湯 瑞,周國(guó)慶,王建州,趙光思,焦 威
?
凍土水力傳導(dǎo)系數(shù)的理論模型研究
湯 瑞,周國(guó)慶※,王建州,趙光思,焦 威
(中國(guó)礦業(yè)大學(xué)深部巖土力學(xué)與地下工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,徐州 221008)
凍土水力傳導(dǎo)系數(shù)多采用經(jīng)驗(yàn)公式來(lái)描述,其結(jié)果缺少理論依據(jù)。該文從冰水界面水膜熱力學(xué)理論出發(fā),對(duì)克拉貝隆方程進(jìn)行修正,得到孔隙水凍結(jié)溫度與孔隙半徑的關(guān)系式?;诖?,結(jié)合毛細(xì)管束理論和土壤凍結(jié)特征曲線(SFCC),給出預(yù)測(cè)凍土水力傳導(dǎo)系數(shù)的理論模型,并與前人的實(shí)測(cè)值和經(jīng)驗(yàn)公式進(jìn)行對(duì)比分析。結(jié)果表明:孔隙凍結(jié)溫度隨著孔隙半徑的減小而下降,且溫度下降速率也隨之逐漸增大;考慮未凍孔隙水和未凍水膜作為水分的遷移通道,該模型計(jì)算值與試驗(yàn)結(jié)果具有很好吻合度,且優(yōu)于經(jīng)驗(yàn)公式,驗(yàn)證該模型的合理性;最后指出SFCC的擬合效果會(huì)影響該模型的預(yù)測(cè)結(jié)果。
凍土;水力傳導(dǎo)系數(shù);模型;孔隙大?。粌鼋Y(jié)溫度;SFCC
全球陸地面積的70%分布著凍土,而中國(guó)多年和季節(jié)性凍土區(qū)總面積約占全國(guó)面積的75%[1]。隨著中國(guó)重大工程的建設(shè),如青藏鐵路、輸油管線、輸配電等多年凍土及季節(jié)凍土區(qū)交通運(yùn)輸、水利電力、信息通訊、能源動(dòng)力、民用工業(yè)建筑等大量?jī)鐾凉こ探ㄔO(shè)迅速發(fā)展,這些凍土工程建設(shè)勢(shì)必受到凍土區(qū)土體凍脹的影響。而凍脹主要是水力梯度下的直接水分遷移和溫度梯度等驅(qū)動(dòng)下的水分間接遷移導(dǎo)致的冰分凝的宏觀表現(xiàn)。凍土水力傳導(dǎo)系數(shù)是影響未凍水遷移的主要因素之一。同時(shí),在大量?jī)雒浄匠讨校缢疅狁詈戏匠蘙2-4]、水熱鹽耦合方程[5-6]、水熱力耦合方程[7-9]和水熱鹽力耦合方程[10-12],從這些耦合方程中可知凍土水力傳導(dǎo)系數(shù)是一項(xiàng)重要的模型參數(shù)。
對(duì)于凍土水力傳導(dǎo)系數(shù)的研究國(guó)內(nèi)外的學(xué)者做了大量的工作,并取得一定的成果。主要集中在兩個(gè)方面:一是,通過(guò)試驗(yàn)裝置直接測(cè)得凍土的水力傳導(dǎo)系數(shù)[13-15],如Watanabe等[16]實(shí)測(cè)在0 ℃附近處未凍水含量和凍土水力傳導(dǎo)系數(shù),結(jié)果表明當(dāng)溫度低于?0.5 ℃時(shí),此時(shí)凍土不具有滲透性;同時(shí)測(cè)定了飽和凍土和非飽和未凍土的水力傳導(dǎo)系數(shù),并認(rèn)為在相同含水量下兩者的水力傳導(dǎo)系數(shù)一致[17];二是,采用間接的方法獲得水力傳導(dǎo)系數(shù),并分為兩類,一類是認(rèn)為凍土的水力傳導(dǎo)系數(shù)是僅關(guān)于溫度的函數(shù)[18],或是根據(jù)未凍土滲透系數(shù)預(yù)測(cè)公式,類比得到了凍土水力傳導(dǎo)系數(shù)關(guān)于含冰量、含水量的函數(shù)[19],另一類如Weigert等[20]通過(guò)分析凍結(jié)過(guò)程中水分分布間接估計(jì)凍土水力傳導(dǎo)系數(shù)。但不管采用哪種方式得到的結(jié)果都不具有普適性,同時(shí),預(yù)測(cè)方法的經(jīng)驗(yàn)系數(shù)并沒(méi)有明確的物理含義,也沒(méi)有系數(shù)的確定步驟。所以采用經(jīng)驗(yàn)公式得到的預(yù)測(cè)值,其合理性值得商榷。
鑒于凍土水力傳導(dǎo)系數(shù)的理論研究較少,本文從土顆粒表面冰水界面水膜熱力學(xué)理論出發(fā),得到孔隙水凍結(jié)溫度的表達(dá)形式。同時(shí),結(jié)合毛細(xì)管束理論和SFCC給出預(yù)測(cè)凍土水力傳導(dǎo)系數(shù)的理論模型。從理論上建立凍土水力傳導(dǎo)系數(shù)與溫度和未凍水含量之間的理論模型,可為凍脹模型研究提供重要的模型參數(shù),亦可為寒區(qū)工程防凍脹問(wèn)題提供參考和依據(jù)。
針對(duì)正凍土凍結(jié)溫度的研究,大量的學(xué)者都已驗(yàn)證了克拉貝隆方程的合理性。但該方程起初是以冰水溶液為研究對(duì)象,并認(rèn)為冰和水的自由能僅受到溫度和壓力的影響。但在真實(shí)土體中孔隙水還受到土顆粒的吸力,這會(huì)導(dǎo)致孔隙水自由能下降,從而影響到孔隙水的凍結(jié)溫度。基于此,周揚(yáng)等[21]、胡坤[22]引入等效水壓力對(duì)克拉貝隆方程進(jìn)行修正,即
在凍結(jié)過(guò)程中不斷變化,其中當(dāng)180°時(shí),冰點(diǎn)下降值最大。為了方便得到孔隙凍結(jié)溫度隨孔隙半徑的變化,取180°,由公式(4)計(jì)算得圖1。
圖1 孔隙凍結(jié)溫度與孔隙半徑關(guān)系
從圖1可以看出:孔隙凍結(jié)溫度與半徑存在依次對(duì)應(yīng),同時(shí)孔隙凍結(jié)溫度隨著半徑減小而下降;孔隙半徑在減小到10-6m時(shí),孔隙凍結(jié)溫度發(fā)生明顯的變化,此時(shí)下降率開(kāi)始明顯增加。
土體內(nèi)部存在大小不一的孔隙,并被水和空氣所占據(jù)。對(duì)于飽和未凍土,如圖2a所示,為了方便研究未凍土的水力傳導(dǎo)系數(shù),前人假設(shè)土體中存在大小不一的毛細(xì)管束(如圖2b所示),同時(shí)水分在毛細(xì)管中遷移。對(duì)于凍土,St?hli等[26]認(rèn)為在凍土中孔隙被三相介質(zhì)(空氣、未凍水和冰)占據(jù),其中未凍水存在于小孔隙中,空氣存在于大孔隙中,而冰介于兩者之間,并得到非飽和凍土的毛細(xì)管束模型。結(jié)合公式(4)可知:在凍結(jié)過(guò)程中,冰最先出現(xiàn)在孔隙半徑較大的毛細(xì)管中。隨著凍結(jié)溫度不斷的下降,孔隙水按照孔徑從大到小依次相變成冰。換言之,在任何一個(gè)凍結(jié)溫度下,都存在一個(gè)臨界半徑r,當(dāng)毛細(xì)管孔徑半徑大于臨界半徑r,毛細(xì)管發(fā)生凍結(jié);反之,毛細(xì)管未發(fā)生凍結(jié)。如圖2c所示。
注:r為毛細(xì)管管徑,ra為臨界半徑。
基于上述分析,假設(shè)冰為圓柱形并對(duì)稱分布在毛細(xì)管中,管中水膜厚度處處相等,此時(shí),未凍水含量包括以下兩個(gè)部分:一是凍結(jié)孔隙中的未凍水膜,二是來(lái)自于未凍結(jié)孔隙的未凍水。故未凍水體積可表示為
式中V(r)表示半徑為r的毛細(xì)管中未凍水的體積,N代表土體中毛細(xì)管的總數(shù)量;f(r)為土體中孔隙半徑的概率密度函數(shù);lr為實(shí)際的毛細(xì)管道的長(zhǎng)度,m;如圖3所示,并滿足lr=ζ×l,其中l(wèi)為直毛細(xì)管的長(zhǎng)度,m;ζ為彎曲度(ζ≥1)。
在公式(5)中,右式中第一項(xiàng)表示未凍結(jié)毛細(xì)管中未凍水的體積含量,第二項(xiàng)為凍結(jié)毛細(xì)管中的未凍水膜的體積含量。假設(shè)研究的土體單元具有規(guī)則的形狀如圓柱體或立方體,因此,土體單元的體積可以表示為
式中為土體試樣的底面積,m2;為土體試樣的高度,即為直毛細(xì)管的長(zhǎng)度。利用公式(5)和公式(6),未凍水的體積含量可表示為
式7中,當(dāng)土體的初始含水量確定時(shí),r是定值;僅有r是隨著凍結(jié)溫度的下降而變化。將公式7對(duì)r求導(dǎo)得
同時(shí)毛細(xì)管斷面上的速度分布滿足邊界條件,即在管壁處速度為零,得到毛細(xì)管中速度分布為
根據(jù)泊肅葉定律[27],在半徑為的單管管中,未凍水流量可以表示為
注:re為沿管徑方向上的位置,v為流速,η為動(dòng)力黏滯系數(shù),τ為黏滯力。下同。
2)當(dāng)r≤r<r時(shí),毛細(xì)管中處于凍結(jié)狀態(tài),此時(shí)毛細(xì)管中存在冰和未凍水膜。由于在冰表面和管壁處流速為零,所以在半徑-到中,存在一個(gè)半徑1,在此處流速達(dá)到最大。故將未凍水膜劃分為兩個(gè)區(qū)域,如圖5所示。
圖5 凍結(jié)毛細(xì)管中流速分布
同理,流體滿足力學(xué)平衡和邊界條件(即,在冰水交界處和管壁處流速為零),故不同區(qū)域下流速分布的表達(dá)式分別為
式中2-1、2-2分別為圖5區(qū)域1和2的流速分布。由于毛細(xì)管中流速是連續(xù)分布函數(shù),故在1處2-1=2-2,故流速最大的位置為
在公式(15)中,右邊第一項(xiàng)可以表示未凍土的總流量,第二項(xiàng)代表由于冰的生成而減小的流量。根據(jù)達(dá)西定律[27],凍土的水力傳導(dǎo)系數(shù)為
同理,在公式(16)中,右邊第一項(xiàng)代表未凍土的水力傳導(dǎo)系數(shù),第二項(xiàng)表示是由于冰而導(dǎo)致水力傳導(dǎo)系數(shù)下降值??梢钥闯鲈摫磉_(dá)式能夠表征凍土水力傳導(dǎo)系數(shù)隨溫度的下降而減小的現(xiàn)象,且能夠描述水力傳導(dǎo)系數(shù)減小的過(guò)程。對(duì)公式(16)求導(dǎo)得
由于孔徑的概率密度函數(shù)頗為復(fù)雜,極難用具體的數(shù)學(xué)形式來(lái)表述。為了規(guī)避該函數(shù),利用公式(8)和公式(17),得到凍土水力傳導(dǎo)系數(shù)與未凍水之間的關(guān)系
由公式(4)可知:r和關(guān)于溫度的函數(shù)。為了計(jì)算推導(dǎo)方便,將上式簡(jiǎn)化為
對(duì)公式(19)從min到積分,可以得出凍土的水力傳導(dǎo)系數(shù)。當(dāng)積分上限溫度min時(shí),表明凍土中所有的毛細(xì)管都被凍結(jié),此時(shí)凍土的水力傳導(dǎo)系數(shù)為零。因此,凍水的水力傳導(dǎo)系數(shù)表示為
式中T為參考溫度,K;k為參考溫度下凍土的水力傳導(dǎo)系數(shù),m/s。
本模型需要的參數(shù)包括:最大孔隙的凍結(jié)溫度max、最小孔隙的凍結(jié)溫度min、未凍水含量關(guān)于溫度的函數(shù)θ()、參考溫度T和參考溫度下的水力傳導(dǎo)系數(shù)k,共計(jì)5個(gè)參數(shù)。其中參數(shù)取值如下:
1)θ()可通過(guò)對(duì)SFCC擬合得到;
2)對(duì)于max和min都是關(guān)于孔隙半徑的函數(shù),根據(jù)公式(4)可以獲得。而最大和最小孔徑需通過(guò)壓汞試驗(yàn)確定。同時(shí)由于孔徑概率密度存在差異,即使當(dāng)大孔徑發(fā)生凍結(jié)后,由于所占比重小,對(duì)水力傳導(dǎo)系數(shù)影響不大。所以應(yīng)該存在孔徑閾值,當(dāng)小于該閾值時(shí)凍土的水力傳導(dǎo)系數(shù)會(huì)發(fā)生首次明顯的變化。將孔徑閾值所對(duì)應(yīng)的溫度近似定義為max。為了簡(jiǎn)化對(duì)max的確定過(guò)程,可通過(guò)SFCC的擬合公式獲得:當(dāng)未凍水含量等于初始含水量時(shí),所得的溫度即為max,并認(rèn)為在0℃到max范圍內(nèi)未凍水含量不發(fā)生變化,水力傳導(dǎo)系數(shù)也不發(fā)生變化。由1.2節(jié)內(nèi)容可知:當(dāng)納米級(jí)的孔隙發(fā)生凍結(jié)時(shí),較大孔隙都應(yīng)發(fā)生凍結(jié)。而土體最小孔隙為納米級(jí),從圖1中可以看出:納米級(jí)的孔隙所對(duì)應(yīng)的凍結(jié)溫度為?45 ℃左右,即是min;
3)T和k可通過(guò)滲透試驗(yàn)獲得。
Tarnawski等[28]提出凍土水力傳導(dǎo)系數(shù)的預(yù)測(cè)公式,表達(dá)式如下:
式中k為飽和條件下未凍土的水力傳導(dǎo)系數(shù),m·s-1;為未凍水體積含量;飽和含水率;d為幾何平均粒徑;為幾何方差;m、m和m分別為黏粒、粉粒和沙粒的質(zhì)量分?jǐn)?shù);d、d和d分別為黏粒、粉粒和沙粒的粒徑分布界限,其值分別為0.001、0.026和1.025 mm。
Fowler等[29]在O’Neill等[30]的基礎(chǔ)上給出了預(yù)測(cè)凍土水力傳導(dǎo)系數(shù)的經(jīng)驗(yàn)公式
然而,Lundin[31]認(rèn)為冰的產(chǎn)生是導(dǎo)致凍土水力傳導(dǎo)系數(shù)下降的原因,凍土的水力傳導(dǎo)系數(shù)應(yīng)等于同等液量下未凍土的水力傳導(dǎo)系數(shù)乘以與含冰量有關(guān)的阻抗因子,并給出了相應(yīng)的預(yù)測(cè)公式
根據(jù)文獻(xiàn)[32],試樣為青藏粉質(zhì)黏土,其基本物理參數(shù)見(jiàn)表1所示。
表1 青藏粉質(zhì)黏土的基本物理參數(shù)
7) 本模型參數(shù)
張虎等[32]通過(guò)試驗(yàn)得到凍結(jié)特征曲線,并根據(jù)實(shí)測(cè)數(shù)據(jù)擬合得到未凍水與溫度之間關(guān)系,如圖6所示。在圖6中,實(shí)測(cè)數(shù)據(jù)點(diǎn)分布在?0.3~?5 ℃之間,溫度為0 ℃時(shí)對(duì)應(yīng)試樣的初始含水量,而陰影面積為未凍水的“黑盒子”,該范圍內(nèi)未凍水的變化是未知的。
圖6 部分?jǐn)M合的SFCC
根據(jù)第2節(jié)內(nèi)容,確定本模型參數(shù),取-0.3℃為參考溫度。本模型具體計(jì)算參數(shù)見(jiàn)表2。并根據(jù)已有的擬合公式得到完整的凍結(jié)特征曲線,如圖7所示。
表2 本模型計(jì)算參數(shù)
注:θuw為未凍水含量,T為土體溫度。下同。
Note: θuwis the unfrozen water content, T is the soil temperature. The same as below.
注:Tmax為最大孔隙的凍結(jié)溫度。
2)結(jié)果分析
將上述3中預(yù)測(cè)公式計(jì)算結(jié)果和本文理論模型以及實(shí)測(cè)數(shù)據(jù)相互對(duì)比,如圖8所示。
圖8 水力傳導(dǎo)系數(shù)模型與經(jīng)驗(yàn)公式和實(shí)測(cè)值比較
從圖8中可以看出:由4種方法所預(yù)測(cè)的凍土水力傳導(dǎo)系數(shù)隨溫度變化的趨勢(shì)基本一致,且都滿足隨溫度的下降而減小的規(guī)律。但通過(guò)Tarnawski公式[28]和Lundin公式[31]所得的預(yù)測(cè)值與實(shí)際觀測(cè)值存在較大的偏差,偏差量甚至超過(guò)4個(gè)數(shù)量級(jí)。僅本模型和Fowler公式[29]表現(xiàn)良好,當(dāng)溫度低于?0.4 ℃時(shí),F(xiàn)owler公式[29]所得的預(yù)測(cè)值要更加接近實(shí)測(cè)值,但該預(yù)測(cè)公式中存在經(jīng)驗(yàn)系數(shù),其值往往是從某一范圍中任意確定,并沒(méi)有明確的物理意義和取值步驟,其預(yù)測(cè)值的可靠性值得商榷。而本模型的計(jì)算值大多接近實(shí)際觀測(cè)值,僅在0~?0.0357 ℃范圍內(nèi)存在差異,但曲線整體逼近實(shí)測(cè)值。同時(shí),本模型中所有參數(shù)都要明確的物理意義,故優(yōu)于其他的經(jīng)驗(yàn)公式。
本文建立了凍土水力傳導(dǎo)系數(shù)的理論模型,并和前人的試驗(yàn)數(shù)據(jù)以及常用的經(jīng)驗(yàn)公式進(jìn)行對(duì)比分析,研究表明:
1)本模型計(jì)算結(jié)果和試驗(yàn)結(jié)果有很好的吻合度,驗(yàn)證本模型的合理性,且本模型不存在經(jīng)驗(yàn)系數(shù),要優(yōu)于其他的經(jīng)驗(yàn)公式,具有普適性。故本模型建議采用SFCC來(lái)計(jì)算凍土水力傳導(dǎo)系數(shù)的觀點(diǎn)。
2)將毛細(xì)管束運(yùn)用到凍土中,考慮未凍水膜和孔隙水兩個(gè)遷移路徑,能夠很好的揭示水分遷移過(guò)程。在基于水膜熱力學(xué)理論,考慮土顆粒吸力對(duì)未凍水膜化學(xué)式能的影響,得到修正后的克拉貝隆方程,使得孔隙凍結(jié)溫度的表達(dá)式更加合理。其中,孔隙凍結(jié)溫度隨著孔隙半徑的減小而下降。
3)本模型是基于準(zhǔn)穩(wěn)態(tài)過(guò)程而提出的,由于在0 ℃附近凍土處于劇烈的相變階段,為了減弱該影響,所以不能采用部分SFCC,應(yīng)使用更加精確完整的SFCC。
[1] 周幼吾,郭東信,邱國(guó)慶,等. 中國(guó)凍土[M]. 北京:科學(xué)出版社,2000.
[2] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resource Research, 1973, 9(5): 1314-1323.
[3] 汪仁和,李棟偉.正凍土中水熱耦合數(shù)學(xué)模型及有限元數(shù)值模擬[J]. 煤炭學(xué)報(bào),2006(6):757-760.
Wang Renhe, Li Dongwei. Moisture-temperature coupling mathematical model in freezing soil and finite element numerical simulation[J]. Journal of China Coal Society, 2006(6): 757-760. (in Chinese with English abstract)
[4] Wu Daoyong, Lai Yuanming, Zhang Mingyi. Heat and mass transfer effects of ice growth mechanisms in a fully saturated soil[J]. International Journal of Heat and Mass transfer, 2015, 86(1): 699-709.
[5] 黃興法,曾德超,練國(guó)平.土壤水熱鹽運(yùn)動(dòng)模型的建立與初步驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),1997,13(3):37-41.
Huang Xingfa, Zeng Dechao, Lian Guoping. A numerical model for coupling movement of water heat and salt in soil under the conditions of frozen, unfrozen, saturated and unsaturated[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997, 13(3): 37-41. (in Chinese with English abstract)
[6] Padilla F, Villeneuve J P. Modeling and experimental studies of frost heave including solute effects[J]. Cold Regions Science and Technology, 1992, 20(2): 183-194.
[7] 劉月,王正中,王羿,等. 考慮水分遷移及相變對(duì)溫度場(chǎng)影響的渠道凍脹模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):83-88.
Liu Yue, Wang Zhengzhong, Wang Yi, et al. Frost heave model of canal considering influence of moisture migration and phase transformation on temperature field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 83-88. (in Chinese with English abstract)
[8] Liu Zhen, Yu Xiong. Coupled thermo-hydro-mechanical model for porous materials under frost action: Theory and implementation[J]. Acta Geotechnica, 2011, 6(2): 51-65.
[9] Zhou Jiazuo, Li Dongqing. Numerical analysis of coupled water, heat and stress in saturated freezing soil[J]. Cold Regions Science and Technology, 2012, 72(3): 43-47.
[10] Wu Daoyong, Lai Yuanming, Zhang Mingyi. Thermo- hydro-salt-mechanical coupled model for saturated porous media based on crystallization kinetics[J]. Cold Regions Science and Technology, 2017, 133(1): 94-107.
[11] 馮瑞玲,蔡曉宇,吳立堅(jiān),等.硫酸鹽漬土水-鹽-熱-力四場(chǎng)耦合理論模型[J]. 中國(guó)公路學(xué)報(bào),2017,30(2):1-10,40.
Feng Ruiling, Cai Xiaoyu, Wu Lijian,et al. Theoretical model on coupling process of moisture-salt-heat-stress field in sulfate salty soil[J]. China Journal of Highway and Transport, 2017, 30(2): 1-10, 40. (in Chinese with English abstract)
[12] 牛璽榮. 硫酸鹽漬土地區(qū)路基水、熱、鹽、力四場(chǎng)耦合機(jī)理及數(shù)值模擬研究[D]. 西安:長(zhǎng)安大學(xué),2006.
Niu Xirong. The Study and Numerical Simulation on Moisture-Heat-Salt-Stress Coupled Mechanism in the Sulphate Saline Soil Subgrade[D]. Xi'an: Chang'an University, 2006. (in Chinese with English abstract)
[13] Burt T P, Williams P J. Measurement of hydraulic conductivity of frozen soils[J]. Canadian Geotechnical Journal, 1974, 11(4): 647-650.
[14] Burt T P, Williams P J. Hydraulic conductivity in frozen soils[J]. Earth Surface Processes, 1976, 1(4): 349-360.
[15] Horiguchi K, Miller R D. Hydraulic conductivity functions of frozen materials[C]//Proc. 4th Int. Conf. Permafrost, National Academy Press, Washington D C, 1983: 504-508.
[16] Watanabe Kunio, Osada Yurie. Simultaneous measurement of unfrozen water content and hydraulic conductivity of partially frozen soil near 0 °C[J]. Cold Regions Science and Technology, 2017, 142(10): 79-84.
[17] Watanabe Kunio, Osada Yurie. Comparison of hydraulic conductivity in frozen saturated and unfrozen unsaturated soils[J]. Vadose Zone Journal, 2016, 15(5): 1-7.
[18] Nixon J F D. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 1991, 28(6): 843-859.
[19] Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4): 548-555.
[20] Weigert A, Schmidt J. Water transport under winter conditions[J]. Catena, 2005, 64(2): 193-208.
[21] 周揚(yáng),周國(guó)慶,周金生,等. 飽和土凍結(jié)透鏡體生長(zhǎng)過(guò)程水熱耦合分析[J]. 巖土工程學(xué)報(bào),2010,32(4):578-585.
Zhou Yang, Zhou Guoqing, Zhou Jinsheng, et al. Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 578-585. (in Chinese with English abstract)
[22] 胡坤. 凍土水熱耦合分離冰凍脹模型的發(fā)展[D]. 徐州:中國(guó)礦業(yè)大學(xué),2011.
Hu Kun. Development of Separated Ice Model Coupled Heat and Moisture Transfer in Freezing Soils[D]. Xuzhou: China University of Mining and Technology, 2011. (in Chinese with English abstract)
[23] Scherer G W. Crystallization in pores[J]. Cement and Concrete Research, 1999, 29(8): 1347-1358.
[24] Israelachvili J N. Intermolecular and Surface Forces-intermolecular and Surface Forces[M]. London: Academic Press, 1991.
[25] Dash J G, Fu H, Wettlaufer J S. The premelting of ice and its environmental consequences[J]. Report on Progress in Physics, 1995, 58(1): 115-167.
[26] St?hli M, Jansson P E, Lundin L C. Soil moisture redistribution and infiltration in frozen sandy soils[J]. Water Resources Research, 1999, 35(1): 95-103.
[27] 李廣信. 高等土力學(xué)[M]. 北京:清華大學(xué)出版社,2011.
[28] Tarnawski V R, Wagner B. On the prediction of hydraulic conductivity of frozen soils[J]. Canadian Geotechnical Journal, 1996, 33(1): 176-180.
[29] Fowler A C, Krantz W B. A generalized secondary frost heave model[J]. SIAM Journal on Applied Mathematics. 1994, 54(6): 1650-1675.
[30] O’Neill K. The physics of mathematical frost heave models: A review[J]. Cold Regions Science and Technology, 1983, 6(3): 275-291.
[31] Lundin L C. Hydraulic properties in an operational model of frozen soil[J]. Journal of Hydrology, 1990, 118(4): 289-310.
[32] 張虎,張建明,張致龍,等. 凍結(jié)狀態(tài)青藏粉質(zhì)黏土的滲透系數(shù)測(cè)量研究[J]. 巖土工程學(xué)報(bào),2016,38(6):1030-1035.
Zhang Hu, Zhang Jianming, Zhang Zhilong, et al. Measurement of hydraulic conductivity of Qinghai-Tibet Plateau silty clay under subfreezing temperatures[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1030-1035. (in Chinese with English abstract)
[33] Brooks R H, Corey A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92(2): 61-90.
Research on theoretical model for hydraulic conductivity in frozen soils
Tang Rui, Zhou Guoqing※, Wang Jianzhou, Zhao Guangsi, Jiao Wei
(,221008)
The hydraulic conductivity of frozen soil is not only one of the main factors affecting the speed of moisture migration, but also an important model parameter in a large number of frost heave models. However, the study of the hydraulic conductivity for frozen soil is often described by empirical formulas. The calculation results lack a theoretical basis, and the predicted values of different empirical formulas often have enormous deviations. Therefore, it is debatable to use the empirical formula to predict the hydraulic conductivity coefficient of frozen soil. In order to reveal the process of moisture migration, according to the theory of water film thermodynamics at the ice-water interface, this paper points out that the water flow can be regarded as the Darcy flow under the equivalent pressure control in frozen soil. On this basis, the expression of pore water freezing temperature and pore radius is obtained. The capillary bundle theory is applied to the frozen soil and combined with the soil frozen characteristic curve to give a theoretical model for predicting the hydraulic conductivity of frozen soil, Meanwhile, the function of pore radius probability density is eliminated to make this proposed model convenience to calculate and use. The calculated values of this model are compared with the experimental data and empirical formulas of the predecessors. The results show that the pore freezing temperature decreases with the decrease of pore radius, and the temperature drop rate also increases. The freezing temperature reduction rate is significantly accelerated especially when the pore radius is less than 10-6m. Considering the unfrozen pore water and the unfrozen water film as the migration channel of moisture, in general, the calculated values of this model agree well with the experimental results and are better than the empirical formula, which proves the rationality of the model. The predicted values of the hydraulic conductivity of frozen soil obtained by three empirical formulas are even different by four orders of magnitude for Qinghai-Tibet silty clay. Although the predicted value obtained by the Fowler formula is closer to the measured value, there is an empirical coefficient in the prediction formula. For the empirical coefficient is often arbitrarily determined in a certain range, and it is no clear physical meaning and calculation procedure, which leads to the reliability of the predicted value from the empirical formula is debatable. At the same time, the power function is used to fit the soil frozen characteristic curve (SFCC) in this model, which tends to infinity near 0 ℃. In order to ensure the continuity of the function of the SFCC, the piecewise function is used to describe the soil frozen characteristic curve, but the deviation of the calculated and measured values of the model within 0?-0.035 7 ℃. Because the model is based on a quasi-steady state process, and the frozen soil is in the stage of intense phase change near 0 ℃. Thus, this paper pointed out that the fitting formula of the soil frozen characteristic curve is very important to this model for reducing this deviation near 0 ℃.
frozen soils; hydraulic conductivity; models; pore size; freezing temperature; SFCC
湯 瑞,周國(guó)慶,王建州,趙光思,焦 威. 凍土水力傳導(dǎo)系數(shù)的理論模型研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):138-144. doi:10.11975/j.issn.1002-6819.2019.04.017 http://www.tcsae.org
Tang Rui, Zhou Guoqing, Wang Jianzhou, Zhao Guangsi, Jiao Wei. Research on theoretical model for hydraulic conductivity in frozen soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 138-144. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.04.017 http://www.tcsae.org
2018-07-31
2019-02-19
國(guó)家自然科學(xué)基金面上項(xiàng)目(NO.41672343,NO.41772338);國(guó)家自然基金(NO.51204164)
湯 瑞,博士生,從事凍土物理學(xué)及寒區(qū)工程等方面研究。 Email:tangrui19920210@163.com
周國(guó)慶,教授,博士生導(dǎo)師,從事凍土物理學(xué)、力學(xué)與工程方面研究。Email:gqz@cumt.edu.cn
10.11975/j.issn.1002-6819.2019.04.017
S152; TU47
A
1002-6819(2019)-04-0138-07