閆素英,陳 壯,趙曉燕,馬 靖,吳玉庭,田 瑞
?
嚴寒地區(qū)小型線性菲涅爾聚光集熱器末端損失與補償
閆素英1,2,陳 壯1,趙曉燕1※,馬 靖1,吳玉庭3,田 瑞1,2
(1. 內(nèi)蒙古工業(yè)大學能源與動力工程學院,呼和浩特 010051;2. 內(nèi)蒙古可再生能源重點實驗室,呼和浩特 010051; 3. 北京工業(yè)大學環(huán)境與能源工程學院,北京,100124)
針對嚴寒地區(qū)線性菲涅爾聚光集熱器末端損失嚴重的問題,該文以呼和浩特地區(qū)小型線性菲涅爾聚光集熱系統(tǒng)為研究對象,根據(jù)不同季節(jié)太陽位置的變化,理論分析并計算了沿水平南北軸放置的線性菲涅爾集熱器自東向西跟蹤過程的末端損失,得到其變化規(guī)律及補償方法,并進行了試驗驗證。結(jié)果表明,一天中末端損失隨時間的變化趨勢與太陽高度角的變化趨勢相同,與太陽方位角變化趨勢相反,正午時刻末端損失最大,早晨和傍晚時刻末端損失最?。徊煌竟?jié)相同時間段內(nèi)的末端損失,冬季最大,夏季最小,春季和秋季幾乎相等;鏡場調(diào)節(jié)試驗結(jié)果表明,增大反射鏡北端與水平面的夾角可以補償末端損失,在夏至前后正午,當鏡場北端抬高20°時,末端損失減少至集熱器長度的1/10左右,瞬時集熱效率達到65.9%,與反射鏡調(diào)節(jié)前相比,正午瞬時集熱效率提高54.5%,下午時間段內(nèi)瞬時集熱效率提高20%左右。研究結(jié)果可為減小嚴寒地區(qū)小型線性菲涅爾聚光集熱器末端損失提供理論參考。
太陽能;傳熱;末端損失;嚴寒地區(qū);線性菲涅爾聚光集熱器;反射鏡調(diào)節(jié)
線性菲涅爾式太陽能聚光集熱系統(tǒng)具有結(jié)構(gòu)緊湊、迎風面小[1]、易于制造、價格低廉等優(yōu)點[2],在太陽能中溫熱源利用領域應用越來越廣泛[3-4]。由于初級反射鏡與集熱器間存在一定距離,太陽光經(jīng)反射后到達集熱器的位置隨太陽入射角變化而變化,一部分反射光線會偏離集熱器端頭而形成末端損失[5]。鏡場的優(yōu)化設計對其聚光效率影響較大[6],在大型線性菲涅爾聚光集熱系統(tǒng)中,末端損失占集熱器長度的比例較小,而對于小型線性菲涅爾系統(tǒng)來講,末端損失占集熱器長度的比例較大,對集熱器聚光集熱性能影響較大,所以減小末端損失顯得特別重要[7]。目前國內(nèi)外學者對線性菲涅爾集熱器末端損失進行了研究,并提出一些補償方法[8]。浦紹選等[7]計算了南北向線性菲涅爾反射鏡場末端損失及其補償辦法;杜春旭等[9]利用矢量分析法說明塔高對鏡場遮擋及光學損失具有一定影響;徐眾等[10]采用理論計算和仿真方法分析了線性菲涅爾集熱器復合拋物面反射器對鏡場的遮擋情況;梁飛等[11]提出了陰影與遮擋計算模型,得出鏡場布置最佳間距;邱羽等[12]優(yōu)化了反射鏡幾何參數(shù),提高了線性菲涅爾聚光集熱系統(tǒng)的光學性能;Heimsath等[13]優(yōu)化了2種聚焦太陽能集熱器末端損失模型,利用光學損耗因子進行量化分析;Abbas等[14]提出了新型的集熱器布置方式,減少了反射鏡之間的遮擋和陰影問題;Buie等[15]討論了南北向線性菲涅爾集熱器末端損失,提出了正午時刻的末端損失估算公式;Xu C等[16]和Li M等[17]提出一種南北軸的太陽能集熱器補償端部損耗效應的方法;H Ajdad等[18]對線性菲涅爾太陽能集熱器光學幾何進行優(yōu)化;Gui Q等[19]設計了一種新型CPC,增大了CPC的采光半角,提高了聚光效率;Diego等[20]提出一種用于線性菲涅爾集熱器光學優(yōu)化的設計方法,提高了集熱器的月功率。
綜上,線性菲涅爾集熱器存在一定的末端損失,前人的研究主要集中在對集熱器末端損失的理論分析及對補償方法的討論,而對嚴寒地區(qū)小型線性菲涅爾系統(tǒng)的末端損失研究及其補償方法的試驗測試少有涉及。本文在前人研究基礎上,針對安裝在呼和浩特高緯度嚴寒地區(qū)的小型線性菲涅爾聚光集熱系統(tǒng)進行研究,并分析末端損失的影響因素及變化規(guī)律,提出了補償方法并進行試驗驗證,以期為減少嚴寒地區(qū)小型線性菲涅爾集熱器末端損失提供理論和試驗依據(jù)。
本文所研究的小型線性菲涅爾聚光集熱試驗系統(tǒng)如圖1a所示,主要由一次反射鏡、復合拋物面二次反射鏡和玻璃-金屬真空集熱管組成。光線經(jīng)過平面鏡反射后,部分光線直接由真空集熱管吸收,另一部分經(jīng)過CPC(compound parabolic collector)二次反射后被真空集熱管吸收。圖1b為系統(tǒng)工作原理圖。
注:為太陽入射光線與水平面的夾角,(°);為反射鏡與水平面夾角,(°);為相鄰反射鏡間距離,m;為第n個反射鏡距鏡場中心的水平距離,m;為反射鏡寬度,m;為CPC的開口寬度,m;為集熱器高度,m;為CPC的最大采光半角,(°)。
線性菲涅爾系統(tǒng)的鏡場布置需要考慮相鄰鏡面的陰影與遮擋問題[7],以本試驗的基礎參數(shù)為依據(jù)進行集熱器高度的計算,試驗測試系統(tǒng)結(jié)構(gòu)參數(shù)如表1所示。
同理,當鏡場與太陽位于集熱器異側(cè)時,有:
表1 小型線性菲涅爾系統(tǒng)結(jié)構(gòu)參數(shù)及光學參數(shù)
在實際工程應用中,為保證系統(tǒng)在一定時間內(nèi)無陰影遮擋下運行,反射鏡與鏡場中心的距離Q應盡可能小,以增加系統(tǒng)的地面覆蓋率、降低集熱器高度,進而降低系統(tǒng)成本。
根據(jù)式(7),可得
本文根據(jù)文獻[7]的方法計算不同季節(jié)呼和浩特地區(qū)的小型線性菲涅爾聚光試驗系統(tǒng)的末端損失。呼和浩特位于東經(jīng)111.65°,北緯40.87°,選取2017年不同季節(jié)(春分、夏至、秋分和冬至日)太陽真時9:00-16:00時,根據(jù)式(10)~(13),計算得到一天中各時刻的太陽方位角、高度角,結(jié)果如圖2所示。由圖2可知,在測試時間段,以當?shù)靥栒鏁r的12:30為節(jié)點,太陽高度角、方位角(負號表示下午太陽方位角方向)均在上午和下午呈現(xiàn)對稱變化趨勢,高度角先升高后降低,方位角先下降后升高,最大高度角和最小方位角均出現(xiàn)在12:30,該結(jié)果與文獻[25]吻合。
圖2 呼和浩特不同季節(jié)太陽方位角和高度角隨時間變化
圖3 不同季節(jié)集熱器末端損失隨時間變化
本試驗系統(tǒng)集熱器長2 m,在夏至正午時刻,集熱器有55%的末端損失,即損失1.1 m;在冬至正午時刻,由于高度角變小,集熱器末端損失7.1 m,2 m的集熱器長度全部損失,即集熱器長度越短,損失比例越大,如果不進行調(diào)節(jié)將全部損失,即對于小型線性菲涅爾聚光集熱系統(tǒng),末端損失影響較大,必須根據(jù)季節(jié)變化進行調(diào)節(jié)。如果線性菲涅爾反射式聚光集熱系統(tǒng)的集熱器長50 m,則在夏至正午時刻集熱器有2.2%的末端損失;若集熱器長100 m,有1.1%的末端損失。因此為了減少末端損失,應盡可能增加集熱器的長度。
依據(jù)式(9)計算6月21日(夏至)太陽真時9:00-16:00,集熱器距反射鏡場高0~4.5 m時的末端損失,結(jié)果如圖4所示。由圖4可知,末端損失隨集熱器高度呈增大趨勢,并且集熱器越高,其末端損失越大。根據(jù)1.2節(jié)中的計算,為了避免陰影遮擋,本試驗系統(tǒng)集熱器距反射鏡場高度應在2.45 m以上。以正午時刻為例,集熱器高度為2.5 m時反射鏡的末端損失為0.8 m,集熱器高度為4.5 m時末端損失為1.4 m,兩者相差0.6 m,該結(jié)果與文獻[25]一致。這表明在搭建線性菲涅爾反射式聚光集熱系統(tǒng)時,應盡可能降低集熱器高度,同時也要考慮采取該措施會增大相鄰反射鏡間的陰影遮擋面積[23]。
圖4 不同時刻末端損失隨集熱器高度的變化
a 反射鏡調(diào)節(jié)補償末端損失原理示意圖
a Schematic diagram of reflector adjustment compensation end-loss
b 反射鏡調(diào)節(jié)后實物圖
圖6 集熱器末端損失隨反射鏡調(diào)節(jié)角的變化
為了驗證本文末端損失補償方法的準確性,進行了系統(tǒng)驗證試驗。試驗地點為呼和浩特市某高校4層辦公樓頂,試驗時間是2017年6月20日和6月21日的上午10:30至下午15:30,2 d的試驗時間段內(nèi)天氣晴朗、無風,工況近似相同,太陽直射輻照度在720~900 W/m2之間,溫度在23~25℃之間,傳熱工質(zhì)為導熱油,密度為868 kg/m3(20℃),流量為0.18 kg/s。根據(jù)3.1節(jié)的補償調(diào)節(jié)原理及計算結(jié)果,夏至日時的補償調(diào)節(jié)方法是將反射鏡和集熱器北端同時抬高20°(即鏡場南北軸線與水平面夾角為20°),試驗系統(tǒng)圖5b所示。試驗中采用Fluke Ti55FT紅外熱成像儀(具體參數(shù)如表2)拍攝反射鏡調(diào)節(jié)前后集熱器聚光焦斑長度變化情況,根據(jù)聚光焦斑長度計算末端損失,采用線性菲涅爾聚光集熱系統(tǒng)的數(shù)據(jù)采集系統(tǒng)記錄集熱器進出口溫度,計算瞬時集熱效率。
表2 Ti55FT紅外熱成像儀主要技術參數(shù)
圖7 反射鏡調(diào)節(jié)前后集熱器聚光焦斑變化
注:DSI1 、DSI2分別為反射鏡調(diào)節(jié)前后太陽直射輻照度,W·m-2;△t1 、△t2分別為反射鏡調(diào)節(jié)前后工質(zhì)進出口溫差,℃。
根據(jù)圖7和圖8結(jié)果,反射鏡調(diào)節(jié)前開始測試時,其末端損失發(fā)生在工質(zhì)出口端一側(cè),上午10:30集熱器末端損失約為0.4 m;隨著太陽高度角和方位角的變化,在12:30時末端損失達到1 m,損失部位處于工質(zhì)出口端,此時末端損失達到最大,與前文理論分析計算結(jié)果一致,并隨著太陽高度角的減小,集熱器末端損失逐漸減小直至聚光焦斑完全覆蓋整個集熱器。反射鏡調(diào)節(jié)后開始測試時,其末端損失發(fā)生在工質(zhì)進口端一側(cè),與反射鏡調(diào)節(jié)前變化趨勢相反,中午12:00至13:00時間段內(nèi)太陽高度角最大,呼和浩特地區(qū)受緯度影響,該地區(qū)真太陽時為12:30左右,此時聚光焦斑最長,末端損失最小,僅占集熱器長度的1/10左右,約為0.2 m,與前文3.1中的理論計算相一致,同時在該時間段前后均有末端損失發(fā)生;上午9:00至12:00時間段內(nèi)隨著太陽高度角的增加,末端損失最大,約為0.7 m;下午13:00至16:00時間段太陽高度角減小,末端損失逐漸減小,到15:30左右,末端損失約為0.5 m,太陽高度角對系統(tǒng)末端損失影響較大。綜上,補償后的線性菲涅爾聚光集熱器在早晚時刻末端損失最大,約為0.7 m;正午時刻最小,約為0.2 m。
注:η1、η2分別為反射鏡調(diào)節(jié)前后的系統(tǒng)瞬時集熱效率,%。
嚴寒地區(qū)小型線性菲涅爾聚光集熱系統(tǒng)的末端損失嚴重,本文基于南北向線性菲涅爾反射鏡場,首先對集熱器末端損失進行分析,以搭建在呼和浩特地區(qū)(北緯40.87°)的線性菲涅爾聚光系統(tǒng)為例,計算了不同季節(jié)和不同集熱器高度時,末端損失的變化情況,提出一種末端損失反射鏡調(diào)節(jié)補償方法并進行了試驗驗證,利用紅外熱成像儀拍攝末端損失補償前后集熱器不同時刻聚光焦斑長度變化,并分析調(diào)節(jié)前后系統(tǒng)瞬時集熱效率的變化,得到以下結(jié)論:
1)末端損失的大小主要與反射鏡到集熱器的水平距離、集熱器高度、太陽高度角和方位角有關,在避免反射鏡間陰影遮擋損失的前提下,可通過降低集熱器高度減小末端損失;
2)采用東西方向跟蹤的線性菲涅爾聚光集熱系統(tǒng),可根據(jù)季節(jié)變化增加反射鏡與南北方向水平面的夾角來減小末端損失,反射鏡場與南北方向水平面的夾角應保持在理論計算值范圍內(nèi),其值根據(jù)當?shù)鼐暥扔嬎愕玫剑?/p>
3)反射鏡調(diào)節(jié)后末端損失變化趨勢發(fā)生改變,正午時聚光焦斑完全覆蓋集熱器,瞬時集熱效率為65.9%,較補償前正午時的瞬時集熱效率增加54.5%,驗證了本文補償方案的有效性,對減小嚴寒地區(qū)小型線性菲涅爾聚光集熱系統(tǒng)集熱器末端損失提供了理論參考。
[1] 魏博斌,孔令剛,蔣慶安,等. 細多管CPC線性菲涅爾聚光系統(tǒng)仿真及實驗研究[J]. 激光與光電子學進展,2019,56(3):66-73. Wei Bobin, Kong Linggang, Jiang Qingan, et al. Simulation and experimental study of a thin multi-tube compound parabolic condenser linear fresnel spot system[J]. Laser & Optoelectronics Progress, 2019, 56(3): 66-73. (in Chinese with English abstract)
[2] 閆素英,馬曉東,王峰,等. 菲涅爾聚光CPVT系統(tǒng)光熱輸出特性研究[J]. 工程熱物理學報,2017,38(6):1178-1183.Yan Suying, Ma Xiaodong, Wang Feng, et al. Study on photothermal output characteristics of Finel CPVT system[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1178-1183. (in Chinese with English abstract)
[3] Nicholas Kincaid, Greg Mungas, Nicholas Kramer, et al. An optical performance comparison of three concentrating solar power collector designs in linear Fresnel,parabolic trough,and central receiver[J]. Applied Energy, 2018(231): 1109-1121.
[4] 閆素英,吳澤,王峰,等. 菲涅爾高倍聚光PV/T系統(tǒng)熱電輸出性能模擬與試驗[J]. 農(nóng)業(yè)工程學報,2018,34(20):197-203.Yan Suying, Wu Ze, Wang Feng, et al. Simulation and test of thermoelectric output performance of Fresnel high concentration PV/T system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 197一203. (in Chinese with English abstract)
[5] 徐眾,浦紹選,夏朝鳳. 線性菲涅耳集熱器的能損分析[J]. 能源研究與利用,2012(1):40-43. Xu Zhong, Pu Shaoxing, Xia Chaofeng. Energy loss analysis of linear Fresnel collector[J]. Energy Research & Utilization, 2012(1): 40-43. (in Chinese with English abstract)
[6] Roostaee A, Ameri M. Effect of linear Fresnel concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss[J]. Renewable Energy, 2019(134): 1447-1464.
[7] 浦紹選,夏朝鳳,線聚光菲涅耳集熱器的端部損失與補償[J]. 農(nóng)業(yè)工程學報,2011,27(13):282-285. Pu Shaoxuan, Xia Chaofeng. End-loss and compensation of linear fresnel collectors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2011, 27(13): 282一285. (in Chinese with English abstract)
[8] 戴靜,鄭宏飛,馮朝卿. 三運動復合線性菲涅耳反射式太陽聚光系統(tǒng)的性能研究[J]. 北京理工大學學報,2016,36(5):464-469,479. Dai Jing, Zheng Hongfei, Feng Chaoqing. Performance of linear Fresnel reflector system combined three—movement[J]. Transactions of Beijing Institute of Technology. 2016, 36(5): 464-469,479. (in Chinese with English abstract)
[9] 杜春旭,王普,馬重芳,等. 線性菲涅耳聚光系統(tǒng)無遮擋鏡場布置的光學幾何方法[J]. 光學學報,2010,30(11):3276-3282. Du Chunxu, Wang Pu, Ma Chongfang, et al. Optical geometric method for LFR mirror field arrangement without shading and blocking[J]. Acta Optica Sinica, 2010, 30(11): 3276-3282. (in Chinese with English abstract)
[10] 徐眾,萬書權,韓洪波,等. 線性菲涅耳集熱器接收器對鏡場的遮擋研究[J]. 新能源進展,2015,3(4):261-264. Xu Zhong, Wan Shuquan, Han Hongbo, et al. Discussion of mirror field shelter from linear Fresnel collector receiver[J]. Advances in new and renewable energy, 2015, 3(4): 261-264. (in Chinese with English abstract)
[11] 梁飛,張娜. 線性菲涅爾式聚光系統(tǒng)陰影與遮擋計算分析模型[J/OL]. 激光與光電子學進展,1-12[2019-01-28]. http//kns.cnki.net/kcms/detail/31.1690.TN.20190125.1300.002. html. Liang Fei,Zhang Na. Calculation and analysis model of shadow and block for Linear Fresnel Concentrator System[J/OL]. Laser & Optoelectronics Progress:1-12[2019-01-28].http://kns.cnki.net/kcms/detail/31.1690.TN. 20190125.1300.002.html. (in Chinese with English abstract)
[12] 邱羽,何雅玲,程澤東. 線性菲涅爾太陽能系統(tǒng)光學性能研究與優(yōu)化[J]. 工程熱物理學報,2015,36(12):2551-2556. Qiu Yu, He Yaling, Cheng Zedong. Optical performance investigation and optimization of a Linear Fresnel Reflector Solar Collector[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2551-2556. (in Chinese with English abstract)
[13] Heimsath A, Bern G, Van Rooyen D, et al. Quantifying optical loss factors of small linear concentrating collectors for process heat application[J]. Energy Procedia,2014(48): 77-86.
[14] Abbas R, Montes M J, Rovira A, et al. Parabolic trough collector or linear fresnel collector? A comparison of optical features including thermal quality based on commercial solutions[J]. Solar Energy, 016(124): 198-215.
[15] Buie D, Dey C J, Mills D. Optical considerations inline focus fresnel concentrators[C] Zürich,Switzerland,Proceedings of the 11th Solar PACES International Symposium on Concentrating Solar Power and Chemical Energy Technologies,2002,197-203.
[16] Xu Chengmu, Chen Zhiping, Li Ming, et al. Research on the compensation of the end loss effect for parabolic trough solar collectors[J]. Applied Energy,2014 (115): 128-139.
[17] Li Ming, Xu Chengmu, Ji Xu, et al. A new study on the end loss effect for parabolic trough solar collectors[J]. Energy, 2015(82): 382-394.
[18] H Ajdad, Y Filali Baba, A Al Mers, et al. Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators[J]. Renewable Energy,2019( 130): 992-1001.
[19] Li Guiqiang. Design and development of a lens-walled compound parabolic concentrator-a review[J]. Journal of Thermal Science, 2019, 28(1): 17-29.
[20] Diego P I, Loreto V, Serrano-Aguilera Juan-José, et al. Optimized design of a Linear Fresnel Reflector for solar process heat applications[J]. Renewable Energy, 2019(131): 1089-1106.
[21] 周小泉,周海妮,譚永超,等. 線性菲涅爾反射式太陽能集熱系統(tǒng)鏡場優(yōu)化布置及光學性能開發(fā)與應用研究[J]. 實驗室研究與探索,2012,31(10):306-309,367. Zhou Xiaoquan,Zhou Haini,Tan Yongchao,et al. The optimal layout of mirror field and optical properties of linear Fresnel concentrator[J]. Research and Exploration in Laboratory, 2012, 31(10): 306-309,367. (in Chinese with English abstract)
[22] 宋固. 線性菲涅爾反射式太陽能集熱系統(tǒng)研究[D]. 濟南:山東大學,2011. Song Gu. Research on Linear Fresnel Reflector Solar Collector System[D]. Jinan:Shandong University,2011. (in Chinese with English abstract)
[23] Duffie J A, Beckman W A. Solar Engineering of Thermal Processes (3nd ed )[M]. New York: John Wiley and Sons,Inc, 2006.
[24] Cooper P I. The absorption of solar radiation in solar stills[J]. Solar Energy, 1969, 12(3): 333-346.
[25] 車淑平. 線性菲涅爾反射系統(tǒng)光學和集熱性能研究[D]. 濟南:山東大學,2012. Che Shuping. Research of Optical and Thermal Properties of Linear Fresnel Reflector[D]. Jinan:Shandong University,2012. (in Chinese with English abstract)
End-loss and compensation for small linear Fresnel collectors in severe cold area
Yan Suying1,2, Chen Zhuang1, Zhao Xiaoyan1※, Ma Jing1, Wu Yuting3, Tian Rui1,2
(1.,,010051,;2.,,010051,;3.,,100124,)
The linear Fresnel solar concentrating collector has been widely used in the field of solar heat source utilization due to its compact structure, easy manufacture and low price. Because there is a certain distance between the primary mirror and the collector, the position of the sunlight after reaching the collector changes with the incident angle of the sun, and a part of the reflected light will run out of the collector end to form the end-loss. For the large linear Fresnel collector systems, the end-loss length accounts for a small proportion of the length of the collector, while for the small linear Fresnel systems, the end-loss length accounts for a large proportion of the length of the collector, it has a great influence on the heat collection performance of the collector, so it is particularly important to reduce the end loss. According to the geographical location, the end-loss length of a north-south linear Fresnel mirror field is difference. Based on this, aiming at the serious end- loss of linear Fresnel collector in severe cold area, taking the small linear Fresnel collector system in Hohhot area(north latitude 40.87°) as the research object, the end-loss of linear Fresnel collector placed along the horizontal north-south axis and its adjustment and compensation method were studied and verified by experiments in this paper. The experiment bench was developed on a building roof. The linear Fresnel experimental system was mainly composed of a primary mirror, a compound parabolic secondary mirror and a glass-metal vacuum heat collecting tube. After the light reflected by the plane mirror, part of the light was directly absorbed by the vacuum heat collecting tube, and the other part was absorbed by the vacuum heat collecting tube after the secondary reflection of CPC(compound parabolic collector). The change of end-loss in different seasons and different collector heights was analyzed and calculated theoretically, a method of adjusting reflectors to compensate end-loss was proposed. The focal spot length of collector at different time before and after end-loss compensation was captured by infrared thermal imager, and the change of instantaneous heat collection efficiency before and after reflectors adjustment was analyzed. The results showed that the end-loss length was mainly caused by the horizontal distance from the mirror field to the collector, the height of the collector, the solar azimuth angle and height angle. The end-loss length could be reduced by raise the height of the collector under the premise of avoiding the occlusion and shadow loss between the mirror elements. Meanwhile, the end loss could be reduced by increasing the angle between the mirror and the north-south horizontal plane according to the seasonal variation, and the angle should be kept within the theoretical range. The length of the end-loss decrease to about 1/10 of the collector length after the northern end of the mirror field was raised to 20°at summer solstice afternoon, and the instantaneous heat collecting efficiency increased to 65.9% at noon, which was 54.5% higher than that of before compensation. The change trend of the end-loss with time was the same as that of the sun altitude angle in the middle of the day, contrary to the change trend of the sun azimuth angle, the end-loss at noon was the largest, and the en-loss at morning and evening was the smallest. In the same period of time, the end-loss was the largest in winter, the smallest in summer, and almost the same in spring and autumn. The study provided a theoretical reference for reducing the loss-end length of small linear Fresnel concentrating collectors in severe cold area.
solar energy; heat transfer; end-loss; severe cold area; linear Fresnel concentrating collector; reflector adjustment
2018-12-04
2019-01-30
國家自然科學基金資助項目(No.51766012);內(nèi)蒙古財政創(chuàng)新資助項目(2017年度);內(nèi)蒙古工業(yè)大學科學研究項目(A類)(No.X201606)
閆素英,教授,博士,主要從事太陽能光熱、光電利用技術的研究。Email:yan_su_ying@aliyun.com.
趙曉燕,博士生,實驗師,主要從事傳熱傳質(zhì)強化及能源利用技術方面的研究。Email:NGZXY@imut.edu.cn
10.11975/j.issn.1002-6819.2019.06.025
K515
A
1002-6819(2019)-06-0206-08
閆素英,陳 壯,趙曉燕,馬 靖,吳玉庭,田 瑞. 嚴寒地區(qū)小型線性菲涅爾聚光集熱器末端損失與補償[J]. 農(nóng)業(yè)工程學報,2019,35(6):206-213. doi:10.11975/j.issn.1002-6819.2019.06.025 http://www.tcsae.org
Yan Suying, Chen Zhuang, Zhao Xiaoyan, Ma Jing, Wu Yuting, Tian Rui. End-loss and compensation for small linear Fresnel collector in severe cold area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 206-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.025 http://www.tcsae.org