国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈炭化熱解氣旋風(fēng)分離器-指桿輪兩級(jí)凈化裝置研制

2019-03-28 09:51辛明金遲博文陳天佑焦晉康鄔立巖宋玉秋
關(guān)鍵詞:焦油旋風(fēng)分離器

辛明金,遲博文,陳天佑,2,孟 軍,焦晉康,顎 洋,鄔立巖,宋玉秋

?

秸稈炭化熱解氣旋風(fēng)分離器-指桿輪兩級(jí)凈化裝置研制

辛明金1,遲博文1,陳天佑1,2,孟 軍3,焦晉康1,顎 洋3,鄔立巖1,宋玉秋1※

(1. 沈陽(yáng)農(nóng)業(yè)大學(xué)工程學(xué)院,沈陽(yáng) 110161; 2. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長(zhǎng)春 130025; 3. 沈陽(yáng)農(nóng)業(yè)大學(xué)生物炭工程技術(shù)研究中心,沈陽(yáng) 110161)

為提高秸稈熱解氣的凈化率,防止裝置堵塞,該研究設(shè)計(jì)了旋風(fēng)分離器與回轉(zhuǎn)指桿輪相結(jié)合的兩級(jí)凈化裝置,I級(jí)旋風(fēng)分離器主要分離熱解氣中大粒徑雜質(zhì),II級(jí)指桿輪使小粒徑灰塵、焦油等雜質(zhì)與錐形指桿碰撞、聚集、并在高速回轉(zhuǎn)作用下離心分離,實(shí)現(xiàn)熱解氣高效凈化。研究確定了I級(jí)凈化裝置的結(jié)構(gòu)參數(shù),設(shè)計(jì)了II級(jí)凈化裝置,確定了指桿輪與錐形指桿的參數(shù)及排列方式。以指桿輪轉(zhuǎn)速、熱解氣的進(jìn)口速度和芯筒入筒體深度為影響因素,以熱解氣的凈化率和壓力損失為指標(biāo),進(jìn)行了二次通用旋轉(zhuǎn)組合樣機(jī)性能試驗(yàn)。利用Design-Expert8.0.6軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行方差和響應(yīng)面分析,建立了影響因素與指標(biāo)之間的數(shù)學(xué)模型,采用多指標(biāo)優(yōu)化法確定最優(yōu)組合并進(jìn)行了試驗(yàn)驗(yàn)證。試驗(yàn)得到最優(yōu)組合參數(shù):指桿輪轉(zhuǎn)速為3 030 r/min,進(jìn)口速度為19.5 m/s,芯筒入筒體深度為210 mm,此時(shí)的壓力損失為1 971.73 Pa,熱解氣總凈化率為84.2%,達(dá)到了凈化要求。研究結(jié)果可為秸稈熱解氣凈化裝置研究提供理論依據(jù)。

秸稈;炭化;凈化;熱解氣;兩級(jí)凈化;旋風(fēng)分離器;指桿輪;壓力損失

0 引 言

炭化是農(nóng)作物秸稈資源化利用的有效措施之一,可解決秸稈浪費(fèi)、田間焚燒污染及溫室氣體排放等問(wèn)題[1-2]。但炭化煙氣中含有焦油、灰塵等,若不分離凈化,影響煙氣中可燃?xì)怏w的提取和后續(xù)利用[3];直接排放,會(huì)造成環(huán)境污染,甚至威脅人類健康[4-5];焦油易粘結(jié)在裝置內(nèi)壁,腐蝕凈化裝置,堵塞通道,使裝置無(wú)法正常工作[6]。因此秸稈炭化煙氣高效凈化裝置研究具有重要意義。

目前煙氣凈化方式有離心分離法、濕法、過(guò)濾法、靜電法、多種物理方法相結(jié)合以及轉(zhuǎn)化法等[7]。

濕法凈化存在二次污染、資源浪費(fèi)及效果不理想等不足[8];靜電法凈化具有設(shè)備能耗高、操作復(fù)雜、費(fèi)用高、壽命短、煙氣分布不均勻等問(wèn)題[7,9];轉(zhuǎn)化法易產(chǎn)生灰塵,設(shè)備材料價(jià)格昂貴,不適用于工業(yè)推廣[10-11]。從凈化性能和經(jīng)濟(jì)性考慮,旋風(fēng)分離和過(guò)濾是煙氣凈化較為實(shí)用的方式。

旋風(fēng)分離器作為一種重要的氣固分離設(shè)備,因其結(jié)構(gòu)簡(jiǎn)單、緊湊、易于制造、成本較低等優(yōu)點(diǎn),被廣泛應(yīng)用[12]。然而,由于傳統(tǒng)的旋風(fēng)分離器依靠顆粒的慣性力作用分離,因此對(duì)細(xì)顆粒、焦油的分離率較低,如何有效地提高旋風(fēng)分離器的性能成為當(dāng)前創(chuàng)新和突破的難點(diǎn)[13-14]。國(guó)內(nèi)外學(xué)者進(jìn)行了旋風(fēng)除塵器結(jié)構(gòu)及參數(shù)的相關(guān)研究工作。在結(jié)構(gòu)方面,研究了入口方向、增設(shè)防混錐、排氣管開(kāi)縫、增設(shè)筒壁等對(duì)分離率的影響[15-20];在結(jié)構(gòu)參數(shù)方面,研究了回轉(zhuǎn)角度、錐體開(kāi)口大小、排氣管插入深度、結(jié)構(gòu)參數(shù)間的關(guān)系(進(jìn)口端面和筒體端面之比、排氣管與筒體直徑比等)對(duì)分離率和壓力損失的影響[21-28]。

過(guò)濾凈化是煙氣凈化的有效方式之一,利用耐高溫纖維、顆粒床或多孔過(guò)濾材料將煙氣中的灰塵等雜質(zhì)經(jīng)過(guò)篩濾、重力沉降、靜電、擴(kuò)散、碰撞、攔截等機(jī)制分離出來(lái),過(guò)濾的精度可以達(dá)到微毫米[17,29-32]。但秸稈炭化熱解氣中含有大量黏性較高的焦油,易使裝置堵塞發(fā)生凈化失效,并且煙氣處理量較小。

綜上所述,旋風(fēng)分離器結(jié)構(gòu)簡(jiǎn)單,對(duì)大粒徑雜質(zhì)去除率高,但對(duì)小粒徑雜質(zhì)、焦油去除率低,難以達(dá)到秸稈炭化煙氣凈化要求;若采用過(guò)濾凈化,凈化效果較好,但裝置容易堵塞,并且煙氣的處理量小,無(wú)法滿足煙氣凈化要求。為此,本研究在離心分離器基礎(chǔ)上,增設(shè)回轉(zhuǎn)指桿輪,設(shè)計(jì)了秸稈炭化煙氣兩級(jí)凈化裝置,并進(jìn)行樣機(jī)性能試驗(yàn)驗(yàn)證。

1 秸稈炭化熱解氣兩級(jí)凈化裝置設(shè)計(jì)

1.1 熱解氣兩級(jí)凈化裝置總體設(shè)計(jì)

本研究所設(shè)計(jì)的兩級(jí)凈化裝置如圖1所示。在旋風(fēng)分離器的芯筒中增設(shè)回轉(zhuǎn)指桿輪,構(gòu)成炭化熱解氣兩級(jí)凈化。旋風(fēng)分離為I級(jí)凈化,在離心力和重力的作用下,主要分離熱解氣中大粒徑雜質(zhì);回轉(zhuǎn)指桿碰撞聚集為II級(jí)凈化,一方面指桿帶動(dòng)焦油、灰塵等雜質(zhì)高速回轉(zhuǎn),實(shí)現(xiàn)離心分離,另一方面指桿攔截、碰撞,使焦油、灰塵等雜質(zhì)在指桿上聚集,之后在離心力的作用下甩到芯筒的內(nèi)壁,沿著器壁流下,實(shí)現(xiàn)熱解氣小粒徑雜質(zhì)及焦油的分離。II級(jí)凈化指桿輪,指桿采取雙頭螺旋排列,具備攔截、碰撞作用的同時(shí)有利氣體排出;高速回轉(zhuǎn)的指桿由內(nèi)向外逐漸變細(xì),橫截面積逐漸變小,聚集在指桿上的焦油、灰塵等雜質(zhì),在沿指桿向外運(yùn)動(dòng)過(guò)程中,顆粒變大,質(zhì)量增加,離心力提高,更易于脫離指桿,解決了傳統(tǒng)過(guò)濾式凈化裝置焦油、灰塵等雜質(zhì)堵塞問(wèn)題。

1.熱解氣進(jìn)口 2.指桿輪 3.軸承蓋 4.排氣蓋 5.熱解氣出口 6.筒體 7.支架;8.收集筒 9.指桿

1.Pyrolysis gas inlet 2.Finger rod roller 3.Bearing cover 4.Exhaust cover 5.Pyrolysis gas outlet 6.Cylinder 7.Support 8.Collecting barrel 9. Finger rod

注:0為筒體直徑,D為芯筒直徑,0為指桿輪直徑,1為指桿輪長(zhǎng)度,為熱解氣入口高度,D為收集筒直徑,為芯筒插入深度,H為筒體高度,為總高度,為熱解氣入口寬度,為指桿與器壁間距,1為指桿長(zhǎng)度,1為指桿根部直徑,2為指桿外端直徑。

Note:0is cylinder diameter,Dis core cylinder diameter,0is finger rod roller diameter,1is the length of finger rod roller,is the height of flue gas inlet,Dis collection cylinder diameter,is insertion distance of core cylinder,His the height of cylinder,is total height,is smoke inlet width,is the distance between finger rod and the wall of core cylinder,1is the length of the finger rod,1is the diameter of the root of finger rod ,2is the diameter of the outer end of finger rod.

圖1 熱解氣兩級(jí)凈化裝置

Fig.1 Two-stage pyrolysis gas purification device

1.2 熱解氣兩級(jí)凈化裝置參數(shù)設(shè)計(jì)

1.2.1 I級(jí)凈化裝置結(jié)構(gòu)參數(shù)確定

采用Leith-Licht推導(dǎo)出的凈化率公式為目標(biāo)函數(shù),以理論計(jì)算和實(shí)踐經(jīng)驗(yàn)得出的裝置結(jié)構(gòu)參數(shù)間關(guān)系為約束條件[33-34],優(yōu)化了凈化裝置結(jié)構(gòu)參數(shù)。II級(jí)凈化主要針對(duì)旋風(fēng)分離器排出廢氣中的小粒徑雜質(zhì),為降低II級(jí)凈化對(duì)I級(jí)大粒徑雜質(zhì)凈化的影響,II級(jí)凈化芯筒插入旋風(fēng)分離器筒體的深度初步確定為較小值150 mm。

I級(jí)凈化裝置主體筒體采用304不銹鋼卷制。I級(jí)凈化裝置的結(jié)構(gòu)參數(shù)如表1所示。

表1 I級(jí)凈化裝置結(jié)構(gòu)參數(shù)

1.2.2 II級(jí)凈化裝置結(jié)構(gòu)參數(shù)確定

II級(jí)凈化裝置主要結(jié)構(gòu)參數(shù)為指桿輪長(zhǎng)度1、指桿輪直徑0、指桿的根部直徑1、外端直徑2、指桿長(zhǎng)度1及指桿安裝螺距等。

1)指桿輪長(zhǎng)度1

指桿輪長(zhǎng)度1應(yīng)大于芯筒插入深度,即1>= 150 mm,綜合考慮1=240 mm。

2)指桿輪軸徑0

指桿輪軸徑影響排氣面積,直徑越大,排氣面積越小,增大與熱解氣碰撞的機(jī)率,同時(shí)平均回轉(zhuǎn)直徑增大,有利于聚集后雜質(zhì)的甩出,但若指桿輪軸徑過(guò)大,壓力損失劇增。綜合考慮后選取0=42 mm。

3)指桿參數(shù)設(shè)計(jì)

指桿參數(shù)影響回轉(zhuǎn)熱解氣面積,影響雜質(zhì)的碰撞、攔截、聚集,從而影響熱解氣凈化率。

指桿長(zhǎng)度1受到指桿與器壁間隙及指桿輪直徑0的影響,計(jì)算公式為

式中為指桿與器壁間距,mm,考慮指桿輪的安裝及甩后雜質(zhì)反彈的影響,一般選取=3~5 mm。故選取1=60 mm。

指桿輪回轉(zhuǎn)時(shí),指桿碰撞攔截?zé)峤鈿?,使雜質(zhì)依附在指桿表面,經(jīng)過(guò)積累聚集后在離心力的作用下將雜質(zhì)塊甩出,為便于分離,設(shè)計(jì)了錐形指桿,指桿錐度為的計(jì)算公式為

指桿輪回轉(zhuǎn)時(shí),指桿的錐度會(huì)影響指桿上雜質(zhì)的聚集程度以及雜質(zhì)受到的離心力,進(jìn)而影響指桿輪的離心分離率。指桿根部直徑1越小,安裝指桿的數(shù)量越多,但迎風(fēng)面積減小,綜合考慮后選取指桿根部直徑為1=5 mm,指桿外端直徑2=3 mm。

4)指桿安裝螺距

指桿排列采取雙螺頭螺旋形式,指桿排列如圖2所示。

注:s為指桿安裝螺距,c為指桿安裝間隙。

指桿安裝螺距決定指桿的個(gè)數(shù),從而影響熱解氣凈化率。計(jì)算公式為

式中為指桿安裝間隙,mm。考慮指桿輪的安裝選取=3 mm,故=48 mm。

指桿采用304不銹鋼加工而成,為便于調(diào)整,與筒體采取螺紋連接。

2 樣機(jī)性能試驗(yàn)與結(jié)果分析

2.1 材料與儀器

本試驗(yàn)選用水稻秸稈,切碎成長(zhǎng)度為15 cm的段,以便于炭化時(shí)裝填、壓實(shí)。

試驗(yàn)裝置包括自制炭化爐、離心風(fēng)機(jī)130FLJ5(額定功率:120 W)、調(diào)速器(額定功率:120 W)、三相異步電動(dòng)機(jī)(Y100L-2,轉(zhuǎn)速:2 880 r/min,額定功率:3 kW)、調(diào)頻器(額定功率:3 kW)、電子稱(量程:20 mg~520 g,精度為1 mg)、U型測(cè)壓計(jì)(量程:0~4 000 Pa)、設(shè)計(jì)的兩級(jí)凈化裝置。

試驗(yàn)地點(diǎn):沈陽(yáng)農(nóng)業(yè)大學(xué)農(nóng)業(yè)機(jī)械實(shí)驗(yàn)室。試驗(yàn)裝置如圖3所示。

1.兩級(jí)凈化裝置 2.U型壓力計(jì) 3.風(fēng)機(jī) 4.出口靜壓測(cè)試 5.出口雜質(zhì)測(cè)試裝置 6.電機(jī) 7.進(jìn)口雜質(zhì)測(cè)試裝置 8.進(jìn)口靜壓測(cè)試 9.爐筒 10.炭化爐

2.2 試驗(yàn)設(shè)計(jì)

選取指桿輪轉(zhuǎn)速1、進(jìn)口速度2、芯筒插入深度3為試驗(yàn)因素,熱解氣總凈化率和壓力損失為裝置性能衡量指標(biāo),進(jìn)行三元二次回歸通用旋轉(zhuǎn)組合試驗(yàn)。根據(jù)單因素試驗(yàn)結(jié)果,將各因素按其水平及取值范圍進(jìn)行編碼,得到因素水平編碼表,如表2所示。每組試驗(yàn)重復(fù)3次取平均值。通過(guò)響應(yīng)面分析法,進(jìn)行回歸方程擬合度檢驗(yàn)和顯著性檢驗(yàn),建立凈化裝置性能的回歸模型,根據(jù)擬合模型繪制的響應(yīng)面,分析各因素及交互作用對(duì)凈化指標(biāo)的影響規(guī)律。

表2 試驗(yàn)因素水平表

2.3 試驗(yàn)指標(biāo)及測(cè)試方法

2.3.1 總凈化率

總凈化率是凈化裝置性能的重要指標(biāo)之一,本研究采用過(guò)濾稱重法測(cè)定,即同一時(shí)間內(nèi)進(jìn)入兩級(jí)凈化裝置的雜質(zhì)質(zhì)量和凈化后熱解氣中雜質(zhì)的質(zhì)量之差與總雜質(zhì)質(zhì)量之比(本研究取樣時(shí)間為30 min),即

式中1為炭化熱解氣總凈化率,%;1為出口收集的熱解氣中雜質(zhì)的質(zhì)量,g;2為進(jìn)口收集的熱解氣中雜質(zhì)的質(zhì)量,g。

2.3.2 壓力損失

壓力損失亦是評(píng)價(jià)凈化裝置性能的指標(biāo)之一,其數(shù)值越小,說(shuō)明能量損失越小,凈化裝置性能越好,壓力損失Δ計(jì)算公式為

式中為熱解氣密度,kg/m3;v為流體的進(jìn)口速度,m/s;v為流體的出口速度,m/s;P為裝置的進(jìn)口動(dòng)壓,Pa;P為裝置的出口靜壓,Pa。

靜壓采用U型測(cè)壓計(jì)測(cè)定,速度采用風(fēng)速儀測(cè)定。

2.4 綜合優(yōu)化與試驗(yàn)驗(yàn)證

本研究重點(diǎn)考察裝置對(duì)熱解氣總凈化率和壓力損失的影響,與熱解氣壓力損失相比,總凈化率較為重要,因此,規(guī)定熱解氣總凈化率和壓力損失的權(quán)重系數(shù)分別為0.8和0.2。利用Design-Expert 8.0.6軟件進(jìn)行試驗(yàn)數(shù)據(jù)處理,并進(jìn)行多目標(biāo)優(yōu)化,得出機(jī)器的最優(yōu)凈化條件??紤]試驗(yàn)的操作性,對(duì)優(yōu)化后的最優(yōu)條件進(jìn)行調(diào)整,利用調(diào)整后的最優(yōu)條件對(duì)總凈化率和壓力損失進(jìn)行驗(yàn)證,重復(fù)試驗(yàn)3次,結(jié)果取平均值。

2.5 結(jié)果與分析

采用三元二次回歸通用旋轉(zhuǎn)組合試驗(yàn),按照試驗(yàn)設(shè)計(jì)進(jìn)行試驗(yàn),結(jié)果見(jiàn)表3。

表3 三元二次通用旋轉(zhuǎn)組合試驗(yàn)及結(jié)果

2.5.1 回歸方程的建立與顯著性分析

1)壓力損失回歸模型建立與顯著性分析

對(duì)壓力損失進(jìn)行回歸分析,可求得該模型的三元二次回歸方程為

=0.05顯著水平下,對(duì)所回歸的方程進(jìn)行顯著性檢驗(yàn)與方差分析,分析結(jié)果見(jiàn)表4。

表4 壓力損失回歸方程的方差分析表

注:2=0.99,校正2=0.98,預(yù)測(cè)2=0.95,相對(duì)精度=41.83。

Note:2= 0.99, Adjusted2= 0.98, Predicted2=0.95. Relative accuracy=41.83.

利用試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,得出回歸方程模型=147>0.01(9,10)=4.95,<0.0001,回歸模型是極顯著的;2=0.99,失擬=4.97<0.05(5,5)=5.05,=0.052>0.05,表明預(yù)測(cè)值和試驗(yàn)值之間的相關(guān)性很好,可用于壓力損失的預(yù)測(cè)。各因素對(duì)壓力損失的影響均極顯著,影響順序?yàn)椋褐笚U輪轉(zhuǎn)速>進(jìn)口速度>芯筒插入深度。交互作用中,指桿輪轉(zhuǎn)速與進(jìn)口速度的交互作用及進(jìn)口速度與芯筒插入深度的交互作用對(duì)壓力損失的影響極顯著(<0.01)。剔除=0.05的不顯著項(xiàng),簡(jiǎn)化回歸方程為

2)總凈化率回歸模型建立與顯著性分析

對(duì)熱解氣的總凈化率進(jìn)行回歸分析。可求得其模型的三元二次回歸方程為

=0.05顯著水平下,對(duì)所回歸的方程進(jìn)行顯著性檢驗(yàn)與方差分析,分析結(jié)果見(jiàn)表5。

表5 總凈化率回歸方程的方差分析表

注:2=0.96,校正2=0.92,預(yù)測(cè)2=0.71,相對(duì)精度=16.76。

Note:2=0.96, Adjusted2= 0.92, Predicted2= 0.71, Relative accuracy= 16.76.

利用試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,得出回歸方程模型=24.24>0.01(9,10)=4.95,<0.0001,說(shuō)明回歸是極顯著的;2=0.96,失擬=4.71<0.05(5,5)=5.05,=0.0571> 0.05,表明預(yù)測(cè)值和試驗(yàn)值之間的相關(guān)性很好,可用于總凈化率的預(yù)測(cè)。各因素對(duì)總凈化率的影響均極顯著,影響順序?yàn)椋褐笚U輪轉(zhuǎn)速>進(jìn)口速度>芯筒插入深度。交互作用中,指桿輪轉(zhuǎn)速與進(jìn)口速度的交互作用對(duì)總凈化率的影響極顯著(<0.01)。剔除=0.05的不顯著項(xiàng),簡(jiǎn)化回歸方程為

2.5.2 因素的響應(yīng)面效應(yīng)分析及優(yōu)化結(jié)果

通過(guò)對(duì)表3中的試驗(yàn)結(jié)果進(jìn)行響應(yīng)面分析可得,各因素對(duì)熱解氣壓力損失的影響結(jié)果如圖4所示,各因素對(duì)總凈化率的影響如圖5所示。

圖4 各因素對(duì)壓力損失的影響

1)壓力損失的響應(yīng)面分析及優(yōu)化結(jié)果

由圖4a可知,芯筒插入深度為220 mm,當(dāng)進(jìn)口速度一定時(shí),隨著指桿輪轉(zhuǎn)速的增大,壓力損失增大;當(dāng)指桿輪轉(zhuǎn)速一定時(shí),壓力損失隨進(jìn)口速度的增大而增大。由圖4b可知,指桿輪轉(zhuǎn)速為2 900 r/min,當(dāng)進(jìn)口速度一定時(shí),隨著芯筒插入深度的增大,熱解氣的壓力損失先增大后減??;芯筒插入深度一定時(shí),壓力損失隨進(jìn)口速度的增大而增大。根據(jù)多元函數(shù)極值理論,對(duì)壓力損失回歸模型方程求偏導(dǎo),得到最優(yōu)參數(shù)組合:指桿輪轉(zhuǎn)速為2739 r/min,進(jìn)口速度為18.4 m/s,芯筒插入深度為208 mm,預(yù)測(cè)壓力損失為1 743.39 Pa。

2)總凈化率的響應(yīng)面分析及優(yōu)化結(jié)果

指桿輪轉(zhuǎn)速和進(jìn)口速度的響應(yīng)面如圖5所示,由圖可知,芯筒插入深度為220 mm,當(dāng)指桿輪轉(zhuǎn)速一定時(shí),隨著進(jìn)口速度的增大,總凈化率先增大后減??;當(dāng)進(jìn)口速度一定時(shí),隨著指桿輪轉(zhuǎn)速的增大,總凈化率增大。根據(jù)多元函數(shù)極值理論,對(duì)總凈化率回歸模型方程求偏導(dǎo),得到最優(yōu)參數(shù)組合:指桿輪轉(zhuǎn)速為3 077 r/min,進(jìn)口速度為19.57 m/s,芯筒插入深度為217.19 mm,預(yù)測(cè)總凈化率為84.2%。

圖5 指桿輪轉(zhuǎn)速和進(jìn)口速度對(duì)總凈化率的影響

2.6 綜合優(yōu)化及驗(yàn)證試驗(yàn)

以壓力損失和總凈化率作為試驗(yàn)優(yōu)化目標(biāo),設(shè)定軟件優(yōu)化程序?yàn)椋簤毫p失的目標(biāo)(goal)參數(shù)為Minimize,權(quán)重(weight)參數(shù)為0.2;總凈化率的目標(biāo)(goal)參數(shù)為Maximize,權(quán)重(weight)參數(shù)為0.8,得到兩級(jí)凈化裝置性能的最優(yōu)參數(shù)組合:指桿輪轉(zhuǎn)速為3 026 r/min,進(jìn)口速度為19.3 m/s,芯筒插入深度208 mm,模型的預(yù)測(cè)壓力損失為1 959.58 Pa,總凈化率為83.81%??紤]到試驗(yàn)的操作性,對(duì)優(yōu)化條件進(jìn)行調(diào)整:指桿輪轉(zhuǎn)速為3 030 r/min,進(jìn)口速度為19.5 m/s,芯筒插入深度為210 mm。驗(yàn)證試驗(yàn)重復(fù)3次,得壓力損失均值1 971.73 Pa,與模型預(yù)測(cè)值1 959.58 Pa相接近;總凈化率均值84.2%,與預(yù)測(cè)值83.81%相接近,試驗(yàn)值與預(yù)測(cè)值的誤差分別為0.62%和0.47%,說(shuō)明二項(xiàng)式優(yōu)化區(qū)域與設(shè)計(jì)目的相符,響應(yīng)面模型與試驗(yàn)設(shè)計(jì)具有可靠性和重現(xiàn)性。

3 結(jié) 論

1)設(shè)計(jì)了一種旋風(fēng)分離與高速回轉(zhuǎn)指桿輪相結(jié)合的高效凈化、不易堵塞的兩級(jí)凈化裝置,并確定了結(jié)構(gòu)參數(shù)。旋風(fēng)分離在離心力和重力的作用下分離熱解氣中大粒徑雜質(zhì)。高速回轉(zhuǎn)的指桿帶動(dòng)焦油、灰塵等雜質(zhì)高速回轉(zhuǎn),實(shí)現(xiàn)離心分離;指桿采取雙頭螺旋排列,可碰撞、攔截?zé)峤鈿庵械男×诫s質(zhì),同時(shí)有利氣體排出。指桿內(nèi)端粗外端細(xì)有利于焦油、灰塵等雜質(zhì)聚集、增大離心力及與指桿脫離,解決了傳統(tǒng)過(guò)濾式凈化裝置焦油、灰塵等雜質(zhì)堵塞問(wèn)題。確定了筒體直徑、筒體高、芯筒直徑、芯筒插入深度、進(jìn)出口尺寸、指桿長(zhǎng)度指桿輪直徑、指桿安裝螺距、指桿與器壁間隙等結(jié)構(gòu)參數(shù)。

2)進(jìn)行了樣機(jī)性能試驗(yàn),建立了指桿輪轉(zhuǎn)速、進(jìn)口速度和芯筒插入深度對(duì)熱解氣凈化率和壓力損失的回歸方程模型,并通過(guò)方差分析,對(duì)各回歸模型進(jìn)行了擬合度和顯著性檢驗(yàn)。各因素對(duì)熱解氣凈化率和壓力損失的影響極顯著(<0.01);影響壓力損失順序?yàn)椋褐笚U輪轉(zhuǎn)速>進(jìn)口速度>芯筒插入深度,影響總凈化率的順序?yàn)椋褐笚U輪轉(zhuǎn)速>進(jìn)口速度>芯筒插入深度;交互作用中,指桿輪轉(zhuǎn)速與進(jìn)口速度的交互作用及進(jìn)口速度與芯筒插入深度的交互作用對(duì)壓力損失的影響極顯著(<0.01),指桿輪轉(zhuǎn)速與進(jìn)口速度的交互作用對(duì)總凈化率的影響極顯著(<0.01)。

3)獲得最佳組合參數(shù):指桿輪轉(zhuǎn)速為3 030 r/min,進(jìn)口速度為19.5 m/s,芯筒插入深度為210 mm,此時(shí)的壓力損失為1 971.73 Pa,總凈化率為84.2%。

研究表明本二級(jí)熱解氣凈化裝置與過(guò)濾等凈化裝置相比,可防止堵塞,長(zhǎng)時(shí)間正常工作,無(wú)需拆分清洗,降低了凈化人工費(fèi)用,繼而降低了凈化成本;而其凈化效率高于旋風(fēng)凈化,凈化性能較優(yōu)。

[1] 陳溫福,張偉明,孟軍,等. 生物炭應(yīng)用技術(shù)研究[J]. 中國(guó)工程科學(xué),2011,13(2):83-89.

Chen Wenfu, Zhang Weiming, Meng Jun, etal. Researches on biochar application technology[J]. Engineering Sciences, 2011, 13(2): 83-89. (inChinese with English abstract)

[2] 陳天佑,孟軍,辛明金,等. 玉米秸稈生物炭壓制成型特性研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,47(6):728-733.

Chen Tianyou, Meng Jun, Xin Mingjin, et al. Compaction behavior of biocharfrom corn stalk[J]. Journal of Shenyang Agricultural University, 2016, 47(6): 728-733. (in Chinese with English abstract)

[3] 辛明金,陳天佑,孟軍,等. 秸稈炭化煙氣除塵技術(shù)研究進(jìn)展[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,40(6):659-664.

Xin Mingjin, Chen Tianyou, Meng Jun, et al. Review of dust removal from flue gas in straw carbonization[J]. Journal of Jinlin Agricultural University, 2018, 40(6): 659-664. (in Chinese with English abstract)

[4] 蘇繼峰,朱彬,周韜,等. 秸稈焚燒導(dǎo)致南京及周邊地區(qū) 2次空氣污染事件的成因比較[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2012,28(1):37-41.

Su Jifeng, Zhu Bin, Zhou Tao, et al. Contrast analysis of two serious air pollution events affecting Nanjing and its surrounding regions resulting from burning of crop residues[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 37-41. (in Chinese with English abstract)

[5] Zhang M S, SongY, Cai X H. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004[J]. Science of the Total Environment, 2007, 376(1/2/3): 100-108.

[6] Gilbert P, Ryu C, Sharifi V, et al. Tar reduction in pyrolysisvapours from biomass over a hot char bed[J]. Bioresource Technology, 2009, 100(23): 6045-6051.

[7] 楊玉瓊,梁杰,宣俊. 生物質(zhì)焦油處理方法的國(guó)內(nèi)研究現(xiàn)狀及發(fā)展[J]. 化工進(jìn)展,2011,30(增刊):411-413.

Yang Yuqiong, Liang Jie, Xuan Jun. Domestic research present situation and development of biomass tar removal method[J]. Chemical Industry Engineering Progress, 2011, 30(Supp.): 411-413. (in Chinese with English abstract)

[8] 吳悠,趙立欣,孟海波,等. 生物質(zhì)熱解焦油脫除方法研究進(jìn)展[J]. 化工環(huán)保,2016,36(1):17-21.

Wu You, Zhao Lixin, Meng Haibo, et al. Research progresses on removal of tar in biomass pyrolysis[J]. Environmental Protection of Chemical Industry, 2016, 36(1): 17-21. (in Chinese with English abstract)

[9] 吳文廣,羅永浩,陳祎,等.生物質(zhì)焦油凈化方法研究進(jìn)展[J]. 工業(yè)加熱,2008,37(2):1-5.

Wu Wenguang, Luo Yonghao, Chen Yi, et al. The progress in tar reduction method research[J]. Industrial Heating, 2008, 37(2): 1-5. (in Chinese with English abstract)

[10] 李賢斌,姚宗路,趙立欣,等.生物質(zhì)炭化生成焦油催化裂解的研究進(jìn)展[J]. 現(xiàn)代化工,2017,37(2):56-50.

Li Xianbin, Yao Zonglu, Zhao Lixin, et al.Research progress of catalytic pyrolysis of biomass tar[J]. Modern Chemical Industry, 2017, 37(2): 56-50. (in Chinese with English abstract)

[11] 李樂(lè)豪,聞光東,楊啟煒,等. 生物質(zhì)焦油處理方法研究進(jìn)展[J]. 化工進(jìn)展,2017,36(7):2407-2416.

Li Lehao, Wen Guangdong, Yang Qiwei, et al. Advance in the treatment methods of biomass tar[J]. Chemical Industry Engineering progress, 2017, 36(7): 2407-2416. (in Chinese with English abstract)

[12] 湯浩,孫鵬,劉文峰. 工作條件對(duì)軸流旋風(fēng)分離器分離效率影響的數(shù)值研究[J]. 機(jī)械工程學(xué)報(bào),2017,53(2):157-163.

Tang Hao, Sun Peng, Liu Wenfeng. Numerical study on the influence of working conditions on separation efficiency of an axial flow cyclone separator[J]. Journal of Mechanical Engineering, 2017, 53(2): 157-163. (in Chinese with English abstract)

[13] 鮑振博,靳登超,劉玉樂(lè),等. 生物質(zhì)氣化中焦油的產(chǎn)生及其危害性[J]. 安徽農(nóng)業(yè)科學(xué),2011,39(4):2243-2244.

Bao Zhenbo, Jin Ddengchao, Liu Yule, et al. Tar generation and its harmfulness in the process of biomass gasification[J]. Journal of Anhui Agricultural Sciences, 2011, 39(4): 2243-2244. (in Chinese with English abstract)

[14] Wu B, Liu S, Wang H. A study on advanced concept for fine particle separation[J]. Experimental Thermal and Fluid Science, 2002, 26: 723-730.

[15] Xiong Zhiyi, Ji Zhongli, Wu Xiaolin. Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones[J]. Powder Technology, 2014, 253: 644-649.

[16] Zhu Y, Kim M C, Lee K W, et al. Design and performance evaluation of a novel double cyclone [J]. Aerosol Science and Technology, 2001, 34(2): 373-380.

[17] Karagoz I, Avci A, Surmen A, et al. Design and performance evaluation of a new cyclone separator[J]. Journal of Aerosol Science, 2013, 59: 57-64.

[18] Hoffmann A C, Jonge R D, Arends H, et al. Evidence of the ‘natural vortex length’ and its effect on the separation efficiency of gas cyclones[J]. Filtration & Separation, 1995, 32(8): 799-804.

[19] Obermairs, Woisetschlager J, Staudinger G. Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry[J]. Powder Technology, 2003, 138(2): 239-251.

[20] 陳建義,羅曉蘭,時(shí)銘顯. PV-E型旋風(fēng)分離器性能試驗(yàn)研究[J]. 流體機(jī)械,2004,32(3):39-43.

Chen Jianyi, Luo Xiaolan, Shi Mingxian. Experiment research on performance of model PV-E cyclone separator[J]. Fluid Machinery, 2004, 32(3): 39-43. (in Chinese with English abstract)

[21] 趙兵濤,沈恒根,張吉光. 旋風(fēng)分離器進(jìn)口結(jié)構(gòu)的優(yōu)化及其性能的試驗(yàn)研究[J]. 化工機(jī)械,2003,30(4):195-205.

Zhao Bingtao, Shen Henggen, Zhang Jiguang. An experimental investigation on the optimum and performance of the inlet structure of a cyclone[J]. Chemical Engineering & Machinery, 2003, 30(4): 195-205. (in Chinese with English abstract)

[22] 張建平,徐達(dá)成,車鵬,等. 錐度對(duì)旋風(fēng)除塵器主要性能的影響[J]. 環(huán)境工程學(xué)報(bào),2016,10(5):2507-2512.

Zhang Jianping, Xu Dacheng, Che Peng, et al. Influences of taper on main performances of cyclone separator[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2507-2512. (in Chinese with English abstract)

[23] Xiang R, Park S H, Lee K W. Effects of cone dimension on cyclone performance[J]. Journal of Aerosol Science, 2001, 32(4): 549-561.

[24] 張建平,車鵬,徐達(dá)成.相對(duì)端面比對(duì)旋風(fēng)除塵器主要性能的影響[J]. 工業(yè)安全與環(huán)保,2016,42(9):22-24.

Zhang Jianping, Che Peng, Xu Dacheng. The influences of relative end face ratio on main performances for the cyclone separator[J]. Industrial Safety and Environmental Protection, 2016, 42(9): 22-24. (in Chinese with English abstract)

[25] 鄭建祥,周天鶴. 旋風(fēng)分離器排氣管縮口半徑優(yōu)化的數(shù)值模擬[J]. 流體機(jī)械,2015,43(12):28-32.

Zhang Jianxiang, Zhou Tianhe. Numerical simulation to the reducing radius optimization of cyclone separator exhaust pipe[J]. Fluid Machinery, 2015, 43(12): 28-32. (in Chinese with English abstract)

[26] Gao X, Chen J, Feng J, et al. Numerical investigation of the effects of the central channel on the flow field in an oil-gas cyclone separator[J]. Computers & Fluids, 2014, 92: 45-55.

[27] 王樂(lè)勤,郝宗睿,王循明,等. 筒體長(zhǎng)度對(duì)旋風(fēng)分離器內(nèi)流場(chǎng)影響的數(shù)值模擬[J]. 工程熱物理學(xué)報(bào),2009,30(2):223-226.

Wang Leqin, Hao Zongrui, Wang Xunming, et al. Numerical simulation of flow field in cyclone of different height[J]. Journal of Engineering Thermophysics, 2009, 30(2): 223-226. (in Chinese with English abstract)

[28] 楊景軒,馬強(qiáng),孫國(guó)剛. 旋風(fēng)分離器排氣管最佳插入深度的實(shí)驗(yàn)與分析[J]. 環(huán)境工程學(xué)報(bào),2013,7(7):2673-2677.

Yang Jingxuan, Ma Qiang, Sun Guogang. Experiment and analysis of vortex finder optimum lengthin cyclone separator[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2673-2677. (in Chinese with English abstract)

[29] Hasler P, Nussbaumer T. Gas cleaning for IC engine applications from fixed bed biomass gasication[J]. Biomass and Bioenergy, 1999, 16(6): 385-395.

[30] De Jong W, Unal O, Andries J, et al. Biomass and fossil fuel conversion by pressurized fluidised bed gasification using hot gasceramic filters as gas cleaning[J]. Biomass and Bioenergy, 2003, 25(1): 59-83.

[31] Pathak B S, Kapatel D V, Bhoi P R, et al. Design and development of sand bed filter for upgrading producer gas to IC engine quality fuel[J]. International Energy Journal, 2007, 8(1): 15-20.1

[32] 劉玉環(huán),朱普琪,王允圃,等. 生物質(zhì)氣化焦油處理技術(shù)的最新研究進(jìn)展[J]. 現(xiàn)代化工,2013,33(11):24-29. Liu Yuhuan, Zhu Puqi, Wang Yunpu, et al. Advance in tar removal technology of biomass gasification[J]. Modern Chemical Industry, 2013, 33(11): 24-29. (in Chinese with English abstract)

[33] Leith D, Licth W. The collection efficiency of cyclone type particle collectors: A new theoretical approach[J]. AIChESymp Series, 1972, 68(126): 196-206.

[34] 李強(qiáng). 旋風(fēng)除塵器優(yōu)化設(shè)計(jì)及分離特性研究[D]. 長(zhǎng)沙:中南大學(xué),2008.

Li Qiang. Optimization Design and Study on Separation Characteristics of Cyclone Separator[D]. Changsha: Zhongnan University, 2008. (in Chinese with English abstract)

Development on cyclone-finger roller two-stage purification device of pyrolysis gas from straw carbonization

Xin Mingjin1, Chi Bowen1, Chen Tianyou1,2, Meng Jun3, Jiao Jinkang1, E Yang3, Wu Liyan1, Song Yuqiu1※

(1110161,; 2130025,; 3,,110161,)

Carbonization is one of the effective measures for utilization of straw. However, the tar and dust produced by carbonization are mixed in the pyrolysis gas, which will hinder the extraction and subsequent utilization of the flammable gases in the gas, and the tar may stick onto the inner wall of the device if the gas was not purified. And the air may be seriously polluted if it is vented into the air without purification. A two-stage purification device which consisted of a cyclone and a finger roller in its exhaust tunnel was designed in this study to improve the purification rate of carbonized flue gas, the structural parameters of the device were determined and the finger rod was designed. To get an efficient purification of the gas, the cyclone is the first stage which separates large particles in the gas by centrifugal force, and finger roller is the second stage which collides and gathers small particles into large particles and separates the particles along the taper finger by centrifugal force. The quadratic regression experiment with general rotary design method was carried out, with factors of the finger roller speed, the flue gas inlet speed and the core tube insert distance and with indicators of the flue gas purification rate and the pressure loss, the variance analysis and surface response analysis of the data were conducted with software Design-Expert8.0.6, and the mathematic models between the indicators and factors were established. The results showed that the three factors had significant effect on the purification rate and pressure loss of flue gas (<0.01); The impact order of factors on pressure loss was as follows: finger roller speed > inlet gas speed >core tube insert distance, and the order of factors on purification rate was as follows: finger roller speed >inlet gas speed >core tube insert distance. As for effect of interaction of factors, the interactions of finger roller speed and inlet gas speed, inlet gas speed and core tube insert distance had significant effect on the pressure loss (<0.01); the interaction of finger roller speed and inlet gas speed was extremely significant on purification rate (<0.01). The optimal combinations of factors and levels were determined with optimization of multiple indices and verified through experiment. The optimal parameters were finger roller speed of 3 030 r/min, inlet gas speed of 19.5 m/s, insert tube distance of 210 mm, under the conditions, the pyrolysis gas pressure loss was 1 971.73 Pa, the purification rate was 84.2%. It can meet the requirements of pyrolysis gas purification of straw carbonization. This study may provide a reference for the development of pyrolysis gas purification device.

straw; carbonization; purification; pyrolysis gas; two-stage purification; cyclone; finger roller; pressure loss

辛明金,遲博文,陳天佑,孟 軍,焦晉康,顎 洋,鄔立巖,宋玉秋. 秸稈炭化熱解氣旋風(fēng)分離器-指桿輪兩級(jí)凈化裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):218-224. doi:10.11975/j.issn.1002-6819.2019.04.027 http://www.tcsae.org

Xin Mingjin, Chi Bowen, Chen Tianyou, Meng Jun, Jiao Jinkang, E Yang, Wu Liyan, Song Yuqiu. Development on cyclone-finger roller two-stage purification device of pyrolysis gas from straw carbonization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 218-224. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.04.027 http://www.tcsae.org

2018-07-23

2019-02-18

國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0200800);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金資助(CARS-01-46);沈陽(yáng)市科技計(jì)劃項(xiàng)目(17-182-9-00);云南省重點(diǎn)研發(fā)計(jì)劃(2016IB004)

辛明金,教授,主要從事農(nóng)業(yè)生產(chǎn)機(jī)械化技術(shù)及裝備研究。 Email:xinmj2005@163.com

宋玉秋,副教授,主要從事農(nóng)業(yè)生產(chǎn)機(jī)械化技術(shù)及裝備研究。Email:songyuqiusyau@sina.com

10.11975/j.issn.1002-6819.2019.04.027

S216.4

A

1002-6819(2019)-04-0218-07

猜你喜歡
焦油旋風(fēng)分離器
焦油渣干化處理的應(yīng)用與實(shí)踐
雙螺旋導(dǎo)流型旋風(fēng)分離器的實(shí)驗(yàn)和數(shù)值模擬研究*
差異旋風(fēng)分離器并聯(lián)的氣相流場(chǎng)研究
雙軸向粗粉分離器流動(dòng)特征研究
均勻控制兩個(gè)并列二級(jí)分離器“搶液”問(wèn)題分析
鞍鋼鲅魚圈焦油渣回配裝置的應(yīng)用與改進(jìn)
腦力急旋風(fēng)
腦力急旋風(fēng)
腦力急旋風(fēng)
腦力急旋風(fēng)