敖 明,柴冠群,范成五,劉桂華,秦 松,王 萍
?
稻田土壤和稻米中重金屬潛在污染風(fēng)險評估與來源解析
敖 明1,2,柴冠群1,范成五1,劉桂華1,秦 松1,王 萍2※
(1. 貴州省農(nóng)業(yè)科學(xué)院土壤肥料研究所,貴陽 550006;2. 貴州省農(nóng)業(yè)資源環(huán)境管理站,貴陽 550001)
該文選擇貴州省典型城市(都勻市)周邊水稻種植區(qū)為研究區(qū),系統(tǒng)采集了稻田土壤和稻米樣品各110個,測定土壤和稻米中Cd、Hg、As、Pb和Cr含量,基于多元統(tǒng)計分析和污染風(fēng)險評價等分析方法,揭示了研究區(qū)稻田土壤重金屬污染的主要來源及土壤和稻米中重金屬存在的潛在風(fēng)險。結(jié)果表明,與貴州土壤重金屬背景值相比,稻田土壤中Cd、Hg、As、Pb和Cr超標(biāo)率分別為14.55%、40.00%、16.36%、22.72%和13.64%,主要以Hg污染問題最為突出。稻米中只存在3.64% Cd超標(biāo),Hg、As、Pb和Cr平均含量均低于國家食品安全標(biāo)準(zhǔn)限定值(GB 2762-2017),說明當(dāng)?shù)鼐用袷秤玫久状嬖谧畲蟮臐撛谕{為Cd污染稻米。稻田土壤重金屬來源分析結(jié)果表明,稻田土壤中Cd、Hg、As和Pb之間呈顯著正相關(guān)關(guān)系,說明土壤中Cd、Hg、As和Pb具有相同的來源,主要來源于當(dāng)?shù)劂U鋅礦冶煉、火電廠等污染點(diǎn)源排放的污染物;Cr與其他元素相關(guān)性不顯著,主要來源于成土母質(zhì),為自然來源元素。
重金屬;土壤;污染風(fēng)險;來源解析;稻米
土壤和農(nóng)產(chǎn)品重金屬污染問題是當(dāng)前國內(nèi)外研究的熱點(diǎn)領(lǐng)域[1-2]。尤其在城市化和經(jīng)濟(jì)快速發(fā)展的背景下,土壤和農(nóng)產(chǎn)品重金屬污染受到各個國家的廣泛關(guān)注[3-5]。2014年4月公布的《全國土壤污染狀況調(diào)查公報(2005―2013年)》顯示,中國耕地土壤點(diǎn)位超標(biāo)率達(dá)19.4%[6],呈現(xiàn)從西北到東南、從東北到西南方向逐漸升高的態(tài)勢[7]。嚴(yán)峻的土壤重金屬污染,導(dǎo)致中國糧食重金屬污染事件頻發(fā)。據(jù)統(tǒng)計,中國每年因土壤重金屬污染導(dǎo)致糧食減產(chǎn)高達(dá)1000多萬t,污染糧食多達(dá)1200萬t,合計經(jīng)濟(jì)損失至少200億元[8],其中“鎘大米”問題最為突出。水稻對土壤中重金屬具有很強(qiáng)的富集能力,易導(dǎo)致稻米中重金屬含量超標(biāo)[9-11]。稻米是中國傳統(tǒng)主食之一,通過進(jìn)食重金屬污染稻米而產(chǎn)生的長期低劑量暴露,已經(jīng)成為中國人群健康的潛在風(fēng)險[1,12]。
中國城市化進(jìn)程在持續(xù)推進(jìn),城市人口日益增多,對城市周邊生態(tài)環(huán)境構(gòu)成了嚴(yán)重威脅[13-14]。城市工業(yè)生產(chǎn)、居民生活廢棄物的排放,已成為城市周邊農(nóng)田重金屬污染物最主要來源[15-18]。重金屬含量主要受到自然和人為因素的影響,自然因素主要受到成土母質(zhì)的控制,人為因素主要包括化肥施用、工業(yè)排放、污水灌溉、大氣降塵、汽車尾氣以及采礦活動等[19-20]。重金屬污染物進(jìn)入土壤后,其毒性具有隱蔽性、滯后性、持久性和不可逆轉(zhuǎn)性,并不斷積累或轉(zhuǎn)移到地下水、農(nóng)作物等其他生態(tài)系統(tǒng)中,通過食物鏈傳遞危害人體健康[21]。目前研究區(qū)域主要集中于大、中工業(yè)城市、礦山場地等重污染地區(qū),而針對小型宜居城市的土壤、農(nóng)產(chǎn)品中重金屬來源及分布特征的研究相對缺乏[15-16]。
多元統(tǒng)計分析(相關(guān)分析和主成分分析)是辨識土壤重金屬自然和人為來源的經(jīng)典統(tǒng)計方法[20],結(jié)合克里金插值分析模擬土壤中重金屬的空間結(jié)構(gòu)和變異,可以直觀地展示重金屬含量的空間分布,在此基礎(chǔ)上可以追溯造成土壤重金屬高值熱點(diǎn)區(qū)的原因,是辨識重金屬人為、自然來源以及空間分布的有力工具[20]。
本文選擇貴州典型小城市-都勻市為研究區(qū)域,系統(tǒng)采集該區(qū)域內(nèi)稻田土壤和稻米樣品,采用多元統(tǒng)計分析(相關(guān)分析和主成分分析)方法分析土壤重金屬的主要來源因素,利用單因子污染指數(shù)法、內(nèi)梅羅綜合污染指數(shù)法以及潛在生態(tài)風(fēng)險指數(shù)法明確研究區(qū)土壤重金屬污染特征,并對研究區(qū)的重金屬污染狀況進(jìn)行風(fēng)險評價,分析了都勻城市周邊稻田土壤和稻米中重金屬含量分布特征,以期為都勻市農(nóng)業(yè)的健康發(fā)展提供數(shù)據(jù)參考。
都勻市位于貴州省中南部,地處107°7′~107°46′E,25°51′~26°26′N之間,面積為2274 km2,總?cè)丝跒?9萬,農(nóng)業(yè)人口占64.57%,是貴州少數(shù)民族地區(qū)的一個新興工業(yè)城市。礦產(chǎn)資源主要以鉛鋅礦(36萬t)、鐵礦石(655萬t)、重晶石(536萬t)等礦產(chǎn)儲量最為豐富。境內(nèi)北部多山地,中南部有狹長的河谷盆地,屬于喀斯特地貌,平均海拔938 m。都勻市屬亞熱帶季風(fēng)濕潤氣候,年平均氣溫16.1 ℃,年平均降雨量1 431.1 mm。都勻境內(nèi)土壤類型多樣,主要有黃壤、水稻土、石灰土等土類。都勻的工業(yè)以鉛鋅礦冶煉、火力發(fā)電等產(chǎn)業(yè)為主。農(nóng)業(yè)以水稻、小麥、玉米種植業(yè)為主。都勻城市呈狹長狀分布,城市規(guī)模小,是典型小城市的代表。
2013年10月,在都勻市轄區(qū)內(nèi)采集稻田土壤及稻米樣品,研究區(qū)內(nèi)共布設(shè)110個采樣點(diǎn)。采集樣品之前根據(jù)《貴州省土地利用現(xiàn)狀圖》進(jìn)行預(yù)布設(shè)采樣點(diǎn)位,布點(diǎn)密度約為150 hm2布設(shè)1個點(diǎn)。實(shí)地采樣過程中,根據(jù)預(yù)設(shè)點(diǎn)位及周邊稻田分布狀況調(diào)整采樣位置,并用GPS確定實(shí)際采樣點(diǎn)地理坐標(biāo),最后生成采樣示意圖(圖1)。選擇面積較大田塊進(jìn)行樣品采集,保證樣品的代表性。每個樣品從5 m×5 m的正方形4個頂點(diǎn)和中心點(diǎn)5處采集適量的表層土壤(0~20 cm),組合成一個混合樣品,并裝入聚乙烯塑料袋中,以防交叉污染。在采集土壤的位置采集適量水稻果實(shí)組成一個混合樣品。
圖1 研究區(qū)域和采樣點(diǎn)示意
樣品采集后,均帶回實(shí)驗室自然風(fēng)干,土壤經(jīng)研磨后過0.15 mm尼龍篩;稻米樣品經(jīng)脫殼后研磨過0.15 mm尼龍篩,處理后的樣品均用新的聚乙烯密封袋密封保存待測。
土壤樣品中重金屬采用1.0 mL HNO3和0.5 mL HF法消解,采用電感耦合等離子體質(zhì)譜儀(ICP-MS賽默飛世爾科技公司)測定樣品中Cd、As、Pb和Cr含量;土壤中Hg含量測定采用王水消解法,利用原子吸收光譜儀(AAS,F(xiàn)732-VJ)測定。稻米樣品采用微波消解儀(邁爾斯通公司,Ethosone)消解,消解液中Cd、Hg、As、Pb和Cr含量采用ICP-MS測定。土壤pH值根據(jù)NY/T1377-2007方法測定,稱取(10±0.1) g風(fēng)干土壤于離心管中,加入25 mL超純水,振蕩5 min,然后靜置1~3 h,采用PHS-3C/3E測定pH值(NY/T 1377-2007)。樣品消解過程中,每次試驗添加3個空白對照組和3個標(biāo)準(zhǔn)物質(zhì)(土壤:GBW07405;植物:GBW10045),并按10%的比例添加平行樣。土壤和植物標(biāo)準(zhǔn)物質(zhì)回收率分別為91.3%~103.7%和93.7%~105.4%,樣品平行范圍為88.6%~115.3%。
1)單因子污染指數(shù)法
單因子污染指數(shù)法對土壤中的單一污染物的污染程度進(jìn)行的評價,其計算公式如下:
2)內(nèi)梅羅綜合污染指數(shù)法
綜合污染指數(shù)法兼顧單因子污染指數(shù)平均值和最高值,全面反映土壤中各污染物的平均污染水平,突出污染較重的重金屬對環(huán)境造成的危害,計算公式如下:
3)潛在生態(tài)風(fēng)險指數(shù)法
本研究采用Hankason潛在生態(tài)危害指數(shù)法評價都勻城市周邊稻田土壤中重金屬的潛在生態(tài)風(fēng)險,計算公式如下:
數(shù)據(jù)分析過程中,使用ArcGIS 10.5(美國ESRI公司)繪制采樣圖以及土壤和稻米中重金屬含量分布圖,用Origin 8.5(美國Origin Lab公司)軟件作數(shù)據(jù)分析圖,運(yùn)用IBM SPSS 20 Statistics(美國IBM公司)進(jìn)行相關(guān)性和主成分分析。
2.1.1 稻田土壤重金屬含量分布特征
都勻城市周邊稻田土壤pH值的平均值為5.95±0.76,變化范圍為4.74~7.73,是典型的偏酸性土壤。稻田土壤中Cd、Hg、As、Pb和Cr平均質(zhì)量分?jǐn)?shù)分別為(0.45±0.48)、(0.23±0.29)、(11.94±10.86)、(36.95±32.98)和(60.80±31.73)mg/kg,變化范圍分別為0.11~4.62、0.03~1.47、1.46~65.71、9.98~206.70和15.80~218.43 mg/kg(表1)。稻田土壤中重金屬含量變異系數(shù)均超過36%,為強(qiáng)變異,表明都勻城市周邊稻田土壤中重金屬含量受人為活動的影響較大。稻田土壤中Cd、Hg、As、Pb和Cr含量與農(nóng)用地土壤污染風(fēng)險篩選值相比,都勻城市周邊稻田土壤中僅Cd含量高于中國農(nóng)田土壤規(guī)定的限定值0.4 mg/kg(GB 15618-2018),Hg、As、Pb和Cr含量均低于對應(yīng)限定值,說明研究區(qū)稻田土壤主要存在Cd污染風(fēng)險;與貴州省土壤重金屬背景值相比[21],Cd、As、Pb和Cr平均值均低于貴州背景值,只有Hg平均值高于貴州背景值,Cd、Hg、As、Pb和Cr超標(biāo)率分別為14.55%、40.00%、16.36%、22.72%和13.64%,說明都勻周邊農(nóng)田土壤呈現(xiàn)出明顯的Hg累積,可能主要來源于大氣汞干濕沉降[24-25]。稻田土壤中Cd、Hg、As、Pb和Cr的偏度值分別為6.43、2.91、2.22、2.57和1.63。稻田土壤中Cd、Hg、As、Pb和Cr的峰度值分別為52.52、8.78、6.42、7.60和5.02,其峰度變化規(guī)律與偏度相似,說明土壤中Cd受人為活動的影響最大,其次為Hg,而Cr主要受成土母質(zhì)影響,暗示稻田土壤中Cd和Hg可能與人為活動有關(guān)。
表1 研究區(qū)土壤和稻米中重金屬含量統(tǒng)計分析
注:a表示限量標(biāo)準(zhǔn)參照《貴州省土壤重金屬背景值》;b表示限量標(biāo)準(zhǔn)參照GB2762-2017《食品安全國家標(biāo)準(zhǔn)》。樣本量=110。
Note:ais the reference standard of background value of Guizhou Province mountain soil.bis the reference standard of national standard of food safety in China (GB2762-2017).Sample number=110.
2.1.2 稻米中重金屬含量分布特征
稻米中Cd、Hg、As、Pb和Cr平均質(zhì)量分?jǐn)?shù)分別為(38.91±86.50)、(5.82±2.96)、(113.26±27.18)、(89.42±24.87)和(175.92±82.12)g/kg,變化范圍分別為5.38~752.73、1.80~18.35、56.48~179.60、50.67~185.33和63.00~507.00g/kg(表1)。在所有稻米樣品中,只有3.64%的稻米樣品Cd含量超過中國食品安全標(biāo)準(zhǔn)規(guī)定的Cd限量指標(biāo)0.2 mg/kg(GB 2762-2017),所有稻米中Hg、As、Pb和Cr含量均低于食品安全國家標(biāo)準(zhǔn)限定值,說明當(dāng)?shù)鼐用袷秤玫久状嬖谧畲蟮臐撛谕{為Cd污染稻米。稻米中Cd、Hg、As、Pb和Cr的偏度值分別為6.11、1.83、0.27、1.31和1.07;稻米中Cd、Hg、As、Pb和Cr的峰度值分別為44.70、4.34、?0.36、2.03和1.39,其峰度變化規(guī)律與偏度相同,其中以Cd的偏度和峰度最大,As的偏度和峰度最小,說明稻米中Cd和As富集特征受稻田土壤的物理化學(xué)性質(zhì)影響。相關(guān)研究結(jié)果表明,pH值是影響土壤中Cd和As活性關(guān)鍵因素之一,由于Cd和As在土壤中化學(xué)性質(zhì)及存在形態(tài)上的差異,pH值降低導(dǎo)致土壤中有效態(tài)Cd含量增加,As有效態(tài)含量降低[26-27]。研究區(qū)稻田土壤呈明顯弱酸性,降低了土壤對Cd吸附,增加了土壤中有效態(tài)Cd含量,促進(jìn)水稻對Cd的吸收,相反抑制水稻對As吸收,從而導(dǎo)致都勻城市周邊地區(qū)在稻田土壤Cd和As超標(biāo)率相近的情況下,出現(xiàn)部分稻米Cd超標(biāo)而As未超標(biāo)。
為了進(jìn)一步明晰研究區(qū)稻田土壤和稻米中重金屬濃度的空間分布特征,應(yīng)用ArcGIS 10.5軟件進(jìn)行克里金插值分析技術(shù)得到圖2。從圖中可以看出,稻田土壤重金屬超標(biāo)點(diǎn)位大部分位于勻東鎮(zhèn)鉛鋅礦區(qū),該區(qū)域表現(xiàn)為多種重金屬復(fù)合污染特性,說明土壤中重金屬累積與當(dāng)?shù)劂U鋅礦開采活動有關(guān)。其他鄉(xiāng)鎮(zhèn)稻田土壤中重金屬污染呈不均勻分布,其中都勻城區(qū)西部表現(xiàn)為Hg累積特性,明顯高于貴州省土壤重金屬背景值,暗示該區(qū)域稻田土壤中的Hg主要來源于城市人為活動排放的含Hg污染物(圖2c)。
a. 土壤Cdb. 稻米Cdc. 土壤Hgd. 稻米Hge. 土壤As a. Cd in soilb. Cd in ricec. Hg in soild. Hg in ricee. As in soil
f. 稻米Asg. 土壤Pbh. 稻米Pbi. 土壤Crj. 稻米Cr f. As in riceg. Pb in soilh. Pb in ricei. Cr in soilj. Cr in rice
都勻城市周邊稻米中不同重金屬空間分布差異較大,稻米中Cd超標(biāo)點(diǎn)位全部分布在平浪鎮(zhèn),稻米Hg的高值區(qū)均分布在鉛鋅礦區(qū)。結(jié)合稻田土壤重金屬空分布分析表明,稻田土壤與稻米中重金屬空間分布沒有明顯的一致性,間接說明土壤重金屬濃度不是導(dǎo)致稻米超標(biāo)的必然因素(圖2)。大量研究表明,植物從土壤中吸收重金屬的量與土壤重金屬總量有一定關(guān)系,但土壤重金屬的總量并不是衡量植物吸收程度的一個可靠指標(biāo),而主要與土壤重金屬有效態(tài)含量呈正相關(guān)性關(guān)系[28-29]。
通過對稻田土壤中Cd、Hg、As、Pb、Cr和pH值相關(guān)性分析發(fā)現(xiàn),稻田土壤中Cd與Pb呈顯著正相關(guān)關(guān)系(2=0.663,<0.01)(表3),說明稻田土壤Cd和Pb具有相同的來源,可能主要來源于當(dāng)?shù)赜猩饘僖睙?、燃煤燃燒、汽車尾氣等人為活動排放的廢氣[30-31]。土壤中Hg和As與Pb之間呈顯著正相關(guān)關(guān)系,相關(guān)系數(shù)分別為0.745和0.596(<0.01),說明稻田土壤中Hg、As、Pb主要受當(dāng)?shù)劂U鋅礦冶煉、居民和火電廠燃煤燃燒排放的含Hg、As和Pb污染物有關(guān)[31-32]。相關(guān)研究結(jié)果顯示,表層土壤中Hg、As和Pb等重金屬含量隨著距離燃煤電廠距離的增加而逐漸降低[33-35],Hg和Pb含量在垂直方向上表現(xiàn)為隨著土壤深度的增加而逐漸降低[34,36],而As含量在土壤剖面上變化特征不明顯[34],進(jìn)一步驗證了稻田土壤中Hg、As和Pb主要來源于燃煤燃燒和有色金屬冶煉。
表2 稻田土壤重金屬污染指數(shù)評價
土壤和稻米中Cd、Hg、As、Pb和Cr含量相關(guān)性分析結(jié)果顯示,稻米與土壤中Hg含量呈極顯著相關(guān)關(guān)系(2=0.441,<0.01)(表3),說明稻米中Hg含量隨著土壤Hg含量的增加而增加。結(jié)合表1進(jìn)一步分析發(fā)現(xiàn),雖然研究區(qū)稻田土壤Hg含量明顯低于中國農(nóng)用地土壤污染篩選值(0.5 mg/kg,5.5 表3 稻田土壤和稻米中重金屬含量相關(guān)性分析 注:**在0.01水平上極顯著相關(guān),*在0.05水平上顯著相關(guān)。S-pH代表土壤pH值;S-Cd、S-Hg、S-As、S-Pb和S-Cr分別代表土壤中Cd、Hg、As、Pb和Cr;R-Cd、R-Hg、R-As、R-Pb和R-Cr分別代表稻米中Cd、Hg、As、Pb和Cr。 Note: **Correlation is significant at the 0.01 level (two-tailed); *correlation is significant at the 0.05 level (two-tailed). S-pH is the pH of soil. S-Cd, S-Hg, S-As, S-Pb and S-Cr are the Cd, Hg, As, Pb and Cr content in soil, respectively. R-Cd, R-Hg, R-As, R-Pb and R-Cr are the Cd, Hg, As, Pb and Cr content in rice, respectively. 土壤中重金屬主要來源于成土母質(zhì)和人為活動,通過主成分分析可以有效識別土壤重金屬的污染來源[37]。都勻城市周邊稻田土壤重金屬主成分分析結(jié)果如表4所示,根據(jù)特征值大于1原則,篩選出2個成分共解釋了77.392%的原有信息,說明通過對前2主成分分析即可得到Cd、Hg、As、Pb和Cr這5種重金屬含量數(shù)據(jù)的大部分信息。 研究區(qū)稻田土壤重金屬含量主成分分析結(jié)果顯示,第一主成分(PC1)的方差貢獻(xiàn)率為57.274%,在Cd、Hg、As、Pb和Cr的含量上載荷較高,分別為0.605、0.861、0.792、0.838和0.653(表4),主要反映了Cd、Hg、As、Pb和Cr富集特征,稻田土壤中Hg、As和Pb富集特征最為顯著。稻田土壤中Hg平均含量高于貴州土壤背景值,說明稻田土壤遭受外源Hg污染最嚴(yán)重。相關(guān)研究結(jié)果表明,鉛鋅礦伴生有Hg、As和Pb等重金屬元素[38-39],且稻田土壤中Hg、As和Pb之間存在極顯著相關(guān)關(guān)系(表 3),進(jìn)一步說明第一主成分中Hg、As和Pb具有相同的來源。研究區(qū)主要分布有鉛鋅礦開采、冶煉及火電廠等污染源,生產(chǎn)過程中產(chǎn)生的廢水、廢氣、廢渣等都可能成為Hg、As和Pb的污染源,因此第一主成分主要代表了礦產(chǎn)資源開采、洗選、冶煉及其他工業(yè)活動等人為來源。 表4 稻田土壤中重金屬含量主成分載荷 第二主成分(PC2)的方差貢獻(xiàn)率為32.707%,其中Cd和Pb具有較高的載荷,分別為0.951和0.790(表4),主要反映了Cd和Pb富集信息。已有研究表明,當(dāng)同一種元素在不同的主成分上均有相當(dāng)?shù)妮d荷時,可認(rèn)為具備2種主成分的來源[40],說明都勻稻田土壤中Cd還可能來源于化肥農(nóng)藥的施用,而Pb可能來源于汽車尾氣排放[41-42]。重金屬間的距離反映了元素之間的相關(guān)性[43],稻田土壤中Hg和As之間距離較近(圖3),顯示出較強(qiáng)的相關(guān)性,進(jìn)一步說明Hg和As具有相同的來源。Cd和Pb之間的距離較近,Cd和Pb之間存在顯著的相關(guān)關(guān)系,說明二者具有一定的同源性。Cr在PC2上具有較低的載荷(0.106),稻田土壤中Cr的平均值低于貴州省土壤背景值,且變異系數(shù)相對較低(表1),表明稻田土壤中Cr受人為活動的影響較小。此外,土壤中Cr與其他4種元素關(guān)系并不明顯,顯示出較強(qiáng)的異源性,暗示稻田土壤中的Cr主要來源于成土母質(zhì)。鄭睛之等[42]對小城市土壤中重金屬研究也發(fā)現(xiàn),土壤中Cr受人為活動影響較小,主要來源土壤母巖。不同地區(qū)土壤中Cr來源分析結(jié)果表明,土壤Cr受到人為活動的影響較小,土壤Cr含量接近背景值,主要來源于成土母質(zhì)[20]。綜上所述,本研究稻田土壤中Cr受成土母質(zhì)控制,為自然來源元素。 圖3 土壤重金屬元素主成分載荷 1)都勻城市周邊稻田土壤中Cd、Hg、As、Pb和Cr平均質(zhì)量分?jǐn)?shù)分別為(0.45±0.48)、(0.23±0.29)、(11.94±10.86)、(36.95±32.98)和(60.80±31.73)mg/kg,與貴州省土壤重金屬背景值相比,研究區(qū)主要表現(xiàn)出Hg富集;稻田土壤重金屬污染風(fēng)險評價顯示,研究區(qū)稻田土壤整體處于輕度污染和尚清潔水平,綜合污染水平較低,僅Hg污染問題較為突出。 2)都勻城市周邊農(nóng)田種植稻米中只存在3.64% Cd超標(biāo),Hg、As、Pb和Cr平均含量均低于國家食品安全標(biāo)準(zhǔn)限定值,說明當(dāng)?shù)鼐用袷秤玫久状嬖谧畲蟮臐撛谕{為Cd污染稻米。此外,目前土壤Hg處于不斷累積狀態(tài),鑒于水稻對Hg具有很強(qiáng)的富集能力,未來稻米中Hg污染問題應(yīng)引起相關(guān)部門的關(guān)注。 3)稻田土壤重金屬來源解析結(jié)果表明,土壤中Cd、Hg、As和Pb之間呈顯著正相關(guān)關(guān)系,具有相同的來源,主要與當(dāng)?shù)劂U鋅礦開采、冶煉、火電廠等污染點(diǎn)源有關(guān);Cr與其他元素相關(guān)性不顯著,表現(xiàn)出明顯的異源性,說明其主要來源于成土母質(zhì),為自然來源元素。 [1] Feng X B, Li P, Qiu G L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China[J]. Environment Science & Technology, 2008, 42(1): 326-332. [2] Zhou H, Zeng M, Zhou X, et al. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice () cultivars[J]. Plant & Soil, 2015, 386(1/2): 317-329. [3] Rothenberg S E, Windhammyers L, Creswell J E. Rice methylmercury exposure and mitigation: A comprehensive review[J]. Environmental Research, 2014, 133(2): 407-423. [4] Ao M, Meng B, Sapkota A, et al. The influence of atmospheric Hg on Hg contaminations in rice and paddy soil in the Xunyang Hg mining district, China[J]. Acta Geochimica, 2017, 36(2): 181-189. [5] 王金霞,李謝玲,何清明,等. 三峽庫區(qū)典型農(nóng)業(yè)區(qū)土壤重金屬污染特征及風(fēng)險評價[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(8):227-234. Wang Jinxia, Li Xielin, He Qingming, et al. Characterization and risk assessment of heavy metal pollution in agricultural soils in Three Gorge Reservoir Area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 227-234. (in Chinese with English abstract) [6] 環(huán)境保護(hù)部,國土資源部. 全國土壤污染狀況調(diào)查公報[R/OL]. [2018-06-02]. http://www.zhb.gov.cn/gkml/hbb/qt/ 201404/t20140417_270670.htm. [7] 袁珊珊,肖細(xì)元,郭朝暉. 中國鎘礦的區(qū)域分布及土壤鎘污染風(fēng)險分析[J]. 環(huán)境污染與防治,2012, 34(6):51-56. Yuan Shanshan, Xiao Xiyuan, Guo Zhaohui. Regional distribution of cadmium minerals and risk assessment for potential cadmium pollution of soil in China[J]. Environmental Pollution & Control, 2012, 34(6): 51-56. (in Chinese with English abstract) [8] 王敬中. 我國每年因重金屬污染糧食達(dá)1200萬噸[J]. 農(nóng)村實(shí)用技術(shù),2006(8):27. Wang Jingzhong. 12 million tons of grain polluted by heavy metals in China every year[J]. Rural Practical Technology, 2006(8): 27. (in Chinese with English abstract) [9] Qiu G L, Feng X B, Li P, et al. Methylmercury accumulation in rice () grown at abandoned mercury mines in Guizhou, China[J]. Journal of Agricultural and Food Chemistry, 2008, 56(7): 2465-2468. [10] Zhang H, Feng X B, Larssen T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice () grain[J]. Environmental Science & Technology, 2010, 44(12): 4499-4504. [11] 鄭陶,李廷軒,張錫洲,等. 水稻鎘高積累品種對鎘的富集特性[J]. 中國農(nóng)業(yè)科學(xué),2013,46(7):1492-1500. Zheng Tao, Li Tinxuan, Zhang Xizhou, et al. Accumulation characteristics of cadmium-accumulated rice cultivars with high cadmium accumulation[J]. Scientia Agricultura Sinica, 2013, 46(7): 1492-1500. (in Chinese with English abstract) [12] Li P, Feng X B, Yuan X B, et al. Rice consumption contributes to low level methylmercury exposure in southern China[J]. Environment International, 2012, 49(1): 18-23. [13] 謝建治,劉樹慶,劉玉柱,等. 保定市郊土壤重金屬污染對蔬菜營養(yǎng)品質(zhì)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2002,21(4):325-327. Xie Jianzhi, Liu Shuqing, Liu Yuzhu, et al. Effects of heavy metal pollution in Soil on nutrition, quality of vegetable in Baoding[J]. Agro-environmental Protection, 2002, 21(4): 325-327. (in Chinese with English abstract) [14] 陳毛華,劉明廣,郭斌,等. 阜陽市城郊菜地重金屬污染調(diào)查與評價[J]. 地球與環(huán)境,2017,45(3):322-328. Chen Maohua, Liu Mingguang, Guo Bin, et al. A heavy metals distribution characteristics and pollution assessment of suburban vegetable region soils of Fuyang City, China[J]. Earth & Environment, 2017, 45(3): 322-328. (in Chinese with English abstract) [15] 李瑞平,郝英華,李光德,等. 泰安市農(nóng)田土壤重金屬污染特征及來源解析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2011,30(10):2012-2017. Li Ruiping, Hao Yinghua, Li Guangde, et al. Characteristics and sources analysis of soil heavy metal pollution in Taian City, Shandong, China[J]. Journal of Agro-Environment Science, 2011, 30(10): 2012-2017. (in Chinese with English abstract) [16] 韓君,徐應(yīng)明,溫兆飛,等. 重慶某廢棄電鍍工業(yè)園農(nóng)田土壤重金屬污染調(diào)查與生態(tài)風(fēng)險評價[J]. 環(huán)境化學(xué),2014,33(3):432-439. Han Jun, Xu Yingming, Wen Zhaofei, et al. Investigation and ecological risk assessment of heavy metal pollution in agriculture soil of an abandoned electroplating industrial park of Chongqing, China[J]. Environmental Chemistry, 2014, 33(3): 432-439. (in Chinese with English abstract) [17] Liu Q, Liu J S, Wang Q C, et al. Assessment of heavy metal pollution in urban agricultural soils of Jilin City, China[J]. Human & Ecological Risk Assessment An International Journal, 2015, 21(7): 1869-1883. [18] Hossain M A, Ali N M, Islam M S, et al. Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia[J]. Environmental Earth Sciences, 2015, 73(1): 115-126. [19] Tian H Z, Cheng K, Wang Y, et al. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China[J]. Atmospheric Environment, 2012, 50: 157-163. [20] Sun C Y, Liu J S, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China[J]. Chemosphere, 2013, 92(5): 517-523. [21] Fan Y, Zhu T P, Li M T, et al. Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China[J]. Journal of Healthcare Engineering, 2017, 2017(3): 1-9. [22] 馮濟(jì)舟. 貴州省地球化學(xué)圖集[M]. 北京:地質(zhì)出版社,2008. [23] 徐爭啟,倪師軍,庹先國,等. 潛在生態(tài)危害指數(shù)法評價中重金屬毒性系數(shù)計算[J]. 環(huán)境科學(xué)與技術(shù),2008,31(2):112-115. Xu Zhenqi, Ni Shijun, Tuo Xianguo, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112-115. (in Chinese with English abstract) [24] Pan L, Lin C J, Carmichael G R, et al. Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system[J]. Science of the Total Environment, 2010, 408(16): 3277-3291. [25] Drevnick P E, Yang H, Lamborg C H, et al. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments[J]. Atmospheric Environment, 2012, 59(9): 509-513. [26] 陳同斌. 土壤溶液中的砷及其與水稻生長效應(yīng)的關(guān)系[J]. 生態(tài)學(xué)報,1996,16(2):147-153. Chen Tongbin. Arsenic in soil solution and its effect on the growth of rice ()[J]. Acta Ecologica Sinica, 1996, 16(2): 147-153. (in Chinese with English abstract) [27] 孫約兵,周啟星,任麗萍. 鎘超富集植物球果蔊菜對鎘-砷復(fù)合污染的反應(yīng)及其吸收積累特征[J]. 環(huán)境科學(xué),2007,28(6):1355-1360. Sun Yuebing, Zhou Qixing, Ren Liping. Growth responses of Rorippa globosa and its accumulation characteristics of Cd and as under the Cd-As combined pollution[J]. Environmental Science, 2007, 28(6): 1355-1360. (in Chinese with English abstract) [28] 李海華,劉建武,李樹人,等. 土壤--植物系統(tǒng)中重金屬污染及作物富集研究進(jìn)展[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報,2000,34(1):30-34. Li Haihua, Liu Jianwu, Li Shuren, et al. The present progness of research on heavy metal pollution and plant enrichment in soil-plant system[J]. Journal of Henan Agricultural University, 2000, 34(1): 30-34. (in Chinese with English abstract) [29] 郭朝暉,冉洪珍,封文利,等. 阻隔主要外源輸入重金屬對土壤-水稻系統(tǒng)中鎘鉛累積的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(16):232-237. Guo Zhaohui, Ran Hongzhen, Feng Wenli, et al. Effect of impeding main exogenous heavy metal input on accumulation of Cd and Pb in paddy soil-rice system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 232-237. (in Chinese with English abstract) [30] Yang Y G, Jin Z S, Bi X Y, et al. Atmospheric deposition-carried Pb, Zn, and Cd from a zinc smelter and their effect on soil microorganisms[J]. Pedosphere, 2009, 19(4): 422-433. [31] Lei M, Zhang Y, Khan S, et al. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area[J]. Environmental Monitoring & Assessment, 2010, 168(1/2/3/4): 215-222. [32] Tian H Z, Wang Y, Xue Z G, et al. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007[J]. Atmospheric Chemistry & Physics Discussions, 2010, 10(23): 20729-20768. [33] 王凌青,盧新衛(wèi),王利軍,等. 寶雞燃煤電廠周圍土壤環(huán)境Hg污染及其評價[J]. 土壤通報,2007,38(3):622-624. Wang Lingqing, Lu Xinwei, Wang Lijun, et al. Evaluation of Hg pollution of soil around the Baoji coal-fired power plant[J]. Chinese Journal of Soil Science, 2007, 38(3): 622-624. (in Chinese with English abstract) [34] 方鳳滿,楊丁,汪琳琳,等. 蕪湖燃煤電廠周邊土壤中砷汞的分布特征研究[J]. 水土保持學(xué)報,2010,24(1):109-113. Fang Fengman, Yang Ding, Wang Linlin, et al. Distribution of arsenic and mercury in soil around coal-fired power plant in Wuhu[J]. Journal of Soil & Water Conservation, 2010, 24(1): 109-113. (in Chinese with English abstract) [35] Keegan T J, Farago M E, Thornton I, et al. Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia[J]. Science of the Total Environment, 2006, 358(1/2/3): 61-71. [36] Ferrat M, Weiss D J, Dong S F, et al. Lead atmospheric deposition fluxes and isotopic trends in Asian dust during the last 9.5 kyr recorded in an ombrotrophic peat bog on the eastern Qinghai-Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2012, 82: 4-22. [37] 周艷,陳檣,鄧紹坡,等. 西南某鉛鋅礦區(qū)農(nóng)田土壤重金屬空間主成分分析及生態(tài)風(fēng)險評價[J]. 環(huán)境科學(xué),2018,39(6):2884-2892. Zhou Yan, Chen Qiang, Deng Shaopo, et al. Principal component cnalysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China[J]. Environmental Science, 2018, 39(6): 2884-2892. (in Chinese with English abstract) [38] 姜磊. 萬源富硒區(qū)土壤中硒中元素環(huán)境化學(xué)特征研究[D]. 成都:成都理工大學(xué),2010. Jiang Lei. Wanyuan Selenium-rich Soil Environmental Geochemical Characteristics of Selenium[D]. Chengdu: Chengdu University of Technology, 2010. (in Chinese with English abstract) [39] 劉慧. 馬鞍山重點(diǎn)礦區(qū)土壤重金屬污染評價研究[D]. 合肥:合肥工業(yè)大學(xué),2012. Liu Hui. Research on Assessment of Heavy Metal Pollution in the Soil in Maanshan Key Mining Area[D]. Hefei: Hefei University of Technology, 2012. (in Chinese with English abstract) [40] 徐夕博,呂建樹,徐汝汝. 山東省沂源縣土壤重金屬來源分布及風(fēng)險評價[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(9):216-223. Xu Xibo, Lü Jianshu, Xu Ruru. Source spatial distribution and risk assessment of heavy metals in Yiyuan county of Shandong province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 216-223. (in Chinese with English abstract) [41] Li X, Lee S L, Wong S C, et al. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach[J]. Environmental Pollution, 2004, 129(1): 113-124. [42] 鄭睛之,王楚棟,王詩涵,等. 典型小城市土壤重金屬空間異質(zhì)性及其風(fēng)險評價:以臨安市為例[J]. 環(huán)境科學(xué),2018,39(6):2875-2883. Zheng Jingzhi, Wang Chudong, Wang Shihan, et al. Spatial variation of soil heavy metals in Lin'an city and its potential risk evaluation[J]. Environmental Science, 2018, 39(6): 2875-2883. (in Chinese with English abstract) [43] 張連科,李海鵬,黃學(xué)敏,等. 包頭某鋁廠周邊土壤重金屬的空間分布及來源解析[J]. 環(huán)境科學(xué),2016,37(3):1139-1146. Zhang Lianke, Li Haipeng, Huang Xuemin, et al. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou[J]. Environmental Science, 2016, 37(3): 1139-1146. (in Chinese with English abstract) Evaluation of potential pollution risk and source analysis of heavy metals in paddy soil and rice Ao Ming1,2, Chai Guanqun1, Fan Chengwu1, Liu Guihua1, Qin Song1, Wang Ping2※ (1.,,550006,; 2.,550001,) The characterization and spatial distribution of the content and source of heavy metals in soils are necessary to assess the potential threat of heavy metals to food safety and human health. In order to investigate the origin of heavy metals in paddy soils and rice in the Duyun city, 110 sampling sites were set in this study. The soil samples in arable layer of paddy and rice were collected, the contents of Cd, Hg, As, Pb and Cr were measured, and the data were analyzed by the multivariate statistical technique. A geographic information system (GIS) was used to explore the variety of spatial distributions for 5 heavy metals. Single factor pollution index, Nemero comprehensive pollution index and potential ecological risk index were applied to evaluate the degree of soil heavy metal contamination. Our results showed that the average contents of Cd, Hg, As, Pb and Cr in soils in the Duyun were (0.45±0.48), (0.23±0.29), (11.94±10.86), (36.95±32.98) and (60.80±31.73) mg/kg, respectively. The average contents of Cd, Hg, As, Pb and Cr in rice were (38.91±86.50), (5.82±2.96), (113.26±27.18), (89.42±24.87) and (175.92±82.12)g/kg, respectively. The proportion of Cd, Hg, As, Pb and Cr contents more than the background values of the Guizhou province were 14.55%, 40.00%, 16.36%, 22.72%, 13.64%, respectively. Anthropic activities caused the enrichment of Hg in paddy soils. Only 3.64% of all rice samples exhibited Cd content exceeding the threshold level (20g/kg) in the Chinese national guidelines for cereals, and the other elements were below the national limit. Distribution maps of heavy metal content were generated using the Kriging interpolation method to identify their distribution trends. The results show that the influence of smelting activities, transport services and coal combustion on the spatial distribution. These suggested that the impacts of human activities on soil heavy metals in Duyun had exceeded the impact of natural source. Multivariate and geostatistical analysis suggested that soil Cr had a lithogenic origin. The correlation analysis and principal component analysis suggested that Cd, Hg, As and Pb could be attributed to anthropogenic inputs. The accumulation of Cd, Hg and As in soils was mostly affected by lead-zinc smelting, coal combustion and agronomic practices, and the main sources of Pb were lead-zinc smelting, industrial fume, coal burning exhausts. The current study confirmed that the environmental quality could be seriously threatened by heavy metal contaminants from the smelter and industrial activity. Therefore, the use of fossil fuels (coal and oil), fertilizers and the “three wastes” emissions from the key industrial enterprises in this area should be strictly controlled. heavy metals; soils; source analysis; rice 2018-09-02 2019-03-11 黔科合服企[2015]4007;黔農(nóng)科院青年基金[2018]82號;黔科合平臺人才[2017]5719 敖明,研究實(shí)習(xí)員,研究方向為環(huán)境地球化學(xué)。 Email:ao_ming@sina.cn 王萍,高級農(nóng)藝師,研究方向為農(nóng)業(yè)資源與環(huán)境。 Email:45940970@qq.com 10.11975/j.issn.1002-6819.2019.06.024 X53 A 1002-6819(2019)-06-0198-08 敖 明,柴冠群,范成五,劉桂華,秦 松,王 萍. 稻田土壤和稻米中重金屬潛在污染風(fēng)險評估與來源解析[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(6):198-205. doi:10.11975/j.issn.1002-6819.2019.06.024 http://www.tcsae.org Ao Ming, Chai Guanqun, Fan Chengwu, Liu Guihua, Qin Song, Wang Ping. Evaluation of potential pollution risk and source analysis of heavy metals in paddy soil and rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 198-205. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.024 http://www.tcsae.org2.5 稻田土壤中重金屬來源解析
3 結(jié) 論