王學(xué)仁
摘要:我們將介紹我們的工作:①把9個關(guān)聯(lián)系數(shù)分成兩組:涉及?(線加速度)的A組包括Γ?0?01?,Γ?1?00?, Γ?1?11?, Γ?1?22?, 和 Γ?1?33?;不涉及的B組包括Γ?2?12?, Γ?2?33?, Γ?3?13?, 和 Γ?3?23?。②回顧關(guān)系式()?r=()?Nγ?3,這里()?r是相對論力學(xué)中的線加速度,()?N是牛頓力學(xué)中的線加速度,γ是洛倫茲因數(shù)。③我們已經(jīng)確定(Γ?0?01?)?N=-b?′b?-1?,(Γ?1?00?)?N=-c?2b?′b?-5?,(Γ?1?11?)?N=b?′b?-1?,(Γ?1?22?)?N=-rb?-2?,(Γ?1?33?)?N=-rb?-2?sin?2θ。④我們已經(jīng)確定(Γ?0?01?)?r=(-b?′b?-1?)γ?3, (Γ?1?00?)?r=(-c?2b?′b?-5?)γ?3,(Γ?1?11?)?r=(b?′b?-1?)γ?3,(Γ?1?22?)?r=(-rb?-2?)γ?3,(Γ?1?33?)?r=(-rb?-2?sin?2θ)γ?3。⑤我們已經(jīng)證明Γ?0?01?=A?′/(2A)=?-b?′b?-1?,?Γ?1?00?=A?′/(2B)=-c?2b?′b?-5?,Γ?1?11?=b?′/(2B)=b?′b?-1?,Γ?1?22?=-rb?-1?=-rb?-2?,Γ?1?33?=-rb?-1?sin?2θ=-rb?-2?sin?2θ。(6)我們已經(jīng)確定(Γ?1?12?)?N?r=r?-1?,(Γ?2?33?)?N?r=?sin?θ?cos?θ,(Γ?3?13?)?N?r=r?-1?,(Γ?3?23?)?N?r=?cot?θ。⑥我們分析了?Schwarzschild?解并得出兩個結(jié)論:(?a?)B =(1-2GM/(c?2r))?-1?=(1-?r·?2/c?2)?-1?=γ?2,這表明它和牛頓守恒定律有關(guān)。(?b?)對于弱引力場GM/(c?2r)1, B=(1-2GM/(c?2r))?-1?≈?1+?2GM/(c?2r)≈1+2GM/(c?2r)+(GM/(c?2r))?2=(1+GM/(c?2r))?2=γ?2,因此,γ=1+GM/(c?2r)=b,這個關(guān)系式對強(qiáng)引力場也適用。把這些需要的表達(dá)方式帶入方程式,并應(yīng)用關(guān)系式,我們能簡化方程式。我們已經(jīng)得到了相對論解:-c?2?d?τ?2=c?2(1+GM/(c?2r))?-2?d?t?2-(1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin?2θ?d?φ?2?.
關(guān)鍵詞:廣義相對論;場方程;引力理論
DOI:10.15938/j.jhust.2019.01.024
中圖分類號: O412.1
文獻(xiàn)標(biāo)志碼: A
文章編號: 1007-2683(2019)01-0145-04
A Study of Einstein Field Equation
WANG Xue?ren
(School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China)
Abstract:
In this paper we present our research work: ①We divide 9 connection coefficients into two groups: Group A involving??(the linear acceleration) includes?Γ?0?01?,Γ?1?00?, Γ?1?11?, Γ?1?22?, and?Γ?1?33?; Group B not involving??includes?Γ?2?12?, Γ?2?33?, Γ?3?13?, and?Γ?3?23?. ②Recalling the relation formula:?()?R=()?Nγ?3?, where?()?R?is the linear acceleration in relativistic mechanics,?()?N?the linear acceleration in Newtoneon mechanics, and?γ?Lorrentz factor. ③We have determined that?(Γ?0?01?)?N= -b?′b?-1?, (Γ?1?00?)?N= -c?2b?′b?-5?, (Γ?1?11?)?N= b?′b?-1?, (Γ?1?22?)?N= -rb?-2?, (Γ?1?33?)?N= -rb?-2?sin?2θ?. ④We have determined that?(Γ?0?01?)?R = (-b?′b?-1?)γ?3, (Γ?1?00?)?R = (-c?2b?′b?-5?)γ?3, (Γ?1?11?)?R = (b?′b?-1?)γ?3, (Γ?1?22?)?R = (-rb?-2?)γ?3, (Γ?1?33?)?R = (-rb?-2?sin?2θ)γ?3?. ⑤We have proved that?Γ?0?01?=A?′/(2A)=-b?′b?-1?, Γ?1?00?= A?′/(2B) = -c?2b?′b?-5?, Γ?1?11?= B?′/(2B) = b?′b?-1?, Γ?1?22?= -rB?-1?= -rb?-2?,Γ?1?33?= -rB?-1?sin?2θ= -rb?-2?sin?2θ?. (6)We have determined that?(Γ?1?12?)?N?R = r?-1?, (Γ?2?33?)?N?R =?sin?θ?cos?θ, (Γ?3?13?)?N?R= r?-1?, (Γ?3?23?)?N?R =?cot?θ?. ⑥We have analyzed Schwarzschild solution, and drawn two conclusions: (a)?B=(1-2GM/(c?2r))?-1?= (1-?r·?2/c?2)?-1?= γ?2?, indicating that it involves Newtoneon formula of energy conservation. (b)In the case of the weak gravitational field,?GM/(c?2r)1, B =?(1-2GM/(c?2r))??-1?≈ 1 + 2GM/(c?2r) ≈ 1 + 2GM/(c?2r) +?(GM/(c?2r))?2 =?(1+GM/(c?2r))?2 = γ?2?, therefore,?γ= 1 + GM/(c?2r) = b?, it holds too, in the case of the strong gravitational field. (8)Substituting the needed expressions into equations, and applying the relation formulas, we can simplify the equations, Obtaining the relativistic solution:
-c?2?d?τ?2 = c?2(1+GM/(c?2r))?-2?d?t?2 - (1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin?2θ?d?φ?2
Keywords:general relativity; field equation; gravitational theory
0Introduction
Schwarzschild solution for Einstein field equation has made an important contribution to development of general relativity, but we should point out Schwarzschild solution belongs to Newtonian mechanics, and it is suitable only to the weak gravitational field, but not suitable to the strong gravitational field. In this paper we will give sufficient basis for this conclusion.
1Classification of connection coefficients
We divide 9 connection coefficients into two groups: group?A?involving??(the linear acceleration), see Table1; group?B?not involving??, see Table 1 and 2.
Table1. Group?A?involving
Γ?0?01?(=A?′/(2A)=-B?′/(2B)) = -Γ?1?11?=?/(r·r·), Γ?1?00?= -/(?t?·t·), Γ?1?11?=-/(r·r·), Γ?1?22?=-/(θ?·θ?·),Γ?1?33?=-/(φ·φ·)
Table2. Group?B?not involving
Γ?2?12?=-θ?¨/(r·θ?·), Γ?2?33?=-θ?¨/(φ·φ·), Γ?3?13?=-/(r·φ·), Γ?3?23?=-/(θ?·φ·)
2?R=?Nγ?3
R?is linear acceleration in relativistic mechanics,?N?is linear acceleration in Newtoneon mechanics, the relation formula between??R?and??N?is as below (references[2], P38)
R=?Nγ?3?(1)
where?γ?is Lorentz factor. So that the expressions of group?A?in two kinds of mechanics are different.
3The expressions of group A in Newtonian mechanics
Example 1: Determine the expression of?(Γ?1?11?)?N?.
Solution: From?-c?2?d?τ?2 = -b?2?d?r?2?(see line element Exp. (4))
r·=cb?-1?. From??N+?(Γ?1?11?)?N(r·r·)=0?,we can get
(Γ?1?11?)?N = -?d?r?d?τ?d?r·?d?r/(r·(cb?-1?))=-(r·(-cb?-2?b?′)/(r·(cb?-1?))=b?′b?-1?.
Following Example 1, we can obtain Table 3.
Table 3. The expressions of Group A in Newtonian mechanics
(Γ?0?01?)?N=-b?′b?-1?,?(Γ?1?00?)?N=-c?2b?′b?-5?,?(Γ?1?11?)?N=b?′b?-1?,?(Γ?1?22?)?N=-rb?-2?,?(Γ?1?33?)?N=-rb?-2??sin??2θ.
4The expressions of group A in relativistic mechanics
Example 2: Determine the expression of??(Γ?1?11?)?R?.
Solution: From??()?R+?(Γ?1?11?)?R(r·r·)=0?we can get??(Γ?1?11?)?R=-?()?R/(r·r·)=γ?3(-?N/(r·r·)=?(Γ?1?11?)?Nγ?3?.
Following Example 2 we can obtain Table 4.
Table4. The expressions of group A in relativistic mechanics
(Γ?0?01?)?R=(-b?′b?-1?)γ?3,?(Γ?1?00?)?R=(-c?2b?′b?-5?)γ?3,?(Γ?1?11?)?R=(b?′b?-1?)γ?3,
(Γ?1?22?)?R=(-rb?-2?)γ?3,?(Γ?1?33?)?R=(-rb?-2??sin??2θ)γ?3
5Group A used in Schwarzschild solution
Example 3. Prove?Γ?1?00?=A?′/(2B)= -c?2b?′b?-5
Proof.
Γ?1?00?= A?′/(2B)=?(c?2B?-1?)?′/(2B)=?(c?2b?-2?)?′/(2b?2)=-2c?2b?-3?b?′/(2b?2)=-c?2b?′b?-5
Following Example 3 we can obtain Table 5.
Table 5. Equivalence
Γ?0?01?=A?′/(2A)=-b?′b?-1?, Γ?1?00?=A?′/(2B)= -c?2b?′b?-5?,
Γ?1?11?=B?′/(2B)=b?′b?-1?, Γ?1?22?=-rB?-1?=-rb?-2?,
Γ?1?33?=-rB?-1??sin??2θ=-rb?-2??sin??2θ
6The expression of Group B
The expressions of group B in two kinds of mechanics have no difference. See Table 6.
Table 6. The expression of group B
(Γ?2?12?)?N?R=r?-1?,?(Γ?2?33?)?N?R=?sin?θ?cos?θ,?(Γ?3?13?)?N?R=r?-1?,?(Γ?3?23?)?N?R=?cot?θ
7Analyzing Schwarzschild Solution
Schwarzschild solution is a very important result in general relativity, practice has proved that it is suitable for the weak gravitational field very well.
As a part of Schwarzschild solution?B =?(1-2GM/(c?2r))??-1??is related closely with Lorentz factor,
γ?2=?(1-?r·?2/c?2)??-1?=?(1-2GM/(c?2r))??-1?=B=b?2
It is very clear that Schwarz Schild solution involves a Newtoneon formula of energy conservation.
r·?2/2=GM/r?(2)
In the case of the weak gravitational field,?GM/(c?2r)<<1,
b?2=B=?(1-2GM/(c?2r))??-1?≈1+2GM/(c?2r)≈
1+2GM/(c?2r))+?(GM/(c?2r))?2=?(1+GM/(c?2r))?2=γ?2
That is
γ=1+GM/(c?2r)=b?(3)
Form. (3) holds still in the case of the strong gravitational field.
8Solving Einstein field equation
Line element is expressed as below:
-c?2?d?τ?2=a?2(r)?d?t?2-b?2(r)?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(4)
In the following we will write a(r) and b(r) as a and b. The relation formulas between a and b are as following:
ab=c
a?′b+ab?′=0?(5)
Einstein field equation can be written as below:
R?μν?=?νΓ?σ?μσ?-?σ?Γ?σ?μν?+Γ?ρ?μσ?Γ?σ?ρν?-Γ?ρ?μν?Γ?σ?ρσ?=0?(6)
Eq. (6) can be rewritten as following:
R?00?=-?rΓ?1?00?+Γ?1?00?(Γ?0?01?-Γ?1?11?)-Γ?1?00?(Γ?2?12?+Γ?3?13?)=0
R?11?=?rΓ?0?01?+Γ?0?01?(Γ?0?01?-Γ?1?11?)-Γ?1?11?(Γ?2?12?+Γ?3?13?)=0
R?22?=-?rΓ?1?22?+?θ?Γ?3?23?+Γ?3?23?Γ?3?23?=0?(7)
Substituting the needed expressions of Tables 4 and 6 into Eq. (7), we obtain:
R?00?=c?2b?″b?-5?γ?3-c?2b?′b?-5?γ?5?(5b?′b?-1?γ-3γ?′-2b?′b?-1?γ)+2c?2b?′b?-5?γ?3r?-1?=0
R?11?=-b?″b?-1?γ?3+b?′b?-1?γ?4?(b?′b?-1?γ?2-3γ?′γ+2b?′b?-1?γ?2)-2b?′b?-1?γ?3r?-1?=0
R?22?=?(rb?-2?γ?3)?′-1=0?(8)
Applying?γ= b?(Form. 3), Eqs. (8) can be simplified as:
b?″+2b?′r?-1?=0
b?″+2b?′r?-1?=0
(rb)?′-1=0.?(9)
From Eq.(9) we can get
b=1+C/r?(10)
Comparing Exp.(10) with Form. (3) we can determine:
C=GM/c?2?,
so that
b(r)=1+GM/(c?2r)?(11)
using relation Form (5a) we can get
a(r)=c?(1+GM/((c?2r))??-1?(12)
The relativistic solution can be expressed as
-c?2?d?τ?2=c?2?(1+GM/(c?2r))??-2?d?t?2-?(1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2.?(13)
Appendix A.Schwarzschild Solution
Line element can be written as below:
-c?2?d?τ?2=A(r)?d?t?2-B(r)?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(A1)
In the following we will write?A(r)?and?B(r)?as?A?and?B?. Therelation formulas between A and B as following:
AB=c?2?(A2a)
A?′B+Ab?′=0?(A2b)
The expressions of connection coefficients are as below:
Γ?0?01?=A?′/(2A)=12A?′A?-1?, Γ?1?00?=A?′/(2B)=12c?2A?′A,
Γ?1?11?=B?′/(2B)=-12A?′A?-1?, Γ?1?22?=-rB?-1?=-c?-2?rA,
Γ?1?33?=-rB?-1??sin??2θ=-c?2rA?sin??2θ?(A3a)
Γ?2?12?=r?-1?, Γ?1?33?=?sin?θ?cos?θ, Γ?3?13?=r?-1?, Γ?3?23?=?cot?θ?(A3b)
Substituting the needed expressions in (A3a) and (A3b) into Eqs. (7), ones can obtain:
R?00?=-?r(12c?-2?A?′A)+(12c?-2?A?′A)(12A?′A?-1?-(-12A?′A?-1?))-(12c?-2?A?′A)(r?-1?+r??-1?)=0?(A4a)
R?11?=?r(12A?′A?-1?)+(12A?′A?-1?)(12A?′A?-1?-(-12A?′A?-1?))-(-12A?′A?-1?)(r?-1?+r??-1?)=0?(A4b)
R?22?=-?r(-rA/c?2)+?θ?cot?θ+?cot?θ?cot?θ=0?(A4c)
Eqs.(A4a)~(A4c)can be simplified as
A?″+2A?′r?-1?=0?(A5a)
A?″+2A?′r?-1?=0?(A5b)
(rA)?′/c?2-1=0?(A5c)
From Eq. (A5c) ones can get
A=c?2(1+C/r).
Analyzing the gravitational field, a conclusion is given ([1], p.121)
h?00?=-2GM/(c?2r)=C/r,
So that
C =-2GM/c?2,
A(r)=c?2(1-2GM/(c?2r))?(A6a)
Applying relation Form. (A2a), ones can get
B(r)=?(1-2GM/(c?2r))??-1?(A6b)
Therefore Schwarzschild solution can be written as
-c?2?d?τ?2=c?2(1-2GM/(c?2r))?d?t?2-?(1-2GM/(c?2r))??-1?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(A7)
References:
[1]FOSTER J., Nightingale J.D.A short Course in General Relativity[M]. SecondEdition. 1995. New York: Springer Verlag, Chaps 2, 3.
[2]RINDLER W. Introduction to Special Relativity[M]. Oxford: Clarendon press,1982.