楊澤斌,包春峰,孫曉東,魯 江,陳 浠
?
考慮籠型轉(zhuǎn)子趨膚效應(yīng)的無軸承異步電機(jī)矢量控制優(yōu)化
楊澤斌1,包春峰1,孫曉東2,魯 江1,陳 浠1
(1. 江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013;2. 江蘇大學(xué)汽車工程研究院,鎮(zhèn)江 212013)
針對(duì)無軸承異步電機(jī)啟動(dòng)和運(yùn)行時(shí)趨膚效應(yīng)帶來的轉(zhuǎn)子參數(shù)變化問題,該文提出了一種基于有限元計(jì)算和最小二乘原理的轉(zhuǎn)子參數(shù)辨識(shí)方法。在分析電機(jī)懸浮機(jī)理和構(gòu)建其有限元模型的基礎(chǔ)上,計(jì)算了不同轉(zhuǎn)子電流頻率下轉(zhuǎn)子的電阻、漏感值,獲取趨膚系數(shù)變化曲線?;跀?shù)學(xué)模型推導(dǎo)分析了趨膚效應(yīng)對(duì)電機(jī)轉(zhuǎn)子磁場(chǎng)定向和懸浮控制的影響。采用最小二乘法對(duì)轉(zhuǎn)子參數(shù)進(jìn)行曲線擬合,提出一種考慮趨膚效應(yīng)的無軸承異步電機(jī)矢量控制優(yōu)化,通過擬合辨識(shí)獲得轉(zhuǎn)子參數(shù)的實(shí)時(shí)值,提高控制系統(tǒng)轉(zhuǎn)矩和懸浮性能,并搭建電機(jī)試驗(yàn)平臺(tái)進(jìn)行試驗(yàn)驗(yàn)證。試驗(yàn)結(jié)果表明,與未考慮趨膚效應(yīng)的控制方法相比,采用轉(zhuǎn)子參數(shù)辨識(shí)能夠縮短電機(jī)轉(zhuǎn)速響應(yīng)時(shí)間0.05 s,響應(yīng)速度提高了25%,并且電機(jī)轉(zhuǎn)子的、方向位移幅值降低50%左右,具有良好的轉(zhuǎn)矩特性和懸浮性能。該研究可為無軸承異步電機(jī)控制系統(tǒng)優(yōu)化提供參考。
電機(jī);控制;優(yōu)化;趨膚效應(yīng);懸浮力;有限元計(jì)算;最小二乘法
無軸承異步電機(jī)(bearingless induction motor,BIM)具有磁軸承無接觸、無磨損、無需潤滑、壽命長等優(yōu)點(diǎn),在農(nóng)業(yè)電氣化裝備、高速硬盤、生命科學(xué)、飛輪儲(chǔ)能等特種電氣傳動(dòng)和磁懸浮領(lǐng)域具有廣闊的應(yīng)用前景,得到了國內(nèi)外許多學(xué)者的關(guān)注[1-3]。目前,無軸承異步電機(jī)比較成熟的控制策略為磁場(chǎng)定向控制,其中轉(zhuǎn)子參數(shù)是影響磁場(chǎng)定向精確性的重要因素[4-5]。然而,電機(jī)在實(shí)際啟動(dòng)過程或高速運(yùn)行時(shí),轉(zhuǎn)子容易受到趨膚效應(yīng)影響,導(dǎo)致導(dǎo)條內(nèi)電流密度分布不均勻,轉(zhuǎn)子電阻、漏電感發(fā)生變化。而轉(zhuǎn)子參數(shù)的變化會(huì)使磁場(chǎng)定向發(fā)生偏差,進(jìn)而導(dǎo)致電機(jī)的控制效果和系統(tǒng)穩(wěn)定性降低[6-7]。因此在分析電機(jī)的動(dòng)、靜態(tài)性能時(shí),必須考慮趨膚效應(yīng)所帶來的影響。
目前,對(duì)于趨膚效應(yīng)的研究內(nèi)容主要有2個(gè)方面:一是由趨膚效應(yīng)引起的參數(shù)變化的精確計(jì)算[8-9],二是針對(duì)趨膚效應(yīng)引起的電機(jī)控制策略優(yōu)化[10-11]。如文獻(xiàn)[8]提出了一種基于正負(fù)序頻率計(jì)算單相感應(yīng)電機(jī)導(dǎo)條的電阻、漏抗,與有限元法相比,該方法運(yùn)算量小、計(jì)算精度較高,但是對(duì)于復(fù)雜槽型具有局限性。文獻(xiàn)[9]提出了一種轉(zhuǎn)子導(dǎo)條的多分支電路模型,在該模型基礎(chǔ)上利用元啟發(fā)式算法計(jì)算了導(dǎo)條的趨膚系數(shù),其結(jié)果驗(yàn)證了該算法的有效性和正確性,但與實(shí)際仍存在一定的誤差。文獻(xiàn)[10]通過諧波分析計(jì)算轉(zhuǎn)矩電流動(dòng)態(tài)變化時(shí)趨膚效應(yīng)產(chǎn)生的渦流損耗,并且采用能量最優(yōu)控制使得總損耗達(dá)到最小,該方法適用于多種負(fù)載電路,具有一定的應(yīng)用價(jià)值,但計(jì)算較為復(fù)雜。文獻(xiàn)[11]綜合考慮了趨膚效應(yīng)、磁場(chǎng)的飽和特性和溫度因素,提出一種轉(zhuǎn)子參數(shù)自適應(yīng)辨識(shí)方法,實(shí)現(xiàn)了磁場(chǎng)的準(zhǔn)確定向,提高了系統(tǒng)的解耦精度。然而,從已有文獻(xiàn)來看,研究大多針對(duì)電機(jī)的轉(zhuǎn)矩特性,而對(duì)于無軸承異步電機(jī)懸浮部分的影響分析研究很少。
為了解決趨膚效應(yīng)給同時(shí)具有旋轉(zhuǎn)和懸浮功能的新型無軸承異步電機(jī)帶來的轉(zhuǎn)子參數(shù)變化問題,本文首先建立無軸承異步電機(jī)2D模型,采用有限元法進(jìn)行轉(zhuǎn)子參數(shù)計(jì)算;通過數(shù)學(xué)模型推導(dǎo)具體分析趨膚效應(yīng)對(duì)電機(jī)轉(zhuǎn)子磁場(chǎng)定向和懸浮性能的影響;通過最小二乘法擬合得到轉(zhuǎn)子參數(shù)與感應(yīng)電流頻率的關(guān)系,并將其應(yīng)用到無軸承異步電機(jī)控制系統(tǒng),實(shí)現(xiàn)轉(zhuǎn)子參數(shù)的快速辨識(shí),提高電機(jī)的運(yùn)行性能,并通過仿真和試驗(yàn)證明該方法的正確性與有效性。
在旋轉(zhuǎn)電機(jī)中,轉(zhuǎn)子一般會(huì)受到2個(gè)方向的電磁力,一個(gè)是沿轉(zhuǎn)子表面切向的洛侖茲力,另一個(gè)是沿轉(zhuǎn)子表面徑向的麥克斯韋力[12-13]。當(dāng)電機(jī)內(nèi)氣隙磁場(chǎng)對(duì)稱分布時(shí),轉(zhuǎn)子僅受到洛侖茲力,麥克斯韋合力為0。而無軸承電機(jī)通過定子中2套不同極對(duì)數(shù)繞組磁場(chǎng)的相互作用,打破了這種對(duì)稱磁場(chǎng)分布,從而產(chǎn)生徑向力,實(shí)現(xiàn)轉(zhuǎn)子懸浮。
圖1為無軸承異步電機(jī)徑向懸浮力產(chǎn)生原理圖。如圖1所示,電機(jī)的定子槽中嵌放2套極對(duì)數(shù)不同的繞組,分別稱為轉(zhuǎn)矩繞組和懸浮繞組。若極對(duì)數(shù)為1的轉(zhuǎn)矩繞組與極對(duì)數(shù)為2的懸浮繞組滿足式(1)、式(2)關(guān)系即可以產(chǎn)生穩(wěn)定的懸浮力[14-15]。
1=2±1 (1)
1=2(2)
式中1,2為轉(zhuǎn)矩繞組和懸浮繞組的角頻率,rad/s。
注:I1、I2分別為轉(zhuǎn)矩繞組電流和徑向懸浮力繞組電流,A;Y2、Y4分別為2極磁鏈和4極磁鏈,Wb;Fy為y方向徑向懸浮力,N。 Note: I1, I2 are torque winding current and radial suspension force winding current, respectively, A; Y2, Y4 are2-pole flux and 4-pole flux, respectively, Wb; Fy is radial suspension force in y direction, N.
在圖1中,轉(zhuǎn)矩繞組通入電流1,產(chǎn)生2極磁鏈1;懸浮繞組通入電流2,產(chǎn)生4極磁鏈2。2個(gè)磁場(chǎng)疊加后,可以看到軸正方向氣隙處2個(gè)磁場(chǎng)方向相同,因而磁密增加,而軸負(fù)方向氣隙處磁場(chǎng)方向相反,磁密減弱,故電機(jī)受到軸正向的麥克斯韋力。同理,若使2電流反向,則產(chǎn)生軸負(fù)向的力。因此通過改變懸浮電流的大小及相位,可以產(chǎn)生任意方向的力,使得轉(zhuǎn)子保持穩(wěn)定懸浮。
采用有限元法對(duì)轉(zhuǎn)子進(jìn)行趨膚效應(yīng)計(jì)算時(shí),首先要建立電機(jī)結(jié)構(gòu)模型。本文采用的試驗(yàn)樣機(jī)是由小型異步電機(jī)改進(jìn)而來,其結(jié)構(gòu)模型如圖2a所示,其中定子采用雙層繞組,外層為轉(zhuǎn)矩繞組,內(nèi)層為懸浮繞組,轉(zhuǎn)子采用鑄鋁結(jié)構(gòu)(cast_aluminum_75C)。由于三維模型進(jìn)行有限元分析時(shí)網(wǎng)格剖分復(fù)雜,耗時(shí)長,為了減少仿真時(shí)間,采用如圖2b所示的二維模型。其參數(shù)為:定子外徑1=260 mm;定子內(nèi)徑2=170 mm;氣隙長度=1 mm;轉(zhuǎn)子外徑1=169 mm;轉(zhuǎn)子內(nèi)徑2=60 mm;定子槽數(shù)1=36;轉(zhuǎn)子槽數(shù)2=32。
注:+表示繞組首端,- 表示繞組末端;下標(biāo)“1”表示轉(zhuǎn)矩繞組、“2”表示懸浮繞組;A、B、C表示繞組A相、B相、C相。
假設(shè)電機(jī)邊界無漏磁,則電機(jī)的二維渦流場(chǎng)邊值方程為[16-18]:
式中為介質(zhì)磁導(dǎo)率,H/m;為矢量磁位,Wb/m;為電磁場(chǎng)的角頻率,rad/s;為虛數(shù)單位;為電導(dǎo)率,S/m;為源電流密度,A/m2; 為電機(jī)定子外徑邊界和轉(zhuǎn)子內(nèi)徑邊界。
為了求解上述邊值問題,利用有限元法將方程(3)轉(zhuǎn)化為相應(yīng)的變分問題,然后將求解域劃分為若干個(gè)單元,在每個(gè)單元內(nèi)構(gòu)造插值函數(shù),將變分問題變成多元函數(shù)的泛函極值問題,最后建立以節(jié)點(diǎn)磁位矢量為未知數(shù)的代數(shù)方程組進(jìn)行求解[19-20]。上述步驟可在ANSYS Maxwell軟件中自動(dòng)完成。
當(dāng)求解出電機(jī)區(qū)域內(nèi)各處的電勢(shì)和磁勢(shì)值后,根據(jù)歐姆定律得到導(dǎo)條交流電阻R的表達(dá)式為:
式中為單位時(shí)間內(nèi)焦耳損耗,W;I為導(dǎo)條中感應(yīng)電流的有效值,A;J為單元內(nèi)的電密,A/m2;Δ為單元面積,m2;為導(dǎo)條內(nèi)單元數(shù)。
由電感的儲(chǔ)能公式可推導(dǎo)出交流漏感L的表達(dá)式為:
式中W為電感能量,W;B為單位元內(nèi)磁感應(yīng)強(qiáng)度,T;為整個(gè)系統(tǒng)單元數(shù)。
基于以上理論,采用ANSYS Maxwell軟件對(duì)該樣機(jī)模型進(jìn)行有限元求解。圖3為轉(zhuǎn)子電流頻率為10 Hz時(shí)某個(gè)導(dǎo)條的電流密度分布情況。從圖3中可以看出,由于趨膚效應(yīng)的影響,導(dǎo)條中感應(yīng)電流分布不均勻,越接近槽口電流密度越大,且最大電流密度約為槽底處電流密度的1.5倍。
圖3 轉(zhuǎn)子電流頻率10 Hz時(shí)的導(dǎo)條電流密度分布
圖4為轉(zhuǎn)子導(dǎo)條內(nèi)電流密度在不同轉(zhuǎn)子電流頻率的分布情況。從圖4中可以看出,在轉(zhuǎn)子電流頻率較低情況下導(dǎo)條中各處的電流密度值相差不大,趨膚效應(yīng)不明顯。隨著轉(zhuǎn)子電流頻率的提高,導(dǎo)條內(nèi)感應(yīng)總電流增大,電流分布差異開始增大,電流逐漸聚集到導(dǎo)條上層,電流流過的有效面積減少,從而導(dǎo)致轉(zhuǎn)子的電阻增加。同時(shí)磁場(chǎng)分布也會(huì)由于電流分布不均勻而發(fā)生改變,轉(zhuǎn)子的漏感也會(huì)隨著轉(zhuǎn)子電流頻率的增大而減小。
圖4 不同轉(zhuǎn)子電流頻率下導(dǎo)條的電流密度分布
根據(jù)上述有限元計(jì)算轉(zhuǎn)子參數(shù)方法,該電機(jī)有限元模型在不同頻率下的導(dǎo)條電阻、漏感計(jì)算結(jié)果如表1所示。由表1可以看出,轉(zhuǎn)子參數(shù)變化規(guī)律與前文分析一致,即電阻隨頻率增大而增大,漏感隨轉(zhuǎn)子電流頻率增大而減小。
由于在低頻率下轉(zhuǎn)子電流分布較為均衡,趨膚效應(yīng)不明顯,可將0.1 Hz時(shí)的轉(zhuǎn)子電阻和漏感值近似為直流值。定義趨膚系數(shù)為交流電阻、漏感與其相應(yīng)的直流電阻、漏感之比,得到如圖5所示的趨膚系數(shù)變化曲線。
表1 不同轉(zhuǎn)子電流頻率下的導(dǎo)條交流電阻和漏感計(jì)算結(jié)果
圖5 趨膚系數(shù)變化曲線
從圖5可以看出,轉(zhuǎn)子電流頻率較小時(shí)趨膚效應(yīng)對(duì)轉(zhuǎn)子參數(shù)幾乎沒影響,轉(zhuǎn)子電流頻率越高,趨膚效應(yīng)對(duì)轉(zhuǎn)子參數(shù)的影響就越大。同時(shí),理論分析與實(shí)際計(jì)算表明,當(dāng)轉(zhuǎn)子導(dǎo)條進(jìn)行線性歸算成等效電阻電感時(shí),該變化曲線仍然適用,并且電機(jī)的軸向長度對(duì)其計(jì)算結(jié)果沒有影響,因此趨膚系數(shù)反映了趨膚效應(yīng)對(duì)轉(zhuǎn)子參數(shù)的影響程度。
在無軸承異步電機(jī)磁場(chǎng)定向控制系統(tǒng)中,常采用轉(zhuǎn)子磁場(chǎng)定向?qū)崿F(xiàn)轉(zhuǎn)矩控制。在正弦穩(wěn)態(tài)下,同步旋轉(zhuǎn)、坐標(biāo)系中的轉(zhuǎn)子磁鏈方程為[21-22]
式中1為轉(zhuǎn)矩繞組所對(duì)應(yīng)的轉(zhuǎn)子磁鏈,Wb;L1、L1分別為轉(zhuǎn)矩繞組互感、轉(zhuǎn)子自感,mH;i1d、i1q、i1d、i1d分別為轉(zhuǎn)矩繞組定轉(zhuǎn)子電流的、軸分量,A。
轉(zhuǎn)子電壓方程為
式中ω為轉(zhuǎn)差角頻率,rad/s;R為轉(zhuǎn)子電阻,Ω。由式 (6)和式(7)可得
因此,i1與軸的夾角為
當(dāng)轉(zhuǎn)子電阻值未發(fā)生變化時(shí),可得到如圖6a所示的電流和磁鏈?zhǔn)噶繄D。然而電機(jī)在實(shí)際運(yùn)行中,由于趨膚效應(yīng)的存在,轉(zhuǎn)子的電阻值會(huì)發(fā)生變化,角也會(huì)隨之變化,從而使轉(zhuǎn)子磁場(chǎng)定向產(chǎn)生偏差。
假設(shè)由于趨膚效應(yīng)使得轉(zhuǎn)子電阻減小?R,根據(jù)余弦定理可求得相應(yīng)的相角增加量為
因此當(dāng)轉(zhuǎn)子電阻值發(fā)生變化時(shí),其電流和磁鏈?zhǔn)噶筷P(guān)系如圖6b所示。
在電機(jī)懸浮控制中,懸浮力與氣隙磁鏈有關(guān),其表達(dá)式為[23-25]
式中F,F為,方向徑向懸浮力,N;為系數(shù),1d,1q為、軸系下的氣隙磁鏈分量,Wb;i2d,i2q為、軸系下的懸浮繞組電流分量,A。氣隙磁鏈分量與轉(zhuǎn)子磁鏈的關(guān)系可表示為[26]
式中L為轉(zhuǎn)子漏感,mH。將式(12)代入式(11),可得
并把式(13)中的電流分量用相角表示,可得
式中為懸浮電流i2與軸的夾角。將式(14)、(15)代入式(13),可得
<
注:yr1為轉(zhuǎn)矩繞組所對(duì)應(yīng)的轉(zhuǎn)子磁鏈,Wb; Lm1、Lr1分別為轉(zhuǎn)矩繞組互感、轉(zhuǎn)子自感, H;is1、ir1分別為轉(zhuǎn)矩繞組定轉(zhuǎn)子電流矢量,A;is1d、is1q為定子電流的d、q軸分量,A;為實(shí)際的轉(zhuǎn)子磁鏈,Wb;、為實(shí)際的d、q軸電流分量,A;?為is1與d軸的夾角,rad;??為相角增量,rad。
從式(16)可以看出,懸浮力與參數(shù)、以及漏感L有關(guān)。由前面分析可知,轉(zhuǎn)子電阻的變化會(huì)影響、軸系的位置,因而電流相角、的值也會(huì)受到影響,但無論坐標(biāo)系怎樣變化,2個(gè)矢量相角的差值是不變的。因此懸浮力表達(dá)式(16)右邊第一項(xiàng)會(huì)受轉(zhuǎn)子電阻的影響,而第二項(xiàng)不受其影響。但是第二項(xiàng)中含有漏感參數(shù),其值隨轉(zhuǎn)子電流頻率而變化。當(dāng)、不變時(shí),懸浮力為關(guān)于轉(zhuǎn)子漏感的一次函數(shù),轉(zhuǎn)子漏感的變化直接影響懸浮力的變化。由此可見,趨膚效應(yīng)引起的電阻、漏感變化使得實(shí)際產(chǎn)生的懸浮力偏離給定值,轉(zhuǎn)子容易處于不穩(wěn)定狀態(tài),其、方向位移增大,嚴(yán)重時(shí)可能發(fā)生定轉(zhuǎn)子碰撞,造成電機(jī)損壞。
從前面分析可知,趨膚效應(yīng)帶來的轉(zhuǎn)子參數(shù)變化是影響電機(jī)穩(wěn)定運(yùn)行的根本原因,而參數(shù)辨識(shí)是解決該問題的有效方案之一。目前,常見的辨識(shí)方法有最小二乘法、模型參考自適應(yīng)算法、卡爾曼濾波算法和遺傳算法等[27-29]??紤]到辨識(shí)算法的復(fù)雜性和辨識(shí)過程的快速性,本文采用最小二乘法進(jìn)行曲線擬合參數(shù)辨識(shí)獲得轉(zhuǎn)子參數(shù)的實(shí)時(shí)值,提高電機(jī)的轉(zhuǎn)矩和懸浮性能。
假定已有數(shù)據(jù)(α,β)(=0, 1, 2, …,)及近似函數(shù)(),最小二乘法以兩者之間的誤差平方和最小作為目標(biāo)函數(shù)[30],即
由于任意連續(xù)函數(shù)都可以用多項(xiàng)式逼近并可以達(dá)到任意精度。因此將()用最高次數(shù)為的多項(xiàng)式表示,即
將式(18)代入式(17),并根據(jù)多元函數(shù)極值的必要條件求得多項(xiàng)式系數(shù)k值,從而得到擬合函數(shù)表達(dá)式。
采用上述方法,對(duì)有限元計(jì)算得到的趨膚系數(shù)變化曲線(圖5)進(jìn)行擬合,其曲線擬合誤差結(jié)果如表2所示。
表2 趨膚系數(shù)變化曲線擬合誤差
從表2可以看出,當(dāng)擬合次數(shù)越高,其誤差平方和越小,但次數(shù)越高,函數(shù)容易出現(xiàn)振蕩現(xiàn)象,結(jié)合擬合誤差結(jié)果,取擬合次數(shù)為2,轉(zhuǎn)子參數(shù)與轉(zhuǎn)子電流頻率的函數(shù)關(guān)系可近似表示為
式中R0為轉(zhuǎn)子直流電阻,Ω;L0為轉(zhuǎn)子直流漏感值,H。轉(zhuǎn)子電流頻率和轉(zhuǎn)差角頻率ω的關(guān)系為
結(jié)合式(8),基于最小二乘法的轉(zhuǎn)子參數(shù)辨識(shí)模型如圖7所示。首先利用定子的電流分量計(jì)算出轉(zhuǎn)差率,然后得到轉(zhuǎn)子電流頻率,再根據(jù)式(19)、(20)得到轉(zhuǎn)子參數(shù)的實(shí)時(shí)值。由于該辨識(shí)模塊中出現(xiàn)了代數(shù)環(huán),因此通過加入延遲環(huán)節(jié)1/來消除代數(shù)環(huán)。
注:ω為轉(zhuǎn)差角頻率,rad?s-1;R為轉(zhuǎn)子電阻,W;L為轉(zhuǎn)子漏感,mH。
Note:ωis the slip angle frequency, rad?s-1;Ris rotor resistance,W;Lis the rotor leakage inductance, mH.
圖7 轉(zhuǎn)子參數(shù)辨識(shí)模型
Fig.7 Rotor parameter identification model
利用該模型,本文設(shè)計(jì)了一種計(jì)及轉(zhuǎn)子趨膚效應(yīng)的無軸承異步電機(jī)矢量控制系統(tǒng),如圖8所示,控制系統(tǒng)由轉(zhuǎn)矩控制和懸浮控制組成。其中轉(zhuǎn)矩控制采用轉(zhuǎn)子磁場(chǎng)定向控制,通過轉(zhuǎn)子參數(shù)辨識(shí)獲取轉(zhuǎn)子電阻的實(shí)時(shí)值修正轉(zhuǎn)子磁鏈的相角偏移,實(shí)現(xiàn)轉(zhuǎn)子磁場(chǎng)的準(zhǔn)確定向。懸浮控制利用辨識(shí)的漏感參數(shù)和式(12)獲得氣隙磁鏈,根據(jù)位移偏差計(jì)算出所需要的徑向力,經(jīng)力電流變換及坐標(biāo)變換后得到懸浮繞組電流,實(shí)現(xiàn)電機(jī)的穩(wěn)定懸浮。
注:x*、y*、x、y分別為轉(zhuǎn)子在x、y方向上的給定位置和實(shí)際位置,mm;Fx*、Fy*分別為x、y方向上的徑向懸浮力,N;i*s2d、i*s2q為懸浮力繞組電流為d、q軸上的值,A;i*s1d、i*s1q為轉(zhuǎn)矩繞組電流在d、q軸上的分量,A;i*s2d、i*s2q為懸浮力繞組電流在d、q軸上的分量,A;Yr1*為給定轉(zhuǎn)子磁鏈,Wb;Y1d*、Y1q*為氣隙磁鏈d、q軸分量,Wb;wr*、wr分別為轉(zhuǎn)子給定轉(zhuǎn)速和實(shí)際轉(zhuǎn)速,rad?s-1;T*e為電磁轉(zhuǎn)矩,N·m;?為轉(zhuǎn)子位置,rad;ρ、θ分別為懸浮繞組電流的初始相位和實(shí)際相位,rad;i*2A、i*2B、i*2C、i*1A、i*1B、i*1C分別為懸浮力繞組電流和轉(zhuǎn)矩繞組電流的三相值,A;i2A、i2B、i2C、i1A、i1B、i1C分別為懸浮力繞組電流和轉(zhuǎn)矩繞組電流的三相值,A。
為了驗(yàn)證本文所提優(yōu)化控制方法的正確性和有效性,利用MATLAB/Simulink工具箱建立電機(jī)模型進(jìn)行仿真。仿真參數(shù)與試驗(yàn)樣機(jī)一致,如表3所示。
在仿真過程中,給定電機(jī)轉(zhuǎn)速為6 000 r/min,整個(gè)仿真時(shí)間為0.8 s。圖9為趨膚效應(yīng)對(duì)電機(jī)轉(zhuǎn)速、、方向轉(zhuǎn)子位移控制效果和轉(zhuǎn)子參數(shù)影響的仿真結(jié)果對(duì)比。
圖9a為電機(jī)轉(zhuǎn)速的控制效果對(duì)比。由圖9a可以看出,考慮趨膚效應(yīng)后電機(jī)轉(zhuǎn)速響應(yīng)加快,在0.12 s左右達(dá)到給定值,相比于未考慮趨膚效應(yīng)時(shí)的轉(zhuǎn)速響應(yīng)時(shí)間縮短了0.03 s,響應(yīng)速度提高了20%,其轉(zhuǎn)速超調(diào)很小并迅速趨于穩(wěn)態(tài)值。圖9b、9c為轉(zhuǎn)子位移的控制效果對(duì)比。由圖9b、9c可知,考慮趨膚效應(yīng)后轉(zhuǎn)子方向最大位移由12m左右降低至8m左右,位移幅值降低了33%,方向最大位移由24m左右降低至18m左右,位移幅值降低了25%,并且能夠較快進(jìn)入穩(wěn)定平衡狀態(tài),電機(jī)具有較好的懸浮性能。圖9d、9e給出了轉(zhuǎn)子電阻、漏感對(duì)比。當(dāng)電機(jī)啟動(dòng)時(shí),趨膚效應(yīng)十分明顯,轉(zhuǎn)子電阻值增大了36%左右,漏感值減小了12%左右。而當(dāng)轉(zhuǎn)速達(dá)到給定值時(shí),轉(zhuǎn)子電阻、漏感值趨近于直流值。
表3 電機(jī)參數(shù)
圖9 趨膚效應(yīng)對(duì)電機(jī)轉(zhuǎn)速、轉(zhuǎn)子位移控制效果和轉(zhuǎn)子參數(shù)影響的仿真結(jié)果對(duì)比
為了進(jìn)一步驗(yàn)證本文所提方法的有效性,以一臺(tái)鼠籠式無軸承異步電機(jī)樣機(jī)為試驗(yàn)對(duì)象,搭建了以美國TI公司的DSP TMS320F2812芯片為核心的數(shù)字控制試驗(yàn)平臺(tái)。控制系統(tǒng)硬件結(jié)構(gòu)如圖10a所示,試驗(yàn)樣機(jī)平臺(tái)如圖10b所示。所采用的電機(jī)參數(shù)與仿真參數(shù)一致。試驗(yàn)中利用光電碼盤測(cè)量轉(zhuǎn)子的轉(zhuǎn)速,電渦流位移傳感器測(cè)定轉(zhuǎn)子位移大小。
注:*、*、、分別為轉(zhuǎn)子在、方向上的給定位置和實(shí)際位置,mm;*、分別為轉(zhuǎn)子給定轉(zhuǎn)速和實(shí)際轉(zhuǎn)速,rad?s-1。
Note:*,*,,are given rotor displacement and actual rotor displacement inandaxis, respectively, mm;*andare given and actual rotor speed respectively, rad?s-1.
a. 控制系統(tǒng)硬件結(jié)構(gòu)圖
a.Hardware structure diagram of control system
1.電源 2.仿真器 3.計(jì)算機(jī) 4.逆變器 5.懸浮繞組模塊 6.轉(zhuǎn)矩繞組模塊 7.DSP主控板 8.樣機(jī) 9.扭矩傳感器 10.磁粉制動(dòng)器 11.位移傳感器 12.負(fù)載調(diào)節(jié)器
1. Power supply 2. Simulator 3. Computer 4. Inverter 5. Suspension winding module 6. Torque winding module 7. DSP main control board 8. Prototype motor 9. Torque sensor 10. Magnetic powder brake 11. Displacement sensor 12. Load regulator
b. 試驗(yàn)樣機(jī)平臺(tái)
b. Experimental prototype platform
圖10 樣機(jī)試驗(yàn)系統(tǒng)
Fig.10 Prototype experimental system
圖11a為給定轉(zhuǎn)速6 000 r/min時(shí)的試驗(yàn)樣機(jī)轉(zhuǎn)速控制效果。由圖11a可知,考慮趨膚效應(yīng)后電機(jī)達(dá)到額定轉(zhuǎn)速時(shí)所用時(shí)間由0.2 s減小到0.15 s左右,響應(yīng)時(shí)間縮短0.05 s,響應(yīng)速度提高了25%。圖11b、11c為電機(jī)穩(wěn)定運(yùn)轉(zhuǎn)后轉(zhuǎn)子在、方向的位移控制效果。由圖11b、11c可看出未考慮趨膚效應(yīng)時(shí)轉(zhuǎn)子在、方向位移最大值均約為40m,而計(jì)及轉(zhuǎn)子參數(shù)變化后轉(zhuǎn)子位移最大值降低至20m左右,位移幅值降低了約50%,這表明轉(zhuǎn)子的懸浮精度得到了有效提高,電機(jī)運(yùn)行更加平穩(wěn),進(jìn)而驗(yàn)證了該方法的優(yōu)越性。
圖11 趨膚效應(yīng)對(duì)試驗(yàn)樣機(jī)轉(zhuǎn)速、轉(zhuǎn)子位移控制效果的影響
本文針對(duì)無軸承異步電機(jī)啟動(dòng)和運(yùn)行時(shí)趨膚效應(yīng)引起的轉(zhuǎn)子參數(shù)變化問題進(jìn)行研究,通過仿真和試驗(yàn)得出如下結(jié)論:
1)通過建立電機(jī)的有限元模型精確計(jì)算不同頻率下的轉(zhuǎn)子參數(shù)值,為利用最小二乘法實(shí)現(xiàn)參數(shù)的快速辨識(shí)提供準(zhǔn)確可靠的樣本數(shù)據(jù)。
2)通過數(shù)學(xué)模型推導(dǎo)分析了趨膚效應(yīng)對(duì)轉(zhuǎn)子磁場(chǎng)的準(zhǔn)確定向和懸浮力控制的影響,在此基礎(chǔ)上提出了一種計(jì)及轉(zhuǎn)子趨膚效應(yīng)的無軸承異步電機(jī)控制優(yōu)化。仿真結(jié)果表明考慮趨膚效應(yīng)后,電機(jī)響應(yīng)速度提高了20%;、方向位移幅值分別降低了33%和25%。
3)對(duì)樣機(jī)進(jìn)行試驗(yàn)對(duì)比,結(jié)果表明,考慮趨膚效應(yīng)后,電機(jī)到達(dá)額定轉(zhuǎn)速的時(shí)間由0.2 s減小到0.15 s,響應(yīng)速度提高了25%,并且電機(jī)轉(zhuǎn)子的、方向位移峰峰值降低至20m左右,位移幅值降低了約50%,電機(jī)能夠較快進(jìn)入穩(wěn)定懸浮狀態(tài)。
[1] 王正齊,黃學(xué)良. 基于支持向量機(jī)逆系統(tǒng)的無軸承異步電機(jī)非線性解耦控制[J]. 電工技術(shù)學(xué)報(bào),2015,30(10):164-170. Wang Zhengqi, Huang Xueliang. Nonlinear decoupling control for bearingless induction motor based on support vector machines inversion[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 164-170. (in Chinese with English abstract)
[2] Henzel M, Falkowski K, Zokowski M. The analysis of the control system for the bearingless induction electric motor[J]. Journal of Vibroengineering, 2012, 14(1): 16-21.
[3] 楊澤斌,李方利,陳正,等. 基于低頻信號(hào)注入法的無軸承異步電機(jī)轉(zhuǎn)速自檢測(cè)控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):41-47. Yang Zebin, Li Fangli, Chen Zheng, et al. Revolving speed self-detecting control based on low-frequency signal injection for bearingless induction motor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 41-47. (in Chinese with English abstract)
[4] 詹立新,周凱. 無軸承異步電機(jī)轉(zhuǎn)子電阻自適應(yīng)在線辨識(shí)[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2015,55(10):1072-1078. Zhan Lixin, Zhou Kai. Adaptive online rotor resistance identification for bearingless induction motors. Journal of Tsinghua University: Science and Technology, 2015, 55(10): 1072-1078. (in Chinese with English abstract)
[5] Chiba A, Akamatsu D, Fukao T, et al. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(2): 852-860.
[6] 張杰,柴建云,孫旭東,等. 基于參數(shù)在線校正的電動(dòng)汽車異步電機(jī)間接矢量控制[J]. 電工技術(shù)學(xué)報(bào),2014,29(7):90-96. Zhang Jie, Chai Jianyun, Sun Xudong, et al. Indirect vector control of induction motor drives for electric vehicles based on parameters on-line tuning[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 90-96. (in Chinese with English abstract)
[7] Abdel-Khalik A S, Daoud M I, Ahmed S, et al. Parameter identification of five-phase induction machines with single layer windings[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5139-5154.
[8] Shan D, Wu X. Rotor resistance and inductance calculation of single-phase induction motors with skin effect consideration[C]. 2008 International Conference on Electrical Machines and Systems, Wuhan, 2008: 79-82.
[9] Je?menica M, ?o?i? D and Terzi? M. Estimation of deep-bar induction motor rotor parameters using heuristic methods of optimization[C]. Belgrade, Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (Med Power 2016). 2016: 1-8.
[10] Zhang Y and Hofmann W. Energy-efficient control of induction motors with high torque dynamics and transient skin effect[C]. Vienna, IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, 2013: 2774-2779.
[11] 徐奇?zhèn)ィ瘟?,崔淑? 感應(yīng)電機(jī)矢量控制中轉(zhuǎn)子參數(shù)自適應(yīng)辨識(shí)[J]. 電工技術(shù)學(xué)報(bào),2011,26(6):81-87. Xu Qiwei, Song Liwei, Cui Shumei. Induction motor vector control based on adaptive identification of rotor parameters[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 81-87. (in Chinese with English abstract)
[12] Lap?tre B, Takorabet N, Meilbody-Tabar F, et al. Radial force modeling for bearingless motors based on analyze of field origins[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems & Control Engineering, SAGE Publications, 2015, 230 (4): 311-319.
[13] Tezuka T, Kurita N, Ishikawa T. Design and simulation of a five degrees of freedom active control magnetic levitated motor[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2257-2262.
[14] 卜文紹,王少杰,黃聲華. 三相無軸承異步電機(jī)的解耦控制系統(tǒng)[J]. 電機(jī)與控制學(xué)報(bào),2011,15(12):32-37. Bu Wenshao, Wang Shaojie, Huang Shenghua. Decoupling control system of three-phase bearingless induction motor[J]. Electric Machines & Control, 2011, 15(12): 32-37. (in Chinese with English abstract)
[15] 楊澤斌,汪明濤,孫曉東. 基于自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)的無軸承異步電機(jī)控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):78-86. Yang Zebin, Wang Mingtao, Sun Xiaodong. Control system of bearingless induction motors based on adaptive neuro-fuzzy inference system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 78-86. (in Chinese with English abstract)
[16] Custers C H H M, Overboom T T, Jansen J W, et al. 2-D semianalytical modeling of eddy currents in segmented structures[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[17] Takahashi Y, Fujiwara K, Iwashita T, et al. Parallel finite-element analysis of rotating machines based on domain decomposition considering nonconforming mesh connection[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4.
[18] 嚴(yán)登俊,劉瑞芳,李偉. 有限公式法二維渦流場(chǎng)計(jì)算技術(shù)及其在電機(jī)趨膚效應(yīng)計(jì)算中的應(yīng)用[J]. 中國電機(jī)工程學(xué)報(bào),2008,28(9):133-138. Yan Dengjun, Liu Ruifang, Li Wei. Finite formulation computation technology for 2D eddy current field and application for skin effect in squirrel cage motor[J]. Proceedings of the CSEE, 2008, 28(9): 133-138. (in Chinese with English abstract)
[19] Taghizadeh Kakhki M, Cros J, Viarouge P. New approach for accurate prediction of eddy current losses in laminated material in the presence of skin effect with 2D FEA[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4.
[20] Min K C, Choi J Y, Kim J M, et al. Eddy current loss analysis of non-contact magnetic device with permanent magnets based on analytical field calculations[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[21] 孫宇新,楊玉偉. 無軸承異步電機(jī)非線性濾波器自適應(yīng)逆解耦控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):76-83. Sun Yuxin, Yang Yuwei. Adaptive inverse decoupling control for bearingless induction motors based on nonlinear filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 76-83. (in Chinese with English abstract)
[22] Zhang Q, Sun Y X, Zhu H Q, et al. Real-time implementation in DSPACE of rotor magnetic field control of bearingless induction motor[J]. Applied Mechanics & Materials, 2015, 703(1): 335-338.
[23] 孫宇新,沈啟康,葉海涵,等. 基于改進(jìn)UKF的無軸承異步電機(jī)無速度傳感器控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):74-81. Sun Yuxin, Shen Qikang, Ye Haihan, et al. Speed-sensorless control system of bearingless induction motor based on modified adaptive fading unscented kalman filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 74-81. (in Chinese with English abstract)
[24] Sun X, Chen L, Yang Z, et al. Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1357-1366.
[25] Bu W, Zhang X, He F. Sliding mode variable structure control strategy of bearingless induction motor based on inverse system decoupling[J]. IEEE Transactions On Electrical And Electronic Engineering, 2018, 13(7): 1052-1059.
[26] Sinervo A, Arkkio A. Rotor radial position control and its effect on the total efficiency of a bearingless induction motor with a cage rotor[J]. IEEE Transactions on Magnetics, 2013, 50(4): 1-9.
[27] Zbede Y B, Gadoue S M, Atkinson D J. Model predictive MRAS estimator for sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3511-3521.
[28] Shi Y, Sun K, Huang L, et al. Online identification of permanent magnet flux based on extended kalman filter for ipmsm drive with position sensorless control[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4169-4178.
[29] Lee S H, Chang J K, Jung S N, et al. Study on the optimal selection of rotor track and balance parameters using non-linear response models and genetic algorithm[J]. 2016, 44(11): 989-996.
[30] 黎小林,曹侃,謝開貴,等. 基于最小二乘法的高壓直流輸電系統(tǒng)可靠性靈敏度分析[J]. 電力系統(tǒng)自動(dòng)化,2009,33(18):12-16. Li Xiaolin, Cao Kan, Xie Kaigui, et al. Sensitivity analysis of hvdc transmission system reliability using the least square method[J]. Automation of Electric Power Systems, 2009, 33(18): 12-16. (in Chinese with English abstract)
Vector control optimization of bearingless induction motor considering skin effect of cage rotor
Yang Zebin1, Bao Chunfeng1, Sun Xiaodong2, Lu Jiang1, Chen Xi1
(1.,,212013,; 2.,,212013,)
The bearingless induction motor (BIM) is a new type motor without contact and friction and has the function of rotation and suspension. The rotor parameters are important factors that affect the accuracy of the field orientation control strategy of BIM, however, they are easily affected by the skin effect during the process of starting and high speed running, which result in the changes of rotor resistance and leakage inductance. The variations of the rotor parameters will cause the deviation of field orientation and reduce the motor control performance. Aiming at these problems, a parameter identification method based on finite element calculation and least square method was proposed in this paper. Firstly, based on the analysis of suspension force generation principle of BIM, the 2 D finite element model of the motor was constructed and values of the rotor resistance and leakage inductance at different frequencies were calculated by the finite element simulation. Then, by reasoning on the mathematical model, the influence of skin effect on the rotor field orientation and suspension control of BIM was analyzed in detail. The results showed that the variations of rotor parameters caused by the skin effect would affect rotor flux field orientation and made the actual suspension force deviate from the given value. Next, the least square method was used to realize fast identification of the rotor parameters, and the function relationship between rotor parameters and current frequency was obtained. Based on this, a parameters identification model was presented and a BIM field-oriented control system with considering rotor skin effect was proposed. The real-time value of the rotor resistance was obtained through the identification module to correct the phase angle deviation of rotor flux linkage so as to completely decouple torque component and exciting component. Finally, in order to verify the accuracy and effectiveness of the proposed control strategy based on curve fitting identification by the least square method, the simulation of BIM vector control system was established by MATLAB Simulink toolbox.Simulation results showed the motor took about 0.12 s arriving at the given speed after considering the skin effect, the response speed increased by 20% and the overshoot of speed response was very small. The maximum displacement in thedirection was reduced from about 12m to 8m and the maximum displacement in thedirection was reduced from about 24m to 18m after considering the skin effect. That means the motor could enter stable suspension state quickly and had a good suspension performance. To further validate the feasibility and effectiveness of the proposed control method, a BIM prototype was taken as experimental object, and a digital control system based on DSP TMS320F2812 was constructed. In the process of experiment, the rotor speed was measured by photoelectric encoder so as to calculate the slip frequency. The displacement of the BIM was measured by the eddy current displacement sensor to determine the required suspension force. The experimental results showed the speed rise time reduced from 0.2 s to 0.15 s with considering the skin effect, the response speed increased by 25%. This indicated the motor had a good start performance. And the peak to peak values of the rotor radial displacement decreased from 40m to 20m, reduced by about 50%. The proposed control strategy of the BIM can effectively improve speed response and reduce the radial displacement, and achieve good torque and suspension performance. This study can provide a reference for the performance optimization of BIM control system.
motors; control; optimization; skin effect; suspension force; infinite element calculation; least square method
2018-11-08
2019-02-20
國家自然科學(xué)基金項(xiàng)目(51475214、51875261);江蘇省自然科學(xué)基金項(xiàng)目(BK20170071、20180046);江蘇省“333”工程資助項(xiàng)目(BRA2017441);鎮(zhèn)江市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(GY2016003);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目。
楊澤斌,教授、博士生導(dǎo)師,主要從事農(nóng)業(yè)電氣裝備自動(dòng)化、磁懸浮傳動(dòng)技術(shù)及電機(jī)非線性智能控制。Email:zbyang@ujs.edu.cn
10.11975/j.issn.1002-6819.2019.06.008
TM346
A
1002-6819(2019)-06-0065-09
楊澤斌,包春峰,孫曉東,魯 江,陳 浠. 考慮籠型轉(zhuǎn)子趨膚效應(yīng)的無軸承異步電機(jī)矢量控制優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(6):65-73. doi:10.11975/j.issn.1002-6819.2019.06.008 http://www.tcsae.org
Yang Zebin, Bao Chunfeng, Sun Xiaodong, Lu Jiang, Chen Xi. Vector control optimization of bearingless induction motor considering skin effect of cage rotor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 65-73. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.008 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2019年6期