甲烷產(chǎn)量。研究結(jié)果可為秸稈沼氣工程的貯存環(huán)節(jié)提供技術(shù)支撐。
秸稈;發(fā)酵;甲烷;干黃玉米秸稈;濕貯存;厭氧發(fā)酵;C/N比;乳酸
玉米秸稈作為一種可再生生物質(zhì)資源,是中國(guó)主要農(nóng)業(yè)廢棄物之一。據(jù)統(tǒng)計(jì),2017年其產(chǎn)量達(dá)2.7億t[1]。“秸-沼-肥”能源生態(tài)模式是中國(guó)北方糧食主產(chǎn)區(qū)秸稈綜合利用的主要推廣模式之一。其以厭氧發(fā)酵技術(shù)為核心,同步實(shí)現(xiàn)秸稈能源化與肥料化綜合利用,促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展。因玉米秸稈生產(chǎn)具有季節(jié)性,為了保證規(guī)?;託夤こ倘攴€(wěn)定運(yùn)行,適宜的貯存方法是必要的[2]。與干貯存相比,濕貯存具有干物質(zhì)損失低、原料均一性好、火災(zāi)風(fēng)險(xiǎn)低以及生物可降解性高等優(yōu)勢(shì),在歐洲被廣泛應(yīng)用于秸稈沼氣工程中[3-5]。
在中國(guó),由于秸稈原料收集渠道和輸送方式不一,導(dǎo)致用于沼氣工程的秸稈以干黃玉米秸稈居多[6],與國(guó)外沼氣工程利用的青綠玉米秸稈相比,理化性質(zhì)差異較大,處于可溶性碳源缺乏狀態(tài),不利于濕貯存進(jìn)行[7]。前期研究成果表明通過(guò)補(bǔ)充添加劑(葡萄糖、纖維素酶)或者混合貯存等方式可以改善干黃玉米秸稈可溶性碳源缺乏狀態(tài)[1,6],提高濕貯存品質(zhì)。同時(shí),秸稈原料碳氮比一般為100~60:1[8-10],不僅處于氮源缺乏狀態(tài),影響貯存過(guò)程中微生物活性,而且遠(yuǎn)高于厭氧發(fā)酵對(duì)于原料碳氮比要求的30~20:1[11],不利于厭氧發(fā)酵的進(jìn)行。國(guó)內(nèi)外研究主要是通過(guò)非蛋白氮(尿素、氯化銨等)改善干黃玉米秸稈氮源缺乏狀態(tài)[12-14],調(diào)節(jié)秸稈碳氮比。然而,與非蛋白氮相比,蛋白氮源物質(zhì)(豆粕、酒糟等)不僅可以調(diào)節(jié)碳氮比,也可以在后續(xù)厭氧發(fā)酵過(guò)程中轉(zhuǎn)化為能源物質(zhì),而且有研究表明蛋白氮對(duì)乳酸菌有增殖作用,可以提高乳酸產(chǎn)量[15-16],有利于降低貯存干物質(zhì)損失。目前,通過(guò)蛋白氮源調(diào)節(jié)干黃玉米秸稈濕貯存過(guò)程,進(jìn)而對(duì)后續(xù)甲烷產(chǎn)量的影響研究較少。
因此,本文以干黃玉米秸稈為原料,通過(guò)添加可溶性碳源(蔗糖)與蛋白氮源(豆粕)協(xié)同調(diào)控貯存過(guò)程,分析不同碳氮比對(duì)原料貯存品質(zhì)、細(xì)菌多樣性以及后續(xù)產(chǎn)甲烷潛力的影響,為秸稈沼氣工程原料的高效貯存提供技術(shù)支撐。
干黃玉米秸稈為2017年10月取自河南省鞏義市,品種為豐玉2號(hào),為鮮食玉米品種。收獲后玉米秸稈含水率較高,呈青色,在自然條件下風(fēng)干30 d左右后呈干黃色,風(fēng)干后粉碎至1~3 cm的長(zhǎng)度并運(yùn)送至實(shí)驗(yàn)室進(jìn)行后續(xù)試驗(yàn)。
豆粕取自九三集團(tuán)天津大豆科技有限公司,為2016年7月生產(chǎn)的未膨化轉(zhuǎn)基因大豆粕。
原料產(chǎn)氣潛力測(cè)試的接種污泥取自北京城市污水處理廠,過(guò)10目篩除去沙粒,置于37 ℃的恒溫水浴鍋中,保持污泥活性。原料及污泥的理化性質(zhì)見表1。
表1 干黃玉米秸稈、豆粕與接種污泥的化學(xué)組成
注:除總固體與揮發(fā)性固體以外,其他性質(zhì)的單位均基于總固體計(jì)。
Note: Chemical composition are based on the total solid expect for total solid and volatile solid.
用FW80小型粉碎機(jī)(北京中興偉業(yè)公司,中國(guó))將豆粕粉碎,與干黃玉米秸稈充分均勻混合。將蔗糖溶于一定量水中,均勻噴灑至混合好的秸稈與豆粕混合料(含水率為65%)。將調(diào)制好的各組原料分裝至聚乙烯袋中(尺寸:250 mm×300 mm),用真空包裝機(jī)抽真空并熱封處理后,放置于人工氣候箱(溫度28 ℃,無(wú)光照,相對(duì)濕度65%)濕貯存60 d,分別選取第0、7、15、30、60 d時(shí)的樣品分析pH值,發(fā)酵產(chǎn)物。選取貯存前后樣品分析干物質(zhì)損失、可溶性碳水化合物含量、纖維素、半纖維素和木質(zhì)素含量。各處理組的秸稈、水分、蔗糖和豆粕添加量如表2所示。
表2 濕貯存試驗(yàn)設(shè)計(jì)
在無(wú)菌環(huán)境下,準(zhǔn)備干黃玉米秸稈原料與濕貯存后的5個(gè)處理組各10 g與90 mL無(wú)菌生理鹽水混合,在37 ℃恒溫振蕩2 h得到微生物菌懸液,用孔徑0.22m無(wú)菌濾膜過(guò)濾得到微生物菌體。用滅菌手術(shù)剪剪碎,將整張帶有菌體的濾膜置于2 mL無(wú)菌離心管中,使用E.Z.N.A土壤DNA提取試劑盒進(jìn)行微生物DNA提取,檢測(cè)合格后送至上海美吉生物科技有限公司進(jìn)行Illumina Miseq測(cè)序。
PCR擴(kuò)增區(qū)域?yàn)?6S rDNA V4-V5,所用引物為338F (5-ACTCCTACGGGAGGCAGCAG-3)和806R (5- GGACTACHVGGGTWTCTAAT-3)。根據(jù)Illumina MiSeq測(cè)序平臺(tái)的標(biāo)準(zhǔn)流程進(jìn)行雙端(2×300 BP)測(cè)序,得到2×300 BP的數(shù)據(jù)。數(shù)據(jù)預(yù)處理后進(jìn)行生物信息學(xué)分析、多樣性分析、物種組成分析和差異性分析。
厭氧消化試驗(yàn)分別選取5個(gè)處理組濕貯存前后的樣品,共計(jì)10組進(jìn)行試驗(yàn)。設(shè)計(jì)只接種污泥處理組作為空白,用于計(jì)算污泥產(chǎn)氣量和秸稈甲烷凈產(chǎn)量。
該批次厭氧發(fā)酵試驗(yàn)于帶有一次性鋁蓋的120 mL玻璃發(fā)酵瓶中進(jìn)行。污泥與玉米秸稈的添加量基于揮發(fā)性固體質(zhì)量之比為2:1添加,將污泥與秸稈加入發(fā)酵瓶中,充分混勻后,充入氮?dú)猓S后立即蓋好硅膠塞,標(biāo)號(hào)后置于37 ℃恒溫水浴鍋中。試驗(yàn)期間使用玻璃注射器測(cè)量日均產(chǎn)氣量,并分析計(jì)算累積產(chǎn)氣量。產(chǎn)氣潛能用修正的Gompertz模型(1)式進(jìn)行擬合[17]。
=0×exp{?exp [max×e×0-1×(?)]+1}(1)
式中為扣除空白的時(shí)刻的累積氣體產(chǎn)量,mL/g(以揮發(fā)性固體(volatile solid, VS)計(jì));0為最大產(chǎn)能潛能,mL/g(以VS計(jì));max為最大產(chǎn)甲烷速率,mL/(g·d)(以VS計(jì));為遲滯期,d;為試驗(yàn)持續(xù)的時(shí)間,d。
總固體含量(total solid, TS)測(cè)定采用105 ℃干燥恒質(zhì)量法,揮發(fā)性固體(volatile solid, VS)含量采用550 ℃灼燒恒重法。原料濕貯存后會(huì)產(chǎn)生大量有機(jī)酸,在105 ℃條件下進(jìn)行總固體測(cè)定時(shí)有機(jī)酸揮發(fā)會(huì)引起測(cè)定結(jié)果偏低。因此,本文根據(jù)Kreuger等[18]報(bào)道的濕貯存原料在100 ℃下干燥時(shí)不同有機(jī)酸的揮發(fā)系數(shù)進(jìn)行修正??偺寂c總氮使用Vario EL cube型元素分析儀(Elementar元素分析儀,德國(guó))測(cè)出。pH值使用Orin 5-Star 型pH計(jì)(梅特勒-托利多儀器有限公司)測(cè)定。半纖維素、纖維素和木質(zhì)素的含量采用Van Soest Fiber方法,使用ANKOM A200型纖維分析儀(USA)進(jìn)行測(cè)定。甲烷含量由SP-2100型氣相色譜儀(北瑞利分析儀器有限公司,中國(guó))測(cè)定。揮發(fā)性脂肪酸與乙醇含量采用日本島津公司生產(chǎn)的GC-2010 Plus型氣相色譜儀測(cè)定。乳酸含量采用美國(guó)戴安公司生產(chǎn)的Dionex Ultimate U3000型高效液相色譜儀測(cè)定。揮發(fā)性脂肪酸、乳酸和乙醇的測(cè)定方法詳見文獻(xiàn)[19]。
數(shù)據(jù)用Origin 8.5軟件整理制圖并進(jìn)行修正的Gompertz方程擬合累積產(chǎn)氣曲線。利用SPSS 22.0軟件進(jìn)行單因素方差分析,<0.05代表數(shù)據(jù)存在顯著性差異,>0.05代表數(shù)據(jù)不存在顯著性差異。采用LEfSe法分析物種差異性,其中Kruskal-Wallis檢驗(yàn)與Wilcoxon檢驗(yàn)的Alpha值為0.05。
濕貯存過(guò)程中各組的pH值與發(fā)酵產(chǎn)物的變化結(jié)果見圖1。在濕貯存7 d內(nèi),5個(gè)處理組的pH值迅速下降。在貯存60 d時(shí),CK組、S組、S-SM1組、S-SM2組和S-SM3組的pH值分別達(dá)到6.1、4.2、4.3、4.2和4.3。與CK組相比,其余4組的pH值均顯著降低(0.05)。與S組相比,S-SM1組、S-SM2組和S-SM3組對(duì)貯存pH值無(wú)顯著影響(0.05。乳酸質(zhì)量分?jǐn)?shù)分別達(dá)到7、63、75、77和83 g/kg(以TS計(jì))。與S組相比,S-SM1組、S-SM2組和S-SM3組分別提高了19.0%、22.2%和31.7%。乙酸質(zhì)量分?jǐn)?shù)分別達(dá)到5、10、12、13和13 g/kg(以TS計(jì))。與S組相比,S-SM1組、S-SM2組和S-SM3組分別提高了20%、30%和30%。所有組的丙酸質(zhì)量分?jǐn)?shù)均低于2 g/kg(以TS計(jì))。丁酸質(zhì)量分?jǐn)?shù)分別達(dá)到22、2、0.9、0.7和0.7 g/kg(以TS計(jì))。與S組相比,S-SM1組、S-SM2組和S-SM3組分別降低了55%、65%和65%;乙醇質(zhì)量分?jǐn)?shù)分別達(dá)到2、4、5、5和5 g/kg(以TS計(jì))。
注:測(cè)試指標(biāo)的單位均基于總固體計(jì)。
pH值是衡量貯存品質(zhì)優(yōu)劣的最直接指標(biāo)之一,pH值為4.1~4.3,質(zhì)量良好;pH值為4.4~5.0,質(zhì)量一般;pH值在5.0以上,質(zhì)量劣[19]。有機(jī)酸總量及組成是表征貯存過(guò)程好壞的重要指標(biāo)[7],通常認(rèn)為乳酸含量高,可以有效降低pH值抑制腐敗菌生長(zhǎng)。乙酸可以提高開封后有氧穩(wěn)定性,避免開封后原料腐爛[20]。丁酸含量越少越好,因其生成會(huì)造成大量干物質(zhì)損失,導(dǎo)致能量損失[19]。CK組在貯存期間,pH值過(guò)高,乳酸含量低,丁酸含量高,貯存品質(zhì)較差。據(jù)徐春城[19]報(bào)道,貯存初期,梭菌也有繁殖,但主要是在貯存后期,尤其是可溶性碳水化合物少的原料中,能發(fā)酵糖或有機(jī)酸的梭菌在貯存后期,將發(fā)酵乳酸產(chǎn)生丁酸,導(dǎo)致pH值升高。這與崔憲等研究結(jié)果一致[21]。與CK組相比,S組由于添加蔗糖作為發(fā)酵促進(jìn)劑提高了乳酸、乙酸含量,降低了pH值與丁酸含量,這與Guo等研究結(jié)果一致[6]。與S組相比,通過(guò)添加蛋白氮源調(diào)節(jié)秸稈的C/N比,進(jìn)一步提高了乳酸、乙酸含量,降低了丁酸含量。張亞麗等研究表明豆粕蛋白對(duì)乳酸菌有明顯的增殖作用[15]。
濕貯存60 d后各處理組的干物質(zhì)損失,由表3可知。CK組、S組、S-SM1組、S-SM2組和S-SM3組的干物質(zhì)損失分別為10.68%、5.05%、5.20%、5.50%和5.33%。與CK組相比,其余4組顯著降低了貯存過(guò)程中的干物質(zhì)損失(<0.05)。與S組相比,S-SM1組、S-SM2組和S-SM3組對(duì)干物質(zhì)損失無(wú)顯著影響(>0.05)。
濕貯存前后可溶性碳水化合物、纖維素、半纖維素和木質(zhì)素含量的變化,由表3可知。各處理組濕貯存60 d后,可溶性碳水化合物幾乎消耗殆盡。與濕貯存前相比,各處理組的纖維素含量與半纖維素含量均顯著降低(<0.05),木質(zhì)素含量無(wú)顯著變化(>0.05)。濕貯存60 d后,與CK組相比,S組的纖維素和半纖維素含量無(wú)顯著變化(>0.05);與S組相比,S-SM1組、S-SM2組和S-SM3組纖維素含量無(wú)顯著變化(>0.05);S-SM2組與S-SM3組的半纖維素含量顯著降低(<0.05)。
表3 濕貯存前后各組干物質(zhì)損失、可溶性碳水化合物和木質(zhì)纖維素的變化
注:除干物質(zhì)損失率以外,其他指標(biāo)的單位均基于總固體計(jì)。同列中不同小寫字母表示差異顯著(<0.05)。
Note: Others index is based on the total solid expect for dry matter loss rate. The different superscript letter in a same column differ significantly (<0.05).
研究表明秸稈經(jīng)過(guò)濕貯存后可一定程度降解半纖維素或纖維素[22-24]。與僅補(bǔ)充可溶性碳源相比,補(bǔ)充蛋白氮源可進(jìn)一步促進(jìn)濕貯存過(guò)程中秸稈的半纖維素降解。劉占英研究發(fā)現(xiàn),蛋白氮對(duì)纖維素降解菌具有促進(jìn)作用[25]。近年也有文獻(xiàn)表明,秸稈自身附著著可以降解纖維素或半纖維素的微生物[26]。同時(shí),半纖維素因其化學(xué)結(jié)構(gòu),較纖維素更易降解[27]。通過(guò)添加蛋白氮源調(diào)節(jié)秸稈C/N比,可能促進(jìn)了某些可以降解半纖維素或纖維素的細(xì)菌活性。
濕貯存過(guò)程實(shí)質(zhì)是一系列微生物活動(dòng)的過(guò)程,主要以細(xì)菌為主。選取未貯存的原料與濕貯存后的樣品進(jìn)行細(xì)菌多樣性及差異性分析。如表4所示,通過(guò)各種指數(shù)綜合分析微生物群落豐度和多樣性。各組測(cè)序覆蓋深度(coverage指數(shù)用以指各樣本文庫(kù)的覆蓋率)均達(dá)到0.99,證明本次試驗(yàn)的測(cè)序結(jié)果可以代表樣本的真實(shí)情況。Sob指數(shù)表示物種豐富度及OTU的實(shí)際觀測(cè)值,此處的豐富度是指群落中所含物種的多少,可得本次測(cè)序各組OTU數(shù)由大到?。篠 > R > S+SM1 > S+SM2 > S+SM3 > CK。Chao指數(shù)是反映群落豐富度的指數(shù),Chao指數(shù)越大,表明群落的豐富度越高[28]。Chao指數(shù)由高到低:S > S+SM1 > R > S+SM3 > S+SM2 > CK。Shannon指數(shù)綜合反映了群落的豐富度與均勻度,Shannon越大,表明群落的多樣性越高[29]。Shannon指數(shù)由高到低:R > S > S-SM1 > CK > S+SM2 > S+SM3。以上結(jié)果表明,與S組相比,通過(guò)添加豆粕有效了降低濕貯存后秸稈的細(xì)菌群落多樣性。
表4 原料與濕貯存后各組的細(xì)菌群落多樣性分析指數(shù)
注:R為未貯存的原料。
Note: R is raw material.
由圖2a可知,干黃玉米秸稈原料(Raw material)主要附著變形菌門()、放線菌門()和擬桿菌門(),相對(duì)豐度分別為48.15%、17.83%和24.53%,少量厚壁菌門()和螺旋體菌門(),相對(duì)豐度分別為6.37%和2.45%。濕貯存60 d后,CK組、S組、S-SM1組、S-SM2組和S-SM3組的厚壁菌門()相對(duì)豐度升高,成為優(yōu)勢(shì)菌群。變形菌門()、擬桿菌門()和螺旋體菌門()相對(duì)豐度降低,這與之前的研究結(jié)果一致。
由圖2b可知,干黃玉米秸稈原料(Raw material)主要附著鞘氨醇桿菌屬()、短波單胞菌屬()、假黃色單胞菌屬()、短狀桿菌屬()和單胞菌屬()等,相對(duì)豐度分別為20.40%、7.68%、6.33%、5.20%和4.97%。少量乳酸菌,如乳桿菌屬()、魏斯氏菌屬()和腸球菌屬()等,相對(duì)豐度不足1%。各處理組經(jīng)過(guò)濕貯存60 d后。CK組主要以魏斯氏菌屬()、腸球菌屬()、片球菌屬()、芽孢桿菌屬()和諾卡氏菌屬()為優(yōu)勢(shì)菌群。豐度分別為15.40%、10.30%、7.22%、8.99%和5.57%。梭菌屬()的相對(duì)豐度為3.27%。S組主要是以乳桿菌屬()、腸球菌屬()、片球菌屬()、芽孢桿菌屬()和腸桿菌屬為優(yōu)勢(shì)菌群,豐度分別為11.41%、8.94%、6.80%、11.90%和5.26%。梭菌屬()的相對(duì)豐度為0.82%。S-SM1組主要是以乳桿菌屬()、魏斯氏菌屬()、腸球菌屬()、芽孢桿菌屬()和腸桿菌屬()為優(yōu)勢(shì)菌群,相對(duì)豐度分別為11.72%、9.87%、12.12%、9.48%和9.27%。梭菌屬()的相對(duì)豐度為0。S-SM2組主要是以乳桿菌屬()、魏斯氏菌屬()、腸球菌屬()、芽孢桿菌屬()、腸桿菌屬()為優(yōu)勢(shì)菌群,相對(duì)豐度分別為5.76%、21.50%、16.12%、8.76%和9.90%。梭菌屬()的相對(duì)豐度為0。S-SM3組主要是以乳桿菌屬()、魏斯氏菌屬()、腸球菌屬()、芽孢桿菌屬()、腸桿菌屬()和纖維菌屬()為優(yōu)勢(shì)菌群,相對(duì)豐度分別為17.14%、19.27%、11.83%、5.17%、7.75%和5.88%。梭菌屬()的相對(duì)豐度為0%。與S組相比,S-SM1組、S-SM2組和S-SM3組分別提高了乳酸菌(乳桿菌屬()、魏斯氏菌屬()、腸球菌屬()和片球菌屬())的相對(duì)豐度13%、45%和63%,梭菌屬()相對(duì)豐度降至0,這與乳酸、丁酸產(chǎn)量結(jié)果一致(如圖1b和圖1e)。
圖2 原料與濕貯存后各組在門水平和屬水平的細(xì)菌群落
采用LEfSe(LDA effect Size)法分析濕貯存后各處理組的微生物組(OTU)差異效應(yīng)[30]。由圖3可知,CK組(紅色)的差異物種多是對(duì)貯存不利的微生物,如好氧型細(xì)菌(糖單胞菌屬、諾卡氏菌屬)和腐敗菌(梭菌屬)。S組(淺藍(lán))的差異物種多以兼性厭氧芽孢桿菌為主,如芽孢菌屬()、土地芽孢桿菌屬()、類芽孢桿菌屬()。芽孢桿菌的產(chǎn)乳酸效率不及乳酸菌,一般也是期望被抑制的細(xì)菌[21]。S-SM1(綠色)的差異物種較少。S-SM2(深藍(lán))與S-SM3(紫色)的差異物種以對(duì)貯存有利的功能菌群為主,如乳酸菌,其中S-SM2組的乳酸菌是腸球菌屬()和魏斯氏菌屬();S-SM3組的乳酸菌是乳酸桿菌屬()。一般來(lái)說(shuō),桿菌比球菌更耐酸,更適合在pH值較低的環(huán)境下生長(zhǎng)[7],更有利濕貯存過(guò)程中產(chǎn)酸,提高貯存穩(wěn)定性。同時(shí),S-SM2組與S-SM3組的差異物種分別還有假單胞菌屬()與纖維素菌屬(),據(jù)報(bào)道這2種菌屬均具有降解木質(zhì)纖維素的能力[31-34]。這可能是S-SM2組與S-SM3組半纖維素含量顯著低于其他組的原因。
注:無(wú)顯著差異的物種統(tǒng)一著色為黃色,差異物種跟隨組別進(jìn)行著色。例如紅色節(jié)點(diǎn)表示CK組的差異物種。由內(nèi)至外輻射的圓圈代表由門至種的分類級(jí)別。在不同分類級(jí)別上的每一個(gè)小圓圈代表該水平下的一個(gè)分類。小寫字母表示屬水平下的差異物種。
乳酸菌是秸稈濕貯存過(guò)程中最重要的有益微生物,因其可以快速消耗可溶性碳水化合物產(chǎn)生乳酸或乙酸,降低pH值抑制其他微生物生長(zhǎng),以達(dá)到保存有機(jī)質(zhì)的目的[7]。梭菌被認(rèn)為是濕貯存過(guò)程中不受歡迎的腐敗菌之一[19],它不僅會(huì)發(fā)酵糖類、蛋白質(zhì)產(chǎn)生CO2、H2和NH3等氣體,造成能量損失,而且還會(huì)發(fā)酵乳酸生成丁酸,導(dǎo)致pH值回升,不利于濕貯存穩(wěn)定性。與S組相比,通過(guò)添加蛋白氮源調(diào)節(jié)秸稈的C/N比后,促進(jìn)了濕貯存過(guò)程中有益菌生長(zhǎng),抑制了腐敗菌生長(zhǎng)。
濕貯存前,各組累積甲烷產(chǎn)量如圖4a所示,CK組、S組、S-SM1組、S-SM2組和S-SM3組測(cè)定結(jié)果分別為(250±0)、(269±6)、(278±4)、(292±3)和(314±2)mL/g(以VS計(jì))。濕貯存后,各組累積甲烷產(chǎn)量如圖4b所示,CK組、S組、S-SM1組、S-SM2組和S-SM3組測(cè)定結(jié)果分別為(263±2)、(279±9)、(289±7)、(310±8)和(348±10)mL/g(以VS計(jì))。與貯存前相比,CK組、S組、S-SM1組、S-SM2組和S-SM3組分別提高了5.2%、3.7%、3.9%、6.1%和10.8%。與S組相比,通過(guò)添加蛋白氮源調(diào)節(jié)秸稈的C/N比后,進(jìn)一步提高了濕貯存后累積甲烷產(chǎn)量。
注:累積甲烷產(chǎn)氣量的單位基于揮發(fā)性固體計(jì)。
采用修正Gompertz 方程對(duì)濕貯存前后各處理組厭氧消化過(guò)程進(jìn)行擬合分析,其中延滯期()是反映厭氧消化效率的重要指標(biāo)[35],結(jié)果如表5所示。所有組決定系數(shù)2均在0.98以上,表明方程對(duì)該試驗(yàn)的厭氧消化過(guò)程有較好的擬合。貯存前的各組延滯期在0.856~1.558之間,貯存后的各組延滯期在0.390~0.770。與S相比,通過(guò)添加蛋白氮源調(diào)節(jié)秸稈的C/N比后,可有效縮短延滯期,有利于提高實(shí)際沼氣工程的產(chǎn)甲烷效率和綜合效益。
表5 修正Gompertz方程預(yù)測(cè)濕貯存前后各組厭氧消化過(guò)程的產(chǎn)甲烷動(dòng)力學(xué)參數(shù)
注:max、累積甲烷產(chǎn)量的預(yù)測(cè)值與測(cè)定值的單位基于揮發(fā)性固體計(jì)。
Note:max, predictive value and measured value of cumulative methane yield is based on the volatile solid.
干黃玉米秸稈經(jīng)過(guò)濕貯存后,提高了累積甲烷產(chǎn)量,這與Herrmann等研究結(jié)果一致[36]。其中S-SM3組貯存后累積甲烷產(chǎn)量提高幅度最大。Zhao等研究結(jié)果表明,濕貯存技術(shù)提高秸稈甲烷產(chǎn)量與木質(zhì)纖維素降解有關(guān)[22],通過(guò)表3可知,S-SM3組的半纖維素含量顯著低于其他處理組(<0.05)。同時(shí),Croce等研究結(jié)果表明秸稈原料的碳氮比會(huì)影響甲烷產(chǎn)量[11]。Weiland等研究表明秸稈原料碳氮比為20∶1,更有利于厭氧發(fā)酵過(guò)程[37]。Deubleun等研究表明秸稈原料碳氮比為20~16∶1時(shí),可以有效提高甲烷產(chǎn)量[38]。這與本試驗(yàn)研究結(jié)果類似。
1)通過(guò)可溶性碳源和蛋白氮源調(diào)節(jié)干黃玉米秸稈C/N比后,提高了濕貯存過(guò)程中乳酸、乙酸產(chǎn)量,降低了丁酸產(chǎn)量,有效提高原料的貯存品質(zhì);促進(jìn)了濕貯存過(guò)程中有益菌(乳酸菌)活性,抑制了腐敗菌(梭菌)生長(zhǎng),改善了原料的貯存穩(wěn)定性;降低了濕貯存后干黃玉米秸稈的半纖維素含量,提高了原料的生物可降解性。
2)調(diào)節(jié)干黃玉米秸稈初始C/N比為30~20∶1,經(jīng)過(guò)濕貯存后,提高了原料的累積甲烷產(chǎn)量,并有效降低厭氧發(fā)酵過(guò)程的延滯期,有利于提高秸稈沼氣工程的產(chǎn)甲烷效率。
3)綜上所述,以干黃秸稈為沼氣工程原料時(shí),以補(bǔ)充添加劑的方式調(diào)節(jié)原料初始C/N后,不僅可以改善濕貯存品質(zhì),還可以有效提高原料濕貯存后的產(chǎn)甲烷潛力。在實(shí)際工程應(yīng)用中,為降低工程運(yùn)行成本,在原料可溶性碳源充足的前提下,建議結(jié)合當(dāng)?shù)貙?shí)際情況,可以適當(dāng)補(bǔ)充其他含氮高的廢棄物進(jìn)行混合貯存,如酒糟、豆腐渣等。
[1]Sun H, Cui X, Stinner W, et al. Synergetic effect of combined ensiling of freshly harvested and excessively wilted maize stover for efficient biogas production[J]. Bioresource Technology, 2019, 285(8),121338.
[2]Kalac P. The required characteristics of ensiled crops used as a feedstock for biogas production: A review[J]. Journal of Agrobiology. 2001, 28(2): 85-96.
[3]Franco R T, Buffiere P, Bayard R. Optimizing storage of a catch crop before biogas production: Impact of ensiling and wilting under unsuitable weather conditions[J]. Biomass and Bioenergy, 2017, 100: 84-91.
[4]Franco R T, Buffiere P, Bayard R. Ensiling for biogas production: Critical parameters. A review[J]. Biomass and Bioenergy, 2016, 94: 94-104.
[5]Shinners K J, Wepner A D, Muck R E, et al. Aerobic and anaerobic storage of single-pass, chopped corn straw[J]. Bioenergy Research, 2011, 4(1): 61-75.
[6]Guo J B, Cui X, Sun H, et al. Effect of glucose and cellulase addition on wet-storage of excessively wilted maize stover and biogas production[J]. Bioresource Technology. 2018, 259: 198-206.
[7]McDonald P, Henderson A R, Heron S J E. The biochemistry of silage[M]. England: Chalcombe Publications, 1991.
[8]Yong Z H, Dong Y L, Zhang X, et al. Anaerobic co-digestion of food waste and straw for biogas production[J]. Renewable Energy, 2015, 78: 527-530.
[9]Li X, Liu Y H, Zhang X, et al. Evaluation of biogas production performance and dynamics of the microbial community in different straws[J]. Journal of Microbiology and Biotechnology, 2016, 27(3): 524.
[10]Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1462-1476.
[11]Croce S, Wei Q, D"imporzano G, et al. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance[J]. Biotechnology Advances, 2016, 34: 1289-1304.
[12]Liu S, Ge X M, Liew L N, et al. Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion[J]. Bioresource Technology, 2015, 192: 682-688.
[13]馬茹霞,趙一全,李家威,等. 玉米秸稈厭氧發(fā)酵過(guò)程中的氮源優(yōu)化[J]. 可再生能源,2018,36(11):17-23.
Ma Ruxia, Zhao Yiquan, Li Jiawei, et al. The optimization of nitrogen sources in anaerobic digestion of corn stover[J]. Renewable Energy Resources, 2018, 36(11): 17-23. (in Chinese with English abstract)
[14]Motte J C, Escudie R, Bernet N, et al. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion[J]. Bioresource Technology, 2013, 144(3): 141-148.
[15]張亞麗,徐忠. 脫脂豆粕蛋白對(duì)乳酸菌增殖作用的研究[J]. 哈爾濱商業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2003,19(1):87-89.
Zhang Yali, Xu Zhong. Study on proliferation of lactic acid bacteria with adding SPH[J]. Journal of Heilongjiang Commercial College: Natural Sciences Edition, 2003, 19(1): 87-89. (in Chinese with English abstract)
[16]劉晶晶. 生物添加劑對(duì)柳枝稷青貯的作用及機(jī)理研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
Liu Jingjing. Effect of Lactic Acid Bacteria and Fibrolytic Enzymes on the Fermentation Quality of Switchgrass Silage and Mechanism Involved[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[17]柳珊. 不同生物預(yù)處理對(duì)蘆竹和玉米秸稈及其厭氧消化性能影響研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
Liu Shan. Effect of Biological Pretreatments on Anaerobic Digestion of Giant Reed and Corn stover[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[18]Kreuger E, Nges I A, Bjornsson L. Ensiling of crops for biogas production: Effects on methane yield and total solids determination[J]. Biotechnology for Biofuels, 2011, 4(1): 1-8.
[19]徐春城. 現(xiàn)代青貯理論與技術(shù)[M]. 北京:科學(xué)出版社,2013.
[20]Buxton D R, Muck R E, Harrison J H, Silage science and technology[M]. USA: Soil Science Society of America, 2003.
[21]崔憲,郭建斌,徐艷,等. 秸稈濕貯存過(guò)程添加劑協(xié)同調(diào)控對(duì)甲烷產(chǎn)量的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(9):302-310.
Cui Xian, Guo Jianbin, Xu Yan, et al. Effect of wet-storage additives on fermentation performance and biomethane potential of corn stover[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 302-310. (in Chinese with English abstract)
[22]Zhao X L, Liu J H, Liu J J, et al.Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass[J]. Bioresource Technology, 2017, 241: 349-359.
[23]Zhao Y B, Yu J D, Liu J J, et al. Material and microbial changes during corn stalk silage and their effects on methane fermentation[J]. Bioresource Technology, 2016, 222: 89-99.
[24]Menardo P S, Balsari E, Tabacco G, et al. Effect of conservation time and the addition of lactic acid bacteria on the biogas and methane production of corn stalk silage[J]. Bioenergy Research, 2015, 8(4):1810-1823.
[25]劉占英. 綿羊瘤胃主要纖維降解細(xì)菌的分離鑒定及不同氮源對(duì)其纖維降解能力的影響[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2008.
Liu Zhanying. Isolation and Identification of Major Cellulolytic Bacteria in Rumen of Sheep and Effects of Nitrogen Sources on Their Cellulolytic Activities[D]. Hohhot: Inner Mongolia Agricultural University, 2008. (in Chinese with English abstract)
[26]Ning T T, Wang H L, Zheng M L, et al. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(2): 171-180.
[27]Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18.
[28]Chao A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4): 265-270.
[29]溫嘯宇. 氮源添加對(duì)干黃玉米秸稈濕貯存過(guò)程及產(chǎn)甲烷性能的影響[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2018.
Wen Xiaoyu. Effect of Nitrogenous Additives on the Wet Storage Period and Methane Production of Excessively Wilted Maize Stover[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[30]劉波,王階平,陳倩倩,等. 養(yǎng)豬發(fā)酵床微生物宏基因組基本分析方法[J]. 福建農(nóng)業(yè)學(xué)報(bào),2016,31(6):630-648.
Liu Bo, Wang Jieping, Chen Qianqian, et al. Metagenomic analysis of microbial community in microbial fermentation-bed for pig raising[J]. Fujian Journal of Agricultural Science, 2016, 31(6): 630-648. (in Chinese with English abstract)
[31]Dou T Y, Chen J, Hao Y F, et al. Effects of different carbon sources on enzyme production and ultrastructure of[J]. Current Microbiology, 2019, 76(6): 1-6.
[32]Song J M, Wei D Z. Production and characterization of cellulases and xylanases ofgrown in pretreated and extracted bagasse and minimal nutrient medium M9[J]. Biomass and Bioenergy, 2010, 34(12): 1930-1934.
[33]方華舟,王培清. 牛糞堆肥各階段主要纖維素降解菌分離與作用規(guī)律分析[J]. 中國(guó)土壤與肥料,2012(6):88-92.
Fang Huazhou, Wang Peiqing. Cellulose degradation bacteria separation and action rule analysis of cow dung compost in various stages[J]. Soil and Fertilizer Science in China, 2012(6): 88-92. (in Chinese with English abstract)
[34]陶蓮,刁其玉. 青貯發(fā)酵對(duì)玉米秸稈品質(zhì)及菌群構(gòu)成的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(1):198-207.
Tao Lian, Diao Qiyu. Effects of ensiling on quality and bacteria composition of corn stalk[J]. Chinese Journal of Animal Nutrition,2016, 28(1): 198-207. (in Chinese with English abstract)
[35]崔憲,郭建斌,溫嘯宇,等. 濕貯存對(duì)玉米秸稈厭氧消化性能的影響[J]. 中國(guó)沼氣,2018,36(3):27-32.
Cui Xian, Guo Jianbin, Wen Xiaoyu, et al. Effect of wet-storage of corn straw on its anaerobic fermentation[J]. China Biogas, 2018, 36(3): 27-32. (in Chinese English abstract)
[36]Herrmann C, Heiermann M, Idler C. Effects of ensiling, silage additives and storage period on methane formation of biogas crops[J]. Bioresource Technology, 2011, 102(8): 5153-5161.
[37]Weiland P. Biogas production: Current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-860.
[38]Deubleun D, Steinhauser A. Biogas from Waste and Renewable Resources: An Introduction[M]. USA: Wiley, 2010.
Effects of C/N ratio of wilted maize straw on wet storage process and subsequent methane production
Cui Xian1, Zhang Leping1, Sun Hui1, Wen Xiaoyu1,2, Guo Jianbin1※, Dong Renjie1,3
(1.,,100083,; 2,,100091,; 3.,,264670,)
In northern China, large amounts of wilted maize straw as agricultural waste are produced annually due to the cropping system, harvesting method and so on. Straw-biogas-fertilizer has become one of the promoted utilization modes in major grain-maize producing areas of northern China. Straw is anaerobically digested to produce methane while digestate (effluent of anaerobic digestion process) is utilized as organic fertilizer. Wet storage is always reported as a preferred strategy to preserve energy crops for methane production. It can control microbial activity by a combination of an anaerobic environment and a natural fermentation of sugars by lactic acid bacteria on the crop to achieve lower dry matter loss compared to hay or open-air storage. However, the C/N ratio of wilted maize straw is generally 100-60:1, not only affects the microbial activity during storage, but also is not conducive to the anaerobic digestion. In this study, the effects of adjusting the C/N ratio of wilted maize straw by adding sucrose and soybean meal on the storage quality and subsequent methane production were studied. Wilted maize straw has been stored for 60 days with five treatments, including CK group (without additives), S group (only sucrose and water were added where the water-soluble carbon content and moisture content were adjusted to 3.5% and 65%, respectively), S-SM1 group (sucrose, soybean meal and water were added where, the water-soluble carbon content, C/N ratio and moisture content were adjusted to 3.5%, 30:1 and 65%, respectively), S-SM2 group (sucrose, soybean meal and water was added where the water-soluble carbon content, C/N ratio and moisture content were adjusted to 3.5%, 25:1 and 65%, respectively), S-SM3 group (sucrose, soybean meal and water were added where the water-soluble carbon content, C/N ratio and moisture content were adjusted to 3.5%, 20:1 and 65%, respectively). The results of 60-day wet storage experiment showed that, when the C/N ratio of wilted maize straw was adjusted to 30:1, 25:1 and 20:1, there was no significant effect (0.05) on pH value and dry matter loss but decreased the hemicellulose content compared to S group. At the same time, the lactic acid content was increased by 19.0%, 22.2% and 31.7%, respectively. The acetic acid content was increased by 20.0%, 30.0% and 30.0%, respectively. The butyric acid content was decreased by 55.0%, 65.0% and 65.0%, respectively. The relative abundance of lactic acid bacteria (,,,) was increased by 13%, 45% and 63%, respectively. The relative abundance ofwas reduced to 0%. The results of LEfse analysis showed thatandbecome biomarker when the C/N ratio of wiltedcorn straw was 20:1. The results of biomethane potential test showed that, the specific methane yield of CK group, S group, S-SM1 group, S-SM2 group and S-SM3 group was increased by 5.2%, 3.7%, 3.9%, 6.1% and 10.8%, respectively, compared with treatment groups before wet storage. Simulating the anaerobic digestion performance by the modifying Gompertz equation shows that adjusting the C/N ratio of straw can reduce the lag period. In summary, by adding water-soluble carbon and protein nitrogen to adjust the C/N ratio of wilted maize straw, it can effectively improve the storage quality, biodegradability and specific methane yield of wilted corn straw. In practical engineering applications, in order to reduce the cost of the project, it is appropriate to supplement other agricultural wastes with high nitrogen content for mixed storage.
straw; fermentation; methane; wiltedmaize straw; wet-storage; anaerobic digestion; C/N ratio; lactic acid
崔 憲,張樂(lè)平,孫 輝,溫嘯宇,郭建斌,董仁杰. 碳氮比對(duì)干黃秸稈貯存及后續(xù)甲烷產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):250-257.doi:10.11975/j.issn.1002-6819.2019.23.031 http://www.tcsae.org
Cui Xian, Zhang Leping, Sun Hui, Wen Xiaoyu, Guo Jianbin, Dong Renjie. Effects of C/N ratio of wilted maize straw on wet storage process and subsequent methane production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 250-257. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.031 http://www.tcsae.org
2019-08-11
2019-11-13
國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(51608523);“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD21B04)
崔憲,博士生,主要從事秸稈濕貯存技術(shù)及厭氧發(fā)酵研究。Email:cuixiancau@163.com
郭建斌,副教授,博士,博士生導(dǎo)師,主要從事廢棄物處理與資源化利用研究。Email:jianbinguo@cau.edu.cn
10.11975/j.issn.1002-6819.2019.23.031
X705; S216.4
A
1002-6819(2019)-23-0250-08