雷金睿,陳宗鑄*,吳庭天,李苑菱,陳小花,楊 琦,何榮曉
?
1989~2015年??诔鞘袩岘h(huán)境與景觀格局的時空演變及其相互關(guān)系
雷金睿1,陳宗鑄1*,吳庭天1,李苑菱1,陳小花1,楊 琦1,何榮曉2
(1.海南省林業(yè)科學(xué)研究所,海南 海口 571100;2.海南大學(xué)熱帶農(nóng)林學(xué)院,海南 海口 570228)
利用1989,1999,2007和2015年的4期Landsat 5TM/8OLI-TIRS遙感數(shù)據(jù),綜合應(yīng)用遙感、地理信息系統(tǒng)、景觀生態(tài)學(xué)和統(tǒng)計分析相結(jié)合的方法,探討海口城市熱環(huán)境與景觀格局的時空演變關(guān)系.結(jié)果顯示,1989~2015年間,??诔鞘嘘懙乇砻鏈囟?LST)總體呈逐步上升的趨勢.城市熱島面積逐步擴大,空間質(zhì)心向西南方向轉(zhuǎn)移,且在2007年以后轉(zhuǎn)移速率明顯加快;冷島質(zhì)心則向東部生態(tài)核心區(qū)轉(zhuǎn)移.城市LST較高的區(qū)域往往與不透水表面分布一致,較低的LST與綠地或水體分布一致.4期綠地的平均LST比不透水表面低4.17℃,其中2015年綠地景觀類型百分比(PLAND)每增加10%導(dǎo)致LST下降0.57℃;不透水表面每增加10%,LST則上升0.78℃.不同時期綠地和不透水表面的平均LST與PLAND、最大斑塊指數(shù)(LPI)、聚集度指數(shù)(AI)均表現(xiàn)為一致的極顯著相關(guān)關(guān)系,且相關(guān)性逐年增強,其中綠地為負相關(guān),不透水表面為正相關(guān);景觀斑塊的大小和聚集程度對城市LST有較大影響.研究結(jié)果可以拓展對城市熱環(huán)境與景觀格局時空演變關(guān)系的認識,為城市規(guī)劃和決策者提供參考.
城市熱島;陸地表面溫度;景觀格局;土地覆蓋;不透水表面;綠地;???/p>
據(jù)聯(lián)合國估計,目前居住在城市地區(qū)的人口占全球總?cè)丝跀?shù)的54.5%,預(yù)計到2030年將達到60%[1].城市化是人類社會發(fā)展的共同趨勢,也是推動多種環(huán)境變化的重要因素[2-4].隨著城市規(guī)模和密度的不斷擴大,環(huán)境污染、植被退化、能源消耗、熱島效應(yīng)等一系列生態(tài)環(huán)境問題也不斷出現(xiàn),嚴重制約了區(qū)域的持續(xù)與健康發(fā)展[4-5].
城市熱島(UHI)作為城市空間熱環(huán)境特征的集中體現(xiàn)[6],是當前全球城市空間熱環(huán)境和可持續(xù)發(fā)展研究的主要內(nèi)容.熱島可分為3類:冠層熱島(CLHI),邊界層熱島(BLHI)和地表城市熱島(SUHI)[7].前2類屬于大氣熱島,通常通過國家氣象站網(wǎng)絡(luò)、定點觀測等方法進行氣溫測量;SUHI通常使用機載或衛(wèi)星熱紅外遙感來表征陸地表面溫度(LST),因其具有較高的空間和時間分辨率,成為目前國內(nèi)外研究人員開展城市熱環(huán)境變化研究的主要技術(shù)手段[8-10].
近年來,隨著熱紅外遙感技術(shù)的快速發(fā)展, LST可以很容易地從衛(wèi)星遙感數(shù)據(jù)中反演獲取,與地理信息系統(tǒng)(GIS)相結(jié)合可用于大量研究[11-13],評估LST與城市地區(qū)不同土地利用/土地覆蓋變化(LUCC)之間的空間關(guān)系是目前該領(lǐng)域的研究熱點[14-17].LUCC直接導(dǎo)致城市下墊面環(huán)境和性質(zhì)發(fā)生顯著改變,其結(jié)構(gòu)組成和景觀格局特征會影響城市熱環(huán)境的空間分布[18-19].相關(guān)研究表明,城市熱環(huán)境與景觀格局關(guān)系密切,主要受植被與不透水表面景觀百分比的影響[16,17,20-22].城市建筑物等不透水表面會導(dǎo)致地溫升高,植被則能有效地降低表面溫度.由于植被可以防止陸地表面直接受到太陽輻射的加熱,且可以通過蒸散產(chǎn)生冷島效應(yīng),起到降溫作用,與不透水表面景觀形成對比[23-26].因此,增加綠地覆蓋度是緩解UHI效應(yīng)的最有效措施之一[15].也有研究認為,植被對LST的降溫作用也會受到景觀破碎化程度的影響,大型連續(xù)的植被斑塊具有更大降低LST的能力[4,27-28].事實上,當前多數(shù)研究集中在單一時期景觀格局指數(shù)或植被覆蓋度與LST之間的定量關(guān)系,依然缺乏從多時期上定量研究空間熱環(huán)境和景觀格局的時空變化及其相互關(guān)系.
海南作為我國唯一的熱帶島嶼省份和最大的經(jīng)濟特區(qū),地理位置獨特,地理單元相對獨立,熱島現(xiàn)象具有典型性.自1988年建省以來,社會經(jīng)濟高速發(fā)展,城市迅速擴張,與生態(tài)環(huán)境之間的矛盾也逐步凸顯.而關(guān)于該地區(qū)的城市熱環(huán)境問題研究尚未見報道.基于此,本文以??谑袨槔?利用1989~2015年近30a的Landsat遙感數(shù)據(jù)分析城市熱環(huán)境與景觀格局的時空演變關(guān)系,旨在研究區(qū)域熱環(huán)境格局的空間分布特征及質(zhì)心演變;景觀類型,特別是綠地和不透水表面對城市熱環(huán)境的影響;從景觀生態(tài)學(xué)角度探究LST與景觀格局的相關(guān)關(guān)系.
圖1 研究區(qū)域位置
??谑形挥诤D蠉u北部,北瀕瓊州海峽,東西接文昌、澄邁2市縣,屬熱帶海洋性季風氣候,為典型的熱帶濱海省會城市,也是“海澄文”一體化經(jīng)濟圈的核心組成部分.本文以??谑谐鞘幸?guī)劃區(qū)為研究區(qū),具體范圍為??谑欣@城高速以北所有區(qū)域,面積約520km2(圖1).區(qū)域內(nèi)以濱海平原地貌為主,海南島最長的河流南渡江從??谑兄胁看┻^而入海,水資源豐富;東部有海南東寨港紅樹林自然保護區(qū),南部有海口火山群世界地質(zhì)公園、美舍河和五源河國家濕地公園和羊山濕地,植被覆蓋程度高.2011年,海口市政府西遷至西海岸,開啟了西部片區(qū)發(fā)展的新高潮,城市土地利用格局發(fā)生巨大變化.
研究選用1989,1999,2007和2015年4期覆蓋??谑谐菂^(qū),影像清晰少云,成像時間接近的Landsat 5TM/8OLI-TIRS遙感數(shù)據(jù)(來源于美國地質(zhì)調(diào)查局數(shù)據(jù)中心,https://glovis.usgs.gov/),軌道號均為p124/ r46(表1).依托ENVI 5.1軟件平臺,遙感影像經(jīng)幾何糾正、圖像融合等預(yù)處理,利用研究范圍對處理后的影像數(shù)據(jù)進行掩膜提取,得到研究區(qū)遙感影像底圖.采用監(jiān)督分類與目視解譯相結(jié)合的方法分別對4期遙感影像進行解譯,將研究區(qū)土地利用景觀類型分為綠地、水域、不透水表面和未利用地4類[22], Kappa系數(shù)均在0.8以上,精度符合要求(圖2).所有空間數(shù)據(jù)釆用Gauss_Kruger投影統(tǒng)一到2000國家大地坐標系,空間分辨率重采樣為30m.不同時期地面氣溫的日值數(shù)據(jù)來源于國家氣象科學(xué)數(shù)據(jù)共享服務(wù)平臺(http://data.cma.cn/).
表1 不同時期遙感數(shù)據(jù)信息
圖2 不同時期??诔鞘芯坝^類型分布
本研究基于單通道大氣校正法[29],利用Landsat遙感數(shù)據(jù)反演LST.首先通過Landsat熱紅外波段數(shù)據(jù)(TM為第6波段,OLI-TIRS為第10波段)將像元灰度值(DN)轉(zhuǎn)化為相應(yīng)的輻射亮度(L),然后根據(jù)輻射亮度推算對應(yīng)的亮度溫度(),進一步利用不同地物的比輻射率()將輻射亮溫轉(zhuǎn)換為LST.研究采用Artis等[30]提出的LST反演公式,具體方法及參數(shù)選取參考文獻[10,31-32].
為使不同時期的LST數(shù)據(jù)具有較好的可比性,采用極差標準化方法對LST進行標準化處理[32],公式為:
式中:N表示第個像元標準化后的值;T表示第個像元的LST值;min表示LST的最小值;max表示LST的最大值.
通過標準化處理后,利用均值-標準差法來劃分等級[28],將研究區(qū)LST劃分為低溫區(qū)、次低溫區(qū)、中溫區(qū)、次高溫區(qū)和高溫區(qū)5 個熱力等級,統(tǒng)計各等級在研究區(qū)域內(nèi)的相應(yīng)面積.其中,高溫區(qū)和次高溫區(qū)被定義為城市熱島區(qū)域.
景觀空間質(zhì)心模型能夠很好地從空間上描述景觀類型的時空演變特征.通過分析各研究時段的景觀類型分布質(zhì)心,可以發(fā)現(xiàn)景觀空間變化趨勢[33].本文通過計算景觀類型斑塊的面積加權(quán)質(zhì)心變化,來分析景觀格局空間變化規(guī)律和趨勢.公式為:
空間質(zhì)心轉(zhuǎn)移距離:
式中:X和Y分別是時期的景觀空間質(zhì)心坐標;X和Y是某類景觀第個斑塊的質(zhì)心坐標;C為第個斑塊的面積;L1表示從到+1時期景觀空間質(zhì)心轉(zhuǎn)移距離;是景觀類型的斑塊總數(shù)目.
本研究綜合考慮地溫反演圖柵格大小以及相關(guān)研究成果[20,22,34],經(jīng)反復(fù)測試,最終確定邊長為210m(即7×7柵格)的正方形移動窗口進行景觀格局分析.移動窗口分析采用Fragstats 4.2軟件,從研究區(qū)的左上角開始逐步移動,每次移動1個柵格,計算窗口內(nèi)的景觀指數(shù)值,并將該值賦予窗口的中心柵格,最終得到各個景觀指標的柵格圖[35].選取景觀類型百分比(PLAND)、最大斑塊指數(shù)(LPI)和聚集度指數(shù)(AI)[36],從景觀優(yōu)勢度、破碎化以及聚集程度等方面探討研究區(qū)景觀格局與地表溫度之間的相關(guān)性.各景觀指數(shù)計算公式及生態(tài)學(xué)含義詳見文獻[37].利用GIS空間分析工具對LST柵格圖進行數(shù)值統(tǒng)計(7×7柵格),并采用提取分析命令得到每個窗口中心點所對應(yīng)的平均LST和景觀指數(shù)值,最終導(dǎo)入SPSS 22.0分析城市LST與景觀格局之間的Pearson雙變量相關(guān)性.
圖3 1989~2015年間海口城市熱力等級
結(jié)果表明,1989~2015年間,受城市化和經(jīng)濟建設(shè)的影響,海口城市地表熱環(huán)境空間格局發(fā)生了巨大的變化,時空差異特征明顯;低溫區(qū)主要以南渡江水域為分布中心地帶,面積占比較穩(wěn)定,而熱島區(qū)域則逐年擴大(圖3和表2).1989年,??诔鞘械乇頍崃Φ燃壷饕灾袦丶耙韵聻橹?面積占74.42%;而高溫區(qū)主要分布在西海岸裸地及海岸帶沙灘等地,地表反射強烈,溫度高;次高溫區(qū)集中在主城區(qū)范圍,城市熱島區(qū)域面積占25.58%(圖3a).1999年,城市熱環(huán)境仍以中溫及以下為主,但面積有所縮小,熱島區(qū)域面積比例擴大至31.07%,除分布在西海岸裸地之外,主城區(qū)建設(shè)用地所形成的熱島效應(yīng)也開始凸顯出來(圖3b).2007年,熱島區(qū)域進一步向周邊蔓延,有逐漸向南渡江以東區(qū)域擴展的趨勢;同時,海甸島的熱島效應(yīng)也變得十分突出(圖3c).隨著市政府西遷后,西部片區(qū)城市建設(shè)明顯提速,大量的自然景觀逐漸向人工或半人工景觀類型轉(zhuǎn)變,導(dǎo)致城市地表景觀格局改變,土地利用程度加強.至2015年,研究區(qū)西南部區(qū)域由中、低溫區(qū)明顯演變?yōu)楦邷貐^(qū);而西北部區(qū)域則因城市發(fā)展將裸地等未利用地轉(zhuǎn)變?yōu)榻ㄔO(shè)用地或城市綠地,熱島效應(yīng)反而得到相應(yīng)減弱(圖3d).2015年??诔鞘袩岘h(huán)境中溫及以下區(qū)域進一步縮減至66.18%,熱島區(qū)域面積則升至33.82%,熱島效應(yīng)向西以及向南方向發(fā)展明顯增強,與海口市以西相接的澄邁老城經(jīng)濟開發(fā)區(qū)有同城化的發(fā)展趨勢.
表2 1989~2015年間??诔鞘袩崃Φ燃壝娣e變化
??诔鞘袩岘h(huán)境熱力等級空間質(zhì)心演變?nèi)鐖D4和表3所示.可以發(fā)現(xiàn),在1989~2015年間,低溫區(qū)和次低溫區(qū)均向東遷移,且向南渡江以東跨越,轉(zhuǎn)移距離分別為5920.44和3958.28m;次高溫區(qū)向西遷移5672.55m,高溫區(qū)向南遷移1529.50m;而中溫區(qū)空間質(zhì)心轉(zhuǎn)移距離不太明顯.總體上看,??诔鞘袩崃Φ燃壙臻g質(zhì)心演變格局與熱環(huán)境空間分布格局相符合.西部片區(qū)的建設(shè)發(fā)展帶動熱島區(qū)域空間質(zhì)心向其轉(zhuǎn)移,而低溫區(qū)和次低溫區(qū)域的空間質(zhì)心則向東部東寨港的生態(tài)核心區(qū)靠攏,以此平衡城市總體熱環(huán)境空間分布格局.從轉(zhuǎn)移速率上看,高溫區(qū)和次高溫區(qū)向西南轉(zhuǎn)移、低溫區(qū)和次低溫區(qū)向東轉(zhuǎn)移的速率相對比較迅速,且在2007~2015年間轉(zhuǎn)移速率較前期明顯加快.
圖4 海口城市地表溫度熱力等級空間質(zhì)心演變
表3 1989~2015年間??诔鞘械乇頊囟葻崃Φ燃壙臻g質(zhì)心轉(zhuǎn)移距離
注:遷移距離為“正”值表示向東或北遷移,為“負”值表示向西或南遷移.
為了說明不同景觀類型對熱環(huán)境的影響,采用ArcGIS空間分析模型分析不同時期景觀類型對地表溫度空間分布的貢獻(圖5).可以看出,未利用地和不透水表面的平均地表溫度最高,隨著時間的推移,兩者之間的差值不斷縮小,至2015年幾乎持平.這主要是由于1989年的未利用地景觀百分比較高,且斑塊集中連片,直接受到太陽輻射造成地表溫度很高;但到2015年由于城市開發(fā)建設(shè),城市中未利用地開發(fā)殆盡,少量零星分布且易受相鄰景觀斑塊影響以至于地表溫度不會過高.綠地和水域的平均地表溫度最低,但水域景觀地溫的標準差最高,綠地景觀地溫的標準差最低,這說明水域的熱環(huán)境波動很大,而綠地熱環(huán)境則十分穩(wěn)定.除在2007年地表溫度出現(xiàn)下降之外,總體上看,1989~2015年間??诔鞘懈骶坝^類型的地表溫度呈現(xiàn)逐步升高的趨勢,與同時期地面實際觀測氣溫值的變化趨勢相符.
圖5 各景觀類型平均地表溫度與標準差統(tǒng)計
通過統(tǒng)計不同時期5個熱力等級各景觀類型的熱貢獻程度可以看出(圖6),水域主要出現(xiàn)在低溫區(qū),且熱力等級越高,水域景觀百分比越低,這可能跟水的高熱慣性有關(guān).綠地主要分布在中溫區(qū)和次低溫區(qū),且在次低溫區(qū)顯示出最高值.不透水表面和未利用地景觀的高百分比出現(xiàn)在高溫區(qū)和次高溫區(qū),如混凝土建筑、道路、人工裸露沙地等地表吸熱快且熱容量小,較自然下墊面(綠地、水域等)升溫快,從而造成相應(yīng)區(qū)域地表溫度明顯較高.從時間序列上分析,中溫區(qū)至高溫區(qū)中,綠地逐年減少、不透水表面逐年增加,城市熱島面積也在逐漸擴大.由此可見,城市土地利用方式和景觀結(jié)構(gòu)組成是造成地表溫度空間差異的主要原因,尋求合理的城市土地利用規(guī)模、結(jié)構(gòu)、方式及其空間布局,應(yīng)當成為有效遏制城市熱環(huán)境效應(yīng)的重要途徑.
圖6 1989~2015年間??诔鞘袩崃Φ燃壷芯坝^類型百分比統(tǒng)計
Fig.6 Proportion of landscape types in Haikou from 1989 to 2015
以2015年為例,平均LST與景觀格局類型百分比的相關(guān)性分析結(jié)果表明(圖7),綠地景觀與平均LST 呈極顯著負相關(guān)關(guān)系,相關(guān)系數(shù)達-0.720,明顯高于水域的相關(guān)系數(shù)-0.208,表明綠地為城市地表熱環(huán)境效應(yīng)抑制的主要貢獻源.而不透水表面景觀與平均LST呈極顯著正相關(guān)關(guān)系,相關(guān)系數(shù)達0.858,為城市地表的主要熱源.總體上看,不透水表面景觀百分比每增加10%,LST約上升0.78℃;綠地景觀百分比每增加10%,LST約下降0.57℃,不透水表面對LST的影響力稍大于綠地.
通過以上分析可以看出,不透水表面和綠地景觀與平均LST呈極顯著相關(guān)關(guān)系,且相關(guān)系數(shù)最高.因此,以不透水表面和綠地兩類景觀與景觀格局指數(shù)進行時間序列的縱向分析(表4),結(jié)果發(fā)現(xiàn),在不同時期中的PLAND、LPI、AI均與平均LST表現(xiàn)為一致的極顯著相關(guān)關(guān)系(綠地為負相關(guān),不透水表面為正相關(guān)).但平均LST與PLAND、LPI的相關(guān)系數(shù)明顯高于與AI的相關(guān)系數(shù),可以說明,一個較大的連片綠地產(chǎn)生的冷島效應(yīng)強于幾個較小的分散綠地;與其相反的是,較大和連續(xù)的不透水表面要比幾個較小的分散的不透水表面產(chǎn)生更強的熱島效應(yīng).
***表示<0.001
在時間序列上,不透水表面PLAND逐年增加,LPI也隨之升高,建設(shè)用地集中連片擴張形成城市“攤大餅”式蔓延,因而產(chǎn)生更強的熱島效應(yīng),與平均LST的相關(guān)性也逐步增強.但不透水表面AI逐漸降低,反映出海口城區(qū)西部拓展和向澄邁老城方向擴展形成“一城多點”的城市發(fā)展格局,城市熱島也形成多點分布的空間格局(圖3d).而城市綠地面積不斷萎縮,斑塊破碎化持續(xù)加重,聚集程度明顯減弱,造成綠地空間分散,但依然是抑制城市熱島效益的主要貢獻力量,因此與平均LST的相關(guān)性系數(shù)也較高.
表4 綠地和不透水表面景觀格局指數(shù)與平均地表溫度之間的相關(guān)性
注:***表示<0.001.
1989~2015年間,??诔鞘袩釐u區(qū)域面積逐漸擴大,已達研究區(qū)總面積的三分之一,主要分布于主城區(qū)和西部沿海區(qū)域;熱島空間質(zhì)心向城市西南方向擴張,與澄邁老城經(jīng)濟開發(fā)區(qū)有同城化的發(fā)展趨勢.低溫區(qū)和次低溫區(qū)面積比較穩(wěn)定,主要以南渡江水域和東寨港為分布中心地帶,空間質(zhì)心均向東部發(fā)展.總體上看,海口城市熱環(huán)境空間分布與演變格局和城市總體發(fā)展布局相吻合,城市擴張也反映在地表溫度的上升中[28].西部片區(qū)的建設(shè)發(fā)展帶動熱島區(qū)域空間質(zhì)心向其轉(zhuǎn)移,而低溫區(qū)和次低溫區(qū)域的空間質(zhì)心則向東部東寨港的生態(tài)核心區(qū)靠攏,且在2007~2015年間轉(zhuǎn)移速率較前期明顯加快,這也反映出2009年海南國際旅游島政策以及2011年市政府西遷所帶來的城市發(fā)展總體布局影響.因此,為避免在未來的城市發(fā)展中形成新的熱島,城市規(guī)劃者應(yīng)密切關(guān)注空間熱環(huán)境的演變規(guī)律,主動規(guī)避無計劃的城市化對自然資源造成的負面影響.
總體而言,1989~2015年間??诔鞘械乇頊囟缺憩F(xiàn)為逐步升高的趨勢,且比實際觀測氣溫高1.1~3.5℃,在合理范圍內(nèi)[28];與Abutaleb等[31]對埃及開羅地區(qū)城市地表溫度高于大氣溫度0.5~3.5℃的研究結(jié)果十分類似.其中,綠地的平均LST(26.98℃)比不透水表面的平均LST(31.15℃)低4.17℃.而在其他地區(qū)的研究中也發(fā)現(xiàn),比如廣州城市熱環(huán)境中不透水表面和綠地的平均LST相差2.8℃[38];Estoque等[22]在對與??诘乩須夂蛳嗨频姆坡少e馬尼拉UHI的研究結(jié)果顯示,兩者相差3.7℃;Weng等[24]在美國印第安納州印第安納波利斯的UHI研究中,兩者相差達5.4℃.這些研究結(jié)果有力證明了不透水表面的熱島效應(yīng)和綠地的冷島效應(yīng).可見,綠地景觀具有重要的城市生態(tài)系統(tǒng)服務(wù)功能,在降低LST方面起著極為重要的作用[10,22,25,39].
與此同時,海口城市熱環(huán)境較高的LST往往與不透水表面分布區(qū)域相一致,較低的LST與綠地或水體分布相一致,而PLAND的逐年變化也反映在城市熱環(huán)境的時空演變之中.這表明土地利用變化是影響城市熱環(huán)境分布格局的重要因素,因此可以通過適當?shù)耐恋乩靡?guī)劃,來緩解城市熱島效應(yīng)[38],比如以不透水表面分布為主的中心城區(qū)應(yīng)當結(jié)合目前的??谑信飸魠^(qū)改造計劃規(guī)劃適當比例的城市綠地,提高城區(qū)土地利用效率,打破稠密、連片的建筑格局.
??诔鞘衅骄鵏ST與景觀結(jié)構(gòu)呈極顯著相關(guān)關(guān)系,其中與綠地景觀呈極顯著負相關(guān)關(guān)系,與不透水表面景觀呈極顯著正相關(guān)關(guān)系,分別為城市熱環(huán)境中主要的“冷源”和“熱源”.綠地PLAND每增加10%,LST下降0.57℃;不透水表面PLAND每增加10%,LST則上升0.78℃.Rogan等[40]研究美國Massachusetts 地區(qū)熱環(huán)境時也發(fā)現(xiàn),植被覆蓋率每降低10%,LST上升0.7℃;而不透水表面每增加10%,LST增加1.66℃.唐澤等[41]在對我國長春城市地表熱力景觀格局的研究結(jié)果表明,植被覆蓋率每增加10%,地表溫度下降0.7~0.8℃;不透水表面每增加10%,地表溫度上升0.6~0.7℃,植被對LST的影響力稍大于不透水表面,這可能跟不同緯度、季節(jié)變化或濕度水平等因素有關(guān)[10,25,41-42].
在與景觀格局指數(shù)的相關(guān)性分析中,不同時期中的PLAND、LPI、AI均與平均LST也表現(xiàn)為一致的極顯著相關(guān)關(guān)系(綠地為負相關(guān),不透水表面為正相關(guān)).具體而言,綠地的PLAND、LPI、AI與LST呈顯著負相關(guān),這意味著綠地斑塊連片分布會降低LST.這與前人的研究結(jié)果相一致,即LST越高,綠色空間越分散、斑塊越破碎化[27];相同面積的綠色空間,LPI越低會導(dǎo)致平均斑塊面積減小、斑塊密度增加,同樣也會增加LST[15].與其相反的是,不透水表面PLAND和LPI越低,LST也就會越低.總體而言,細碎綠地在緩解城市熱島效果方面不如聚集綠地,聚集的不透水表面則會提高城市熱島強度[22].因此,建議城市規(guī)劃和決策者通過聚集綠地和分散不透水表面來優(yōu)化城市景觀的空間布局,對于城區(qū)建設(shè)用地宜將綠地穿插分布于其中,同時規(guī)劃大型城市綠地或郊野公園.相關(guān)研究也認為,以城市公共綠地(公園綠地、防護綠地等)、森林和水域為主導(dǎo)的冷島效應(yīng)是當前改善城市熱環(huán)境、削弱城市熱島效應(yīng)最有效的手段[6-8,15,27].
在時間序列上,??诔鞘胁煌杆砻婵傮w呈“攤大餅”式向四周輻射的格局,建設(shè)用地以連片或飛地式不斷擴張,斑塊聚集程度高,熱島效應(yīng)隨之增強.前人對北京[43]、上海[32]、廣州[20]等城市的熱環(huán)境效應(yīng)研究中均證實了這一觀點.但從??诔鞘械乇頊囟葻崃Φ燃壏植紙D可以發(fā)現(xiàn),在城市主城區(qū)和西部片區(qū)之間依然存在大量綠地景觀,熱力等級相應(yīng)地為次低溫區(qū),但綠地面積在不斷縮小,熱力等級處于上升趨勢.因此,應(yīng)當盡量避免兩大熱島區(qū)域連接成更大的城市熱島,維護好殘存的生態(tài)隔離帶(河流、林地、濕地等),增加綠地覆蓋和優(yōu)化景觀配置,構(gòu)建城市生態(tài)網(wǎng)絡(luò)空間體系,從景觀生態(tài)學(xué)角度來緩解城市熱島效應(yīng).
5.1 1989~2015年間,??诔鞘蠰ST總體呈現(xiàn)逐步上升的趨勢,比實際觀測氣溫高1.1~3.5℃.城市熱島向四周輻射蔓延,面積逐步擴大,主要分布于主城區(qū)和西部沿海區(qū)域,其空間質(zhì)心向西南方向轉(zhuǎn)移,且在2007年以后轉(zhuǎn)移速率較前期明顯加快;城市冷島質(zhì)心則向東部生態(tài)核心區(qū)轉(zhuǎn)移.
5.2 城市LST較高的區(qū)域往往與不透水表面分布一致,較低的LST與綠地或水體分布一致.4期綠地的平均LST比不透水表面低4.17℃;其中2015年綠地PLAND每增加10%,LST下降0.57℃;不透水表面每增加10%,LST則上升0.78℃,分別為城市熱環(huán)境中主要的“冷源”和“熱源”.
5.3 不同時期的平均LST與PLAND、LPI、AI均表現(xiàn)為一致的極顯著相關(guān)關(guān)系,且相關(guān)性逐年增強,其中綠地為負相關(guān),不透水表面為正相關(guān).總體而言,細碎綠地在緩解城市熱島效果方面不如聚集綠地,聚集的不透水表面則會提高城市熱島強度,表明景觀斑塊的大小和聚集程度對城市LST有較大影響.
[1] United Nations Department of Economic and Social Affairs. The World's cities in 2016. New York: United Nations, 2016.
[2] Zhou D C, Bonafoni S, Zhang L X, et al. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China [J]. Science of the Total Environment, 2018,628-629:415- 429.
[3] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities [J]. Science, 2008,319(5864):756-760.
[4] Greenea G S, Kedronb P J. Beyond fractional coverage: A multilevel approach to analyzing the impact of urban tree canopy structure on surface urban heat islands [J]. Applied Geography, 2018,95:45-53.
[5] Deng J S, Wang K, Hong Y, et al. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization [J]. Landscape and Urban Planning, 2009,92(3/4): 187-198.
[6] 姚 遠,陳 曦,錢 靜.城市地表熱環(huán)境研究進展[J]. 生態(tài)學(xué)報, 2018,38(3):1134-1147. Yao Y, Chen X, Qian J. Research progress on the thermal environment of the urban surfaces [J]. Acta Ecologica Sinica, 2018,38(3):1134- 1147.
[7] Voogt J A, Oke T R. Thermal remote sensing of urban climates [J]. Remote Sensing of Environment, 2003,86(3):370-384.
[8] Pan J H. Area delineation and spatial-temporal dynamics of urban heat island in Lanzhou city, China using remote sensing imagery [J]. Journal of the Indian Society of Remote Sensing, 2016,44(1):111-127.
[9] Sultana S, Satyanarayana A N V. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: impact of urbanization [J]. International Journal of Remote Sensing, 2018,39(20):6692-6730.
[10] Yu Z W, Guo X Y, Zeng Y X, et al. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China [J]. Urban Forestry & Urban Greening, 2018,29:113-121.
[11] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: current status and perspectives [J]. Remote Sensing of Environment, 2013,131:14-37.
[12] Lazzarini M, Marpu P R, Ghedira H. Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas [J]. Remote Sensing of Environment, 2013,130:136-152.
[13] Mohan M, Kandya A. Impact of urbanization and land-use/land cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data [J]. Science of the Total Environment, 2015,506-507:453-465.
[14] Amiri R, Weng Q H, Alimohammadi A, et al. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area Iran [J]. Remote Sensing of Environment, 2009,113(12):2606-2617.
[15] Li X M, Zhou W Q, Ouyang Z Y, et al. Spatial pattern of green space affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China [J]. Landscape Ecology, 2012,27(6): 887-898.
[16] Maimaitiyiming M, Ghulam A, Tiyip T, et al. Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,89:59-66.
[17] Morabito M, Crisci A, Messeri A, et al. The impact of built-up surfaces on land surface temperatures in Italian urban areas [J]. Science of The Total Environment, 2016,551-552:317-326.
[18] Connors J P, Galletti C S, Chow W. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona [J]. Landscape Ecology, 2013,28(2):271-283.
[19] Kayet N, Pathak K, Chakrabarty A, et al. Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand [J]. Modeling Earth Systems and Environment, 2016,2:127.
[20] 黃麗明,陳健飛.城市景觀格局時空特征的熱環(huán)境效應(yīng)研究——以廣州市花都區(qū)為例[J]. 自然資源學(xué)報, 2015,30(3):480-490. Huang L M, Chen J F. Study on thermal environment effect of urban landscape pattern: A case study on Huadu district, Guangzhou [J]. Journal of Natural Resources, 2015,30(3):480-490.
[21] 黃木易,岳文澤,何 翔.巢湖流域地表熱環(huán)境與景觀變化相關(guān)分析及其尺度效應(yīng)[J]. 中國環(huán)境科學(xué), 2017,37(8):3123-3133. Huang M Y, Yue W Z, He X. Correlation analysis between land surface thermal environment and landscape change and its scale effect in Chaohu Basin [J]. China Environmental Science, 2017,37(8):3123- 3133.
[22] Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia [J]. Science of the Total Environment, 2017,577:349-359.
[23] Myint S W, Wentz E A, Brazel A J, et al. The impact of distinct anthropogenic and vegetation features on urban warming [J]. Landscape Ecology, 2013,28(5):959-978.
[24] Weng Q H, Lu D H, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies [J]. Remote Sensing of Environment, 2004,89(4):467-483.
[25] Hamada S, Ohta T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas [J]. Urban Forestry & Urban Greening, 2010,9(1):15-24.
[26] Zhou W Q, Huang G L, Cadenasso M. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes [J]. Landscape and Urban Planning, 2011,102(1):54-63.
[27] Zhang X Y, Zhong T Y, Feng X Z, et al. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing [J]. International Journal of Remote Sensing, 2009, 30(8):2105-2118.
[28] Liu G L, Zhang Q, Li G Y, et al. Response of land cover types to land surface temperature derived from Landsat-5TM in Nanjing Metropolitan Region, China [J]. Environmental Earth Sciences, 2016, 75(20):1386.
[29] Sobrino J A, Jimenez-Munoz J C, Paolini L. Land surface temperature retrieval from LANDSAT TM5 [J]. Remote Sensing of Environment, 2004,90(4):434-440.
[30] Artis D A, Carnahan W H. Survey of emissivity variability in thermography of urban areas [J]. Remote Sensing of Environment, 1982,12(4):313-329.
[31] Abutaleb K, Ngie A, Darwish A, et al. Assessment of urban heat island using remotely sensed imagery over Greater Cairo, Egypt [J]. Advances in Remote Sensing, 2015,4(4):35-47.
[32] 錢敏蕾,徐藝揚,李 響,等.上海市城市化進程中熱環(huán)境響應(yīng)的空間評價[J]. 中國環(huán)境科學(xué), 2015,35(2):624-633. Qian M L, Xu Y Y, Li X. An assessment of spatial thermal environmental response to rapid urbanization of Shanghai [J]. China Environmental Science, 2015,35(2):624-633.
[33] 孟 丹,王明玉,李小娟,等.京滬穗三地近十年夜間熱力景觀格局演變對比研究[J]. 生態(tài)學(xué)報, 2013,33(5):1545-1558. Meng D, Wang M Y, Li X J, et al. The dynamic change of the thermal environment landscape patterns in Beijing, Shanghai and Guangzhou in the recent past decade [J]. Acta Ecologica Sinica, 2013,33(5): 1545-1558.
[34] Myint, S W, Brazel A, Okin G, et al. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city [J]. GIS Science & Remote Sensing, 2010,47(3): 301-320.
[35] Kong F H, Nakagoshi N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China [J]. Landscape and Urban Planning, 2006, 78(3):147-164.
[36] Chen A L, Yao L, Sun R H, et al. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? [J]. Ecological Indicators, 2014,45:424-433.
[37] 傅伯杰,陳利頂,馬克明,等.景觀生態(tài)學(xué)原理及應(yīng)用 [M]. 北京:科學(xué)出版社, 2011:86-92. Fu B J, Chen L D, Ma K M, et al. Principles and applications of landscape ecology [M]. Beijing: Science Press, 2011:86-92.
[38] Sun Q Q, Wu Z F, Tan J J. The relationship between land surface temperature and land use/land cover in Guangzhou, China [J]. Environmental Earth Sciences, 2012,65(6):1687-1694.
[39] 王 蕾,張樹文,姚允龍.綠地景觀對城市熱環(huán)境的影響——以長春市建成區(qū)為例[J]. 地理研究, 2014,33(11):2095-2104. Wang L, Zhang S W, Yao Y L. The impacts of green landscape on urban thermal environment: A case study in Changchun city [J]. Geographical Research, 2014,33(11):2095-2104.
[40] Rogan J, Ziemer M, Martin D G, et al. The impact of tree cover loss on land surface temperature: a case study of central Massachusetts using Landsat Thematic Mapper thermal data [J]. Applied Geography, 2013,45:49-57.
[41] 唐 澤,鄭海峰,任志彬,等.城市地表熱力景觀格局時空演變——以長春市為例[J]. 生態(tài)學(xué)報, 2017,37(10):3264-3273. Tang Z, Zheng H F, Ren Z B, et al. Spatial and temporal changes to urban surface thermal landscape patterns: a case study of Changchun City [J]. Acta Ecologica Sinica, 2017,37(10):3264-3273.
[42] Peng J, Jia J L, Liu Y X, et al. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas [J]. Remote Sensing of Environment, 2018,215:255-267.
[43] 徐永明,劉勇洪.基于TM影像的北京市熱環(huán)境及其與不透水面的關(guān)系研究[J]. 生態(tài)環(huán)境學(xué)報, 2013,22(4):639-643. Xu Y M, Liu Y H. Study on the thermal environment and its relationship with impervious surface in Beijing city using TM image [J]. Ecology and Environmental Sciences, 2013,22(4):639-643.
Spatio-temporal evolution and interrelationship between thermal environment and landscape patterns of Haikou City, 1989~2015.
LEI Jin-rui1, CHEN Zong-zhu1*, WU Ting-tian1, LI Yuan-ling1, CHEN Xiao-hua1, YANG Qi1, HE Rong-xiao2
(1.Hainan Provincial Forestry Science Research Institute, Haikou 571100, China;2.Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China)., 2019,39(4):1734~1743
Landsat 5TM/8OLI-TIRS thermal infrared remote sensing data from 1989, 1999, 2007 and 2015 were used here to explore the spatio-temporal evolution and interrelationship between the thermal environment and landscape patterns in Haikou, China. Through the integration of remote sensing, geographic information systems, landscape ecology and statistical analysis methods, our results showed that the land surface temperature (LST) of Haikou City showed a gradual increase from 1989 to 2015. The area of urban heat island gradually expanded, the spatial center of mass shifted southwest, and the transfer rate accelerated significantly after 2007. In addition, the center of cold island mass was transferred to the eastern eco-centric area. The distribution of high land surface temperature in the city correlates with impervious surface, while the low LST correlated with the distribution of green land or water. The mean LST of green space was 4.17℃ lower than that of impervious surface. In 2015, 10% increase in percentage composition of landscape (PLAND) of green space caused a 0.57℃ loss in LST, whereas a 10% increase in PLAND of impervious surface caused a 0.78℃ increase in LST. The mean LST of green space and impervious surface in different years was consistently and highly significantly correlated with PLAND, largest patch index (LPI) and aggregation index (AI). In fact, the correlation grew stronger over the years. The correlation of LST with green space was negative, while it was positive for impervious surface. The size and degree of aggregation of landscape patches had great influence on urban LST. These results expand our understanding of the spatio-temporal evolution and interrelationship between urban thermal environment and landscape patterns, as well as provide a reference for urban planners and policy makers.
urban heat island;land surface temperature;landscape pattern;land cover;impervious surface;green space;Haikou
X52,TU992.1
A
1000-6923(2019)04-1734-10
2018-09-25
海南省財政科技計劃資助(KYYS-2018-32);海南省自然科學(xué)基金資助項目(317003)
*責任作者, 副研究員, chenzongzhu@foxmail.com
雷金睿(1988-),男,四川廣安人,助理研究員,碩士,主要從事城市生態(tài)、土地利用與空間信息等方面的研究.發(fā)表論文20余篇.