吳珺華,林 輝,周曉宇,鄧一超,楊 松
?
斥水劑作用下非飽和土壤抗剪強度測定及其變化規(guī)律
吳珺華1,林 輝1,周曉宇1,鄧一超1,楊 松2※
(1. 南昌航空大學土木建筑學院,南昌 330063;2. 云南農業(yè)大學水利學院,昆明 650201)
為獲得斥水性土壤抗剪強度的變化規(guī)律,采用二甲基二氯硅烷(dimethyldichlorosilane,DMDCS)作為斥水劑,獲得了不同斥水程度的改性砂土。在此基礎上配制了不同斥水劑體質比和不同含水率的改性砂土及不同親水黏土質量分數(shù)的改性混合土,并采用非飽和土直剪儀開展了不固結不排水剪強度試驗。結果表明:1)不同DMDCS體質比下的5種改性砂土斥水等級均為極度。改性混合土的斥水等級受DMDCS和黏土含量的共同影響。相同DMDCS體質比下,隨著黏土含量的增加,改性混合土的斥水性能不斷減弱;相同黏土含量下,隨著DMDCS體質比的增加,改性混合土的斥水性能不斷增大。2)不同DMDCS體質比、含水率及黏土含量下的改性土壤抗剪強度均可用摩爾-庫侖強度準則描述。DMDCS體質比從0增至1%時,黏聚力從19.6陡降至10.4 kPa,隨后緩慢降低,最終趨于穩(wěn)定。內摩擦角則隨著DMDCS體質比的增加緩慢減小,從0時的16.2o降至3%時的11.8o;隨著含水率的增加,改性砂土黏聚力逐漸減小,而內摩擦角呈先升后降形態(tài);隨著黏土含量的增加,改性混合土黏聚力顯著增大,內摩擦角表現(xiàn)為先升后降,變幅不大。純改性砂土的黏聚力僅為9.3 kPa,而摻入5%的黏土時,其黏聚力驟升至27.2 kPa;當黏土質量分數(shù)為50%時,混合土黏聚力為55.1 kPa;內摩擦角最大值為16.2°(黏土質量分數(shù)15%),最小值為9.7°(黏土質量分數(shù)50%)。該成果可為深入研究斥水性土壤力學性能及工程應用提供參考。
抗剪強度;含水率;二甲基二氯硅烷;斥水;非飽和土壤;直剪試驗
土壤顆粒表面可以被水濕潤,宏觀上表現(xiàn)為親水;土顆粒表面難以被水濕潤,宏觀上表現(xiàn)為斥水[1]。在土壤學和農業(yè)科學領域,針對天然土壤斥水性的研究始于19世紀某草原中出現(xiàn)的“蘑菇圈”和“干燥斑”現(xiàn)象[2-3]:在這些土壤表面,水分難以滲入導致上覆植被無法生長[4]。斥水現(xiàn)象在土壤不同組分、利用方式和多種氣候條件下廣泛存在[5-6],且具有典型季節(jié)性[7]。目前國內外學者針對土壤斥水性研究中,主要集中在斥水度測定手段[8-10]、斥水度影響因素[11-14]、土壤斥水化技術手段[15-17]及斥水土壤水分運移[18-21]等方面,重點研究如何減小和消除天然土壤的斥水性,改善其滲透性能以利于農業(yè)生產,而并未考慮其力學特性。在土木工程領域,由土壤親水性導致的工程問題十分普遍,土壤親水性是產生滲透破壞[22]、土坡失穩(wěn)[23]、水量損失[24]、海水入侵[25]、水體污染[26]、地基沉降[27]等工程問題的關鍵因素。除了土壤的滲透性,其力學特性亦是土木工程領域中重點關注問題。Fredlund等[28]發(fā)現(xiàn)基質吸力是影響非飽和土壤抗剪強度的重要因素,并提出引入參數(shù)φ來反映基質吸力對土體抗剪強度的貢獻[29]。Escario等[30]認為采用直剪儀可測定非飽和土壤的抗剪強度,在此基礎上吳珺華等[31]結合濾紙法建立了非飽和土壤抗剪強度與基質吸力的經驗模型。部分學者從實用化角度出發(fā),采用含水率來反映其對土壤抗剪強度的影響[32-34]。關于斥水性土壤方面,陳俊英等[35]采用高速離心機測定了人工斥水土壤的水分特征曲線,發(fā)現(xiàn)土壤基質吸力與含水率、斥水劑含量等密切相關。楊松等[36]通過測定人工改性斥水性土壤的接觸角,發(fā)現(xiàn)接觸角增大到一定值時基質吸力會消失。此外,Harkes等[37-38]采用生物改性法配制并研究了斥水性土壤的力學性質,但大部分工程環(huán)境并不利于微生物的成長,無法有效保持改性土壤的性能,限制了生物改性的推廣應用?;瘜W改性是目前常用的土壤斥水化改性方法,其對土顆粒成分和結構沒有影響,因此可用于調節(jié)重塑土壤的滲透性。若能使土壤人為斥水化,那么水就無法輕易滲入土壤內部,滲流也就不易發(fā)生,則可顯著降低滲流問題的帶來的負面影響。同時其力學特性若滿足工程需要,那么人為斥水化土壤可推廣應用于土木工程領域。Imeson等[39]利用天然斥水性土壤來阻止水分蒸發(fā),延緩蒸發(fā)作用以改善農作物生長環(huán)境。Sérgio等[40]采用人工斥水砂制作了室內邊坡模型,獲得了土壤含水率及孔隙水壓力的分布,認為其與親水性邊坡的破壞模式完全不同。Zheng等[41]在此基礎上,開展了不同條件下斥水土坡的穩(wěn)定性研究,認為其穩(wěn)定性要優(yōu)于親水土坡。可以看出,目前斥水性土壤的工程應用方面還十分有限,且主要集中在滲流特性的研究,而針對斥水性土壤力學行為的研究相對較少。筆者前期采用二氯二甲基硅烷等3種斥水劑對砂土進行改性,發(fā)現(xiàn)二氯二甲基硅烷改性砂土具有良好的斥水效果[42]。在此基礎上,本文分別制備了斥水劑體質比、含水率及黏性土含量不同的改性砂土,測定其斥水等級并開展非飽和直剪試驗,研究改性砂土總應力抗剪強度指標與斥水劑體質比、含水率、黏性土含量之間的關系,為斥水性土壤的工程應用提供試驗基礎。
試驗用土取自南昌某工程現(xiàn)場,風干碾碎過2.36 mm篩后備用。土料基本參數(shù)如下:1)砂土:相對密度2.66,最大干密度1.65 g/cm3,最小干密度1.35 g/cm3,飽和含水率42.3%,天然孔隙比0.45,其粒徑級配曲線見圖1;2)黏土:相對密度2.72,最大干密度1.81 g/cm3,最優(yōu)含水率19.5%,塑限20.8%,液限41.6%,塑性指數(shù)20.8。斥水劑為二甲基二氯硅烷((CH3)2SiCl2,簡稱DMDCS)。
圖1 砂土粒徑級配曲線
1.2.1 DMDCS對砂土抗剪強度的影響
將砂土風干分散過2 mm篩后,用去離子水洗凈雜質后烘干,目的是消除有機物等雜質對斥水性能的影響。將DMDCS(mL)與砂土(g)分別按1%、1.5%、2%、2.5%和3%共5組不同體積質量比(簡稱體質比,下同)均勻混合密封至少2 h,獲得不同斥水劑含量的改性砂土,分別開展斥水等級測定試驗與抗剪強度試驗。此外,對天然砂土亦進行抗剪強度試驗(DMDCS體質比為0),以便對比分析改性前后砂土抗剪強度性能變化規(guī)律。
1.2.2 含水率對砂土抗剪強度的影響
實際工程中的土壤不可避免地會受到水分侵擾,進而影響其力學性能。據此針對DMDCS體質比為2%和3%的砂土,分別配制含水率(質量分數(shù),下同)為3%、5%、7%、11%和13%共5種改性砂土,混合密封至少2 h,獲得不同斥水劑含量的改性砂土以開展抗剪強度試驗,獲得含水率對砂土抗剪強度影響規(guī)律。
1.2.3 黏土含量對砂土抗剪強度的影響
對改性砂土斥水性影響因素的研究集中在含水率、pH值、溫度、土體級配等方面[43],而將親水性黏土摻入改性砂土后斥水性能變化的研究相對較少。此處重點研究黏土含量對改性砂土抗剪強度的影響,故僅將DMDCS體質比為3%的改性砂土(g)與黏土(g)分別按0、5%、10%、15%、20%、25%、30%、40%和50%共9種比例,混合配制成3%含水率的改性混合土以開展抗剪強度試驗,獲得黏土含量對砂土抗剪強度影響規(guī)律。
采用非飽和土直剪儀開展改性土壤的不固結不排水直剪試驗(圖2)。常規(guī)直剪儀無法控制剪切過程中非飽和試樣的水氣運移,而該儀器可在試驗過程中通過控制排水閥和排氣閥的開關情況,保證試樣含水率不變?;緟?shù)如下:水平剪切速率為0.001~4.8 mm/min;最大剪切力5 kN;最大法向壓力3 200 kPa;位移傳感器最大量程10 mm,精度0.01 mm;最大孔隙氣壓力0.6 MPa。試樣為標準環(huán)刀樣(61.8 mm×20 mm)。試驗數(shù)據由系統(tǒng)自動采集并保存。試樣干密度為1.5 g/cm3,參照《土工試驗方法標準》GB/T50123-1999[44]進行直剪試驗。相同標準試樣制取4個,其法向壓力分別為100、200、300和400 kPa,剪切速率0.8 mm/min,6 min內完成剪切。
1. 壓力室 2. 步進電機 3. 控制臺 4. 力傳感器 5. 杠桿 6. 氣壓表
采用滴水穿透時間法(water drop penetration time,WDPT)來測定改性砂土斥水等級,分類標準見表1。采用《土工試驗方法標準》GB/T50123-1999[44]對直剪試驗數(shù)據整理方法對上述方案相應的試驗結果進行處理分析,獲得不同條件下改性砂土的黏聚力和內摩擦角。由于試驗是在不固結不排水條件下進行的,因此上述抗剪強度指標均為總應力強度指標。
表1 基于滴水穿透時間法的斥水等級分類標準
5種不同DMDCS體質比的改性砂土,其滴水穿透時間均超過3 600 s,其斥水等級均為極度。圖3隨機給出DMDCS體質比為2%的砂土斥水效果,可以看出改性后的砂土具有顯著斥水性。其余改性砂土亦具有此類現(xiàn)象,在此不贅述。
a. 2% DMDCSb. 無DMDCS b. No DMDCS
1.1角人民幣 2.水滴(未入滲) 3.水漬(已入滲)
1.RMB 10 cents 2.Water droplets (no infiltration) 3.Waterlogging (infiltration)
注:DMDCS為二甲基二氯硅烷。下同。
Note: DMDCS is dimethyldichlorosilance. Same as below.
圖3 改性前后砂土斥水效果
Fig.3 Hydrophobicity results of sandy soils before and after modifying
將5種不同DMDCS體質比的改性砂土按9種不同比例摻入黏土制成改性混合土,測定了其滴水穿透時間和斥水等級(圖4)。
圖4 改性混合土斥水等級
由圖4可知,改性混合土的斥水等級受DMDCS體質比和黏土含量的共同影響。相同DMDCS體質比的改性砂土,隨著黏土含量的增加,其滴水穿透時間均有所縮短;當黏土質量分數(shù)超過一定值時,其斥水等級迅速降低。當DMDCS體質比為1%時,黏土質量分數(shù)達到10%的混合土斥水等級就從極度降至嚴重;而當DMDCS體質比為3%時,黏土質量分數(shù)達到25%時,其斥水等級才從極度迅速降至中等。這表明黏土含量對改性砂土的斥水性有顯著影響,隨著黏土含量的增加,其斥水效果逐漸減弱直至消失。
圖5為不同法向壓力下,砂土DMDCS體質比與抗剪強度關系。總體上看,隨著DMDCS體質比的增大,相同法向壓力下的抗剪強度有所降低,這表明DMDCS對改性砂土的抗剪性能有較大影響。在試驗的法向壓力范圍內,不同DMDCS體質比下試樣的抗剪強度與法向壓力近似為線性關系,可用摩爾-庫侖強度準則進行描述(2>0.9,=0.01),見式(1)。
式中為抗剪強度,kPa;為法向應力,kPa;為黏聚力,kPa;為內摩擦角,(°)。不同DMDCS體質比的改性砂土抗剪強度指標見表2。
圖5 改性砂土DMDCS體質比與抗剪強度關系
表2 不同DMDCS含量的改性砂土抗剪強度
注:**,<0.01,下同。
Note: **,<0.01, Same as below.
試驗結果表明,隨著DMDCS體質比的增加,改性砂土的抗剪強度指標均有不同程度的減小,其中黏聚力從0時的19.6 kPa降至3%時的9.3 kPa,降幅達52.6%;內摩擦角從0時的16.2°降至3%時的11.8°,降幅為27.2%。DMDCS體質比從0增至1%時,黏聚力呈現(xiàn)陡降形態(tài),隨后緩慢降低,最終趨于穩(wěn)定。內摩擦角則隨著DMDCS體質比的增加緩慢減小。這表明DMDCS對改性砂土黏聚力的影響遠大于對內摩擦角的影響。普通砂土摻入DMDCS后,其顆粒表面性質發(fā)生改變,使土壤顆粒表面接觸角增大,導致其基質吸力逐漸減小[36],最終導致其抗剪強度降低。當DMDCS體質比超過一定值時,其對改性砂土抗剪強度幾乎沒有影響。
圖6為不同法向壓力下,砂土含水率與抗剪強度關系曲線。可以看出,隨著含水率的增大,相同法向壓力下的抗剪強度呈先升后降形態(tài),存在峰值。法向應力越大,曲線下降趨勢越明顯。此外,隨著DMDCS體質比的增加,抗剪強度峰值向低含水率方向偏移,即含水率較低時達到峰值。這表明含水率對改性砂土抗剪性能的影響與DMDCS體質比密切相關。結果表明,在試驗的法向壓力范圍內,一定含水率范圍內試樣的抗剪強度與法向壓力可近似為線性關系,亦可用摩爾-庫侖強度準則進行描述。將抗剪強度與法向壓力擬合結果列于表3。
圖6 改性砂土含水率與抗剪強度關系
表3 不同含水率的改性砂土抗剪強度
試驗結果表明,隨著含水率的增加,改性砂土的黏聚力逐漸減小。當DMDCS體質比分別為2%和3%時,黏聚力分別從3%含水率時的15.5 kPa和15 kPa降至13%含水率時的7.5 kPa和5.2 kPa,降幅達51.6%和65.3%;改性砂土的內摩擦角呈先升后降形態(tài),當DMDCS體質比為2%和3%時,內摩擦角先從3%含水率時的12.7°和11.7°升至15.2°和14.6°,最終降至13%含水率時的13.9°和11.9°。含水率的增加會影響砂土顆粒之間水力聯(lián)系,提升顆粒之間潤滑性能,引起基質吸力降低,最終導致其抗剪強度不斷降低??傮w上看,含水率對改性砂土的抗剪強度影響很大,尤其對改性砂土黏聚力的削弱作用更為明顯。
圖7為不同法向壓力下,改性砂土中不同黏土含量與抗剪強度關系曲線。可以看出,隨著黏土含量的增加,法向應力為100 kPa時的抗剪強度逐漸增加,最終趨于穩(wěn)定;法向應力為200、300和400 kPa時的抗剪強度均表現(xiàn)為先升后降形態(tài),存在峰值。法向應力越大,曲線下降趨勢越明顯。結果表明,在試驗的法向壓力范圍內,不同黏土含量下試樣的抗剪強度與法向壓力亦可用摩爾-庫侖強度準則進行描述。將抗剪強度與法向壓力擬合結果列于表4。
注:含水率為3%。
表4 不同黏土含量的改性混合土抗剪強度指標
結果表明,隨著黏土含量的增加,改性混合土的黏聚力逐漸增大:純改性砂土的黏聚力僅為9.3 kPa,而摻入5%的黏土后,其黏聚力增至27.2 kPa;當黏土質量分數(shù)達50%時,其黏聚力可達55.1 kPa,增幅為492.5%。改性混合土的內摩擦角表現(xiàn)為先升后降形態(tài),最大值為16.2°(黏土質量分數(shù)15%),最小值為9.7°(黏土質量分數(shù)50%)。由前述分析可知,隨著黏土含量的增加,混合土的斥水性不斷降低,其基質吸力呈遞增形態(tài),導致改性混合土抗剪強度逐漸增大。當黏土含量持續(xù)增加時,改性砂土表面覆蓋的黏土顆粒不斷增多,其對黏聚力的貢獻越明顯,越接近純黏性土的黏聚力;而黏土的內摩擦角通常要小于砂土的內摩擦角,導致改性混合土的內摩擦角總體上呈下降形態(tài)。黏土含量的增加會削弱改性砂土的斥水性,但其能有效充填砂土顆粒間的空隙,改善了土壤級配,進而影響到改性砂土的力學性能??梢灶A見,當黏土含量達到一定值時,改性砂土對混合土的抗剪強度幾乎沒有影響,主要受黏土的抗剪強度控制。
1)不同二甲基二氯硅烷((CH3)2SiCl2,DMDCS)體質比下的5種改性砂土斥水等級均為極度。改性混合土的斥水等級受DMDCS體質比和黏土含量的共同影響。相同DMDCS體質比下,隨著黏土含量的增加,改性混合土的斥水性能不斷減弱;相同黏土含量下,隨著DMDCS體質比的增加,改性混合土的斥水性能不斷增強。
2)不同DMDCS體質比下的改性砂土抗剪強度可用摩爾-庫侖強度準則描述。隨著DMDCS體質比的增加,改性砂土的抗剪強度指標均有所減小。DMDCS體質比對改性砂土黏聚力的影響遠大于對內摩擦角的影響。DMDCS使砂土顆粒表面接觸角增大,引起基質吸力減小,最終導致其抗剪強度降低。DMDCS體質比繼續(xù)增加,對改性砂土抗剪強度影響不明顯。
3)不同含水率下的改性砂土抗剪強度可用摩爾-庫侖強度準則描述(2>0.9,<0.01),其受含水率與DMDCS體質比的共同影響。隨著含水率的增加,改性砂土的黏聚力逐漸減小,而內摩擦角呈先升后降形態(tài)。含水率的增加會引起基質吸力降低,最終導致其抗剪強度不斷降低,尤其對改性砂土黏聚力的削弱作用更為明顯。
4)不同黏土含量下的改性混合土抗剪強度可用摩爾-庫侖強度準則描述。隨著黏土含量的增加,改性混合土的黏聚力顯著增大。改性混合土的內摩擦角表現(xiàn)為先增后減。黏土含量的增加會導致混合土的斥水性不斷下降,使得改性混合土抗剪強度逐漸增大。當黏土含量增大時,改性砂土表面覆蓋的黏土顆粒不斷增多,其對黏聚力的貢獻越明顯,越接近純黏性土的黏聚力;黏土的內摩擦角通常要小于砂土的內摩擦角,導致改性混合土的內摩擦角總體上呈下降形態(tài)。
[1] 王中平,孫振平,金明. 表面物理化學[M]. 上海:同濟大學出版社,2015:23-42.
[2] Lozano E, Jiménez-Pinilla P, Mataix-Solera J, et al. . Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest[J]. Geoderma, 2013, 207(5): 212-220.
[3] 李毅,商艷玲,李振華,等. 土壤斥水性研究進展[J]. 農業(yè)機械學報,2012,43(1):68-75. Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 68-75. (in Chinese with English abstract)
[4] Schreiner O, Shorey E C. Chemical nature of soil organic matter[J]. U. S Dept Agr Bur Soils Bull, 1910, 74: 2-48.
[5] Deurer M, Bachmann J. Modeling water movement in heterogeneous water repellent soil: 2. A conceptual numerical simulation[J]. Vadose Zone Journal, 2007, 6(3): 446-457.
[6] Bachmann J, Horton R. Isothermal and nonisothermal evaporation from four sandy soils of different water repellency[J]. Soil Science Society of America Journal, 2001, 65(6): 1599-1607.
[7] Ellerbrock R H, Gerke H H, Bachmann J, et al. . Composition of organic matter fractions for explaining wettability of three forest soils[J]. Soil Science Society of America Journal, 2005, 69(1): 57-66.
[8] Woudt B D V. Particle coatings affecting the wettability of soils[J]. Journal of Geophysical Research Atmospheres, 1959, 64(2): 263-267.
[9] Watson C L, Letey J. Indices for characterizing soil water repellency based upon contact angle-surface tension relationships[J]. Soil Science Society of America, 1970, 34(6): 841-844.
[10] Ritsema C J, Dekker L W. Soil Water Repellency: Occurrence, consequences and Amelioration[J]. Journal of Physics A Mathematical & Theoretical, 2003, 45(6): 2140-2154.
[11] Hurra? J, Schaumann G E. Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples[J]. Geoderma, 2006, 132(1/2): 222-239.
[12] Dekker L W, Ritsema C. J. Wetting patterns and moisture variability in water repellent Dutch soils[J]. Journal of Hydrology, 2000, 231/232: 148-164.
[13] Wallach R, Ben Arie O, Graber E R. Soil water repellency induced by long-term irrigation with treated sewage effluent[J]. Journal of Environmental Quality, 2004, 34(5): 1910-1920.
[14] Micheal J, Noam Weisbrod. Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency[J]. Science of the Total Environment, 2008, 394(1): 68-74.
[15] Lee W, Jin M K, Yoo W C, et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability[J]. Langmuir, 2004, 20(18): 7665-7669.
[16] Roper M M. The isolation and characterisation of bacteria with the potential to degrade waxes that cause water repellency in sandy soils[J]. Australian Journal of Soil Research, 2004, 42(4): 427-434.
[17] 胡春香,劉永定,張德祿,等. 荒漠藻結皮的膠結機理[J]. 科學通報,2002,47(12):931-937. Hu Chunxiang, Liu Yongding, Zhang Delu, et al. On desert algae and the mechanism of algal crust formation in desert area[J]. Chinese Science Bulletin, 2002, 47(12): 931-937. (in Chinese with English abstract)
[18] Rodriguez-Alleres M, de Blas E, Benito E. Estimation of soil water repellency of different particle size fractions in relation with carbon content by different methods[J]. Science of the Total Environment, 2007, 378(1): 147-150.
[19] 劉春成,李毅,任鑫. 四種入滲模型對斥水土壤入滲規(guī)律的適用性[J]. 農業(yè)工程學報,2011,27(5):62-67. Liu Chuncheng, Li Yi, Ren Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 62-67. (in Chinese with English abstract)
[20] 劉暢,陳俊英,張林,等. 初始含水率對斥水黏壤土入滲特性的影響[J]. 排灌機械工程學報,2018,36(4):354-361. Liu Chang, Chen Junyin, Zhang Lin, et al. Effect of initial soil moisture content on infiltration characteristics of water-repellent clay loam[J]. Journal of drainage and irrigation machinery engineering (JDIME), 2018, 36(4): 354-361. (in Chinese with English abstract)
[21] 陳俊英,張智韜,楊飛,等. 土壤斥水性和含水率變化關系的數(shù)學模型[J]. 灌溉排水學報,2009,28(6):35-38. Chen Junying, Zhang Zhitao, Yang Fei, et al. Modeling water repellency and water content of a sand soil[J]. Journal of Irrigation and Drainage, 2009, 28(6): 35-38. (in Chinese with English abstract)
[22] 施成華,彭立敏. 基坑開挖及降水引起的地表沉降預測[J]. 土木工程學報,2006,39(5):117-121. Shi Chenghua, Peng Limin. Ground surface settlement caused by foundation pit excavation and dewatering[J]. China Civil Engineering Journal, 2006, 39(5): 117-121. (in Chinese with English abstract)
[23] 汪益敏,陳頁開,韓大建,等. 降雨入滲對邊坡穩(wěn)定影響的實例分析[J]. 巖石力學與工程學報,2004,23(6):920-924. Wang Yimin, Chen Yekai, Han Dajian, et al. Case study on influence of rainfall permeation on slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 920-924. (in Chinese with English abstract)
[24] 陳生水,鐘啟明,陶建基. 土石壩潰決模擬及水流計算研究進展[J]. 水科學進展,2008,19(6):903-910. Chen Shengshui, Zhong Qiming, Tao Jianji. Development in embankment dam break simulation and water flow simulation[J]. Advances in Water Science, 2008, 19(6): 903-910. (in Chinese with English abstract)
[25] 楊蘊,吳劍鋒,林錦,等. 控制海水入侵的地下水多目標模擬優(yōu)化管理模型[J]. 水科學進展,2015,26(4):579-588. Yang Yun, Wu Jianfeng, Lin Jin, et al. A multi-objective simulation-optimization model constrained by the potential seawater intrusion[J]. Advances in Water Science, 2015, 26(4): 579-588. (in Chinese with English abstract)
[26] 葉為民,金麒,黃雨. 地下水污染試驗研究進展[J]. 水利學報,2005,36(2):251-255. Ye Weimin, Jin Qi, Huang Yu. Review on advance in experimental study of pollution dispersion in groundwater[J]. Journal of Hydraulic Engineering, 2005, 36(2): 251-255. (in Chinese with English abstract)
[27] 黃雨,周子舟,柏炯,等. 石膏添加劑對水泥土攪拌法加固軟土地基效果影響的微觀試驗分析[J]. 巖土工程學報,2010,32(8):1179-1183. Huang Yu, Zhou Zizhou, Bai Jiong, et al. Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1179-1183. (in Chinese with English abstract)
[28] Fredlund D G,Rahardjo H. 非飽和土土力學[M]//陳仲頤譯. 北京:中國建筑工業(yè)出版社,1997.
[29] Gan J K M, Fredlund D G, Rahardjo H. Determination of the shear strength parameters of unsaturated soils using the direct shear test[J]. Canadian Geotechnical Journal, 1988, 25(3): 500-510.
[30] Escario V, Saez J. The shear strength of partly saturated soils[J]. Geotechnique, 2015, 36(3): 453-456.
[31] 吳珺華,楊松. 干濕循環(huán)下膨脹土基質吸力測定及其對抗剪強度影響試驗研究[J]. 巖土力學,2017,38(3):678-684. Wu Junhua, Yang Song. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils[J]. Rock and Soil Mechanics, 2017, 38(3): 678-684. (in Chinese with English abstract)
[32] 凌華,殷宗澤. 非飽和土強度隨含水量的變化[J]. 巖石力學與工程學報,2007,26(7):1499-1503. Ling Hua, Yin Zongze. Variation of unsaturated soil strength with water contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1499-1503. (in Chinese with English abstract)
[33] 馬少坤,黃茂松,范秋彥. 基于飽和土總應力強度指標的非飽和土強度理論及其應用[J]. 巖石力學與工程學報,2009,28(3):635-640. Ma Shaokun, Huang Maosong, Fan Qiuyan. Strength indexes of saturated soil and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 635-640. (in Chinese with English abstract)
[34] 李廣信,司韋,張其光. 非飽和土的清華彈塑性模型[J]. 巖土力學,2008,29(8):2033-2036. Li Guangxin, Si Wei, Zhang Qiguang. Tsinghua elastoplastic model for unsaturated soils[J]. Rock and Soil Mechanics, 2008, 29(8): 2033-2036. (in Chinese with English abstract)
[35] 陳俊英,劉暢,張林,等. 斥水程度對脫水土壤水分特征曲線的影響[J]. 農業(yè)工程學報,2017,33(21):188-193. Chen Junying, Liu Chang, Zhang Lin, et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 188-193. (in Chinese with English abstract)
[36] 楊松,龔愛民,吳珺華,等. 接觸角對非飽和土中基質吸力的影響[J]. 巖土力學,2015,36(3):674-678. Yang Song, Gong Aimin, Wu Junhua, et al. Effect of contact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678. (in Chinese with English abstract)
[37] Harkes M P, van Paassen L A, Booster J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
[38] Hallett P D, Nunan N, Douglas J T, et al. Millimeter-scale spatial variability in soil water sorptivity: Scale, surface elevation, and subcritical repellency effects[J]. Soil Science Society of America Journal, 2004, 68(2): 352-358.
[39] Imeson A C, Verstraten J M, Van-Mulligen E J, et al. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forests[J]. Catena, 1992, 3/4: 345-361.
[40] Sérgio D N Louren?o, Wang GongHui , Toshitaka Kamai. Processes in model slopes made of mixtures of wettable and water repellent sand: Implications for the initiation of debris flows in dry slopes[J]. Engineering Geology, 2015, 196: 47-58.
[41] Zheng Shuang, Sérgio D N Louren?o, Peter J Cleall. Hydrologic behavior of model slopes with synthetic water repellent soils[J]. Journal of Hydrology, 2017, 554: 582-599.
[42] 吳珺華,周曉宇,林輝,等. 不同斥水劑作用下土壤斥水度測定及其變化規(guī)律[J]. 農業(yè)工程學報,2018,34(17):109-115. Wu Junhua, Zhou Xiaoyu, Lin Hui, et al. Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 109-115. (in Chinese with English abstract)
[43] 陳俊英,張智韜,汪志農,等. 土壤斥水性影響因素及改良措施的研究進展[J]. 農業(yè)機械學報,2010,41(7):84-89. Chen Junying, Zhang Zhitao, Wang Zhinong, et al. Influencing factors and amelioration of soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 84-89. (in Chinese with English abstract)
[44] 中華人民共和國建設部. 土工試驗方法標準:GB/T50123- 1999[S]. 北京:中國標準出版社,1999.
Measurement of shear strength and its change in unsaturated soils modified by hydrophobic agent
Wu Junhua1, Lin Hui1, Zhou Xiaoyu1, Deng Yichao1, Yang Song2※
(1.,,330063,; 2.,,650201,)
In order to study how shear strength and its change in unsaturated soils modified by hydrophobic agent, sandy soils hydrophobized by dimethyldichlorosilane (DMDCS) were prepared. The hydrophobic soils with different DMDCS volume by soil mass, water content and clay content were obtained respectively. Mixtures of sandy soils (DMDCS volume by soil mass were 2 mL:100 g and 3 mL:100 g, i.e., 2% and 3%, the same below) with 3%, 5%, 7%, 11% and 13% water content were prepared respectively. Meanwhile, the mixtures of clay and sandy soils (3% DMDCS) according to the clay mass fraction of 0, 5%, 10%, 15%, 20%, 25%, 30%, 40% and 50% were prepared respectively. Then the unsaturated direct shear tests were carried out by unsaturated direct shear apparatus. Four samples in each group were prepared under the normal pressure in 100, 200, 300 and 400 kPa, respectively. The horizontal shearing ratio was 0.8 mm/min and the shearing test lasted 6 min. The results showed that: 1) The mixtures of sandy soils and DMDCS presented extreme hydrophobicity. 2) The water repelling of mixtures of clay and sandy soils was affected by both DMDCS and clay content. The water repelling of mixtures was degraded with the increasing of clay content, and improved with the increasing of DMDCS volume by soil mass. 3) The Mohr-Coulomb strength criterion could be adopted to describe the shear strength of hydrophobic sandy soils with different DMDCS and water content. With the increasing of DMDCS volume by soil mass, the shear strength index of the hydrophobic soil was decreased to different extents. The cohesive force showed a steep-drop shape from soil without DMDCS addition to that with 1% DMDCS and a slow decline up to stabilize finally. The effect of DMDCS on the cohesive force of modified sandy soils was much greater than on the internal friction angle. The hydrophobic soils’ cohesion with the increasing of water content was decreased gradually, while the internal friction angle was increased firstly and decreased finally. The water content had a much effect on the shear strength of the hydrophobic sandy soils. The shear strength index were decreased with the increasing of DMDCS volume by soil mass: the cohesion was declined rapidly from 19.6 kPa (no DMDCS) to 10.4 kPa (1% DMDCS) and slowly from 10.4 kPa (1% DMDCS) to 9.3 kPa (3% DMDCS). The internal friction angle was declined slowly from 16.2° (no DMDCS) to 11.8° (3% DMDCS). The cohesion was decreased with the increasing of water content: the cohesion was declined from 15.5 kPa (3% water content) to 7.5 kPa (13% water content) with 2% DMDCS and from 15 kPa (3% water content) to 5.2 kPa (13% water content) with 3% DMDCS respectively; the internal friction angle was increased from 12.7° (3% water content) to 15.2° (11% water content) with 2% DMDCS and from 11.7° (3% water content) to 14.6° (7% water content) with 3% DMDCS, then decreased to 13.9° (13% water content) with 2% DMDCS and 11.9° (13% water content) with 3% DMDCS respectively. 4) The Mohr-Coulomb strength criterion could also be adopted to describe the shear strength of hydrophobic mixed soils with different clay content. The cohesion was increased remarkably with the increasing of clay content. The cohesion of sandy soils without clay was 9.3 kPa, then suddenly increased to 27.2 kPa and 55.1 kPa mixed with 5% and 50% clay mass fraction, respectively. The internal friction angle was increased from 12.1° (5% clay mass fraction) to 16.2° (15% clay mass fraction), and then decreased to 9.7° (50% clay mass fraction). All the analysis could be beneficial to analyze the shear strength of hydrophobized soils and apply in engineering.
shear strength; water content; dimethyldichlorosilane; hydrophobized; unsaturated soil; direct shear test
2018-08-23
2019-02-10
國家自然科學基金資助項目(51869013、41867038);江西省自然科學基金資助項目(20181BAB216033);江西省教育廳科技項目(GJJ180530);南昌航空大學研究生創(chuàng)新基金資助項目(YC2018070)
吳珺華,副教授,博士,主要從事非飽和土基本性質研究。 E-mail:wjhnchu0791@126.com
楊松,副教授,博士,主要從事非飽和土基本性質研究。 E-mail:yscliff007@126.com
10.11975/j.issn.1002-6819.2019.06.015
S152.+7
A
1002-6819(2019)-06-0123-07
吳珺華,林 輝,周曉宇,鄧一超,楊 松. 斥水劑作用下非飽和土壤抗剪強度測定及其變化規(guī)律[J]. 農業(yè)工程學報,2019,35(6):123-129. doi:10.11975/j.issn.1002-6819.2019.06.015 http://www.tcsae.org
Wu Junhua, Lin Hui, Zhou Xiaoyu, Deng Yichao, Yang Song. Measurement of shear strength and its change in unsaturated soils modified by hydrophobic agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 123-129. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.015 http://www.tcsae.org